1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
"""
>>> case(fft.fft( (0,1)*4 ),
... Numeric.array([ 4.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
... -4.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]))
OK
>>> case(fft.inverse_fft( fft.fft((0,1)*4)),
... Numeric.array([ 0.+0.j, 1.+0.j, 0.+0.j, 1.+0.j,
... 0.+0.j, 1.+0.j, 0.+0.j, 1.+0.j]))
OK
>>> case(fft.fft( (0,1)*4, n=16),
... Numeric.array([
... 4.00000000e+00+0.j , -1.11022302e-15-2.61312593j,
... 0.00000000e+00+0.j , -1.55431223e-15-1.0823922j ,
... 0.00000000e+00+0.j , -4.44089210e-16-1.0823922j ,
... 0.00000000e+00+0.j , -3.55271368e-15-2.61312593j,
... -4.00000000e+00+0.j , 1.11022302e-15+2.61312593j,
... 0.00000000e+00+0.j , 1.55431223e-15+1.0823922j ,
... 0.00000000e+00+0.j , 4.44089210e-16+1.0823922j ,
... 0.00000000e+00+0.j , 3.55271368e-15+2.61312593j]))
OK
>>> case(fft.fft( (0,1)*4, n=4 ),
... Numeric.array([ 2.+0.j, 0.+0.j, -2.+0.j, 0.+0.j]))
OK
>>> case(fft.fft2d( [(0,1),(1,0)] ),
... Numeric.array([[ 2.+0.j, 0.+0.j],
... [ 0.+0.j, -2.+0.j]]))
OK
>>> case(fft.inverse_fft2d (fft.fft2d( [(0, 1), (1, 0)] ) ),
... Numeric.array([[ 0.+0.j, 1.+0.j],
... [ 1.+0.j, 0.+0.j]]))
OK
>>> case(fft.real_fft2d([(0,1),(1,0)]),
... Numeric.array([[ 2.+0.j, 0.+0.j],
... [ 0.+0.j, -2.+0.j]]))
OK
>>> case(fft.real_fft2d([(1,1),(1,1)] ),
... Numeric.array([[ 4.+0.j, 0.+0.j],
... [ 0.+0.j, 0.+0.j]]))
OK
Tests for correctness.
Somewhat limited since
p (and thus q also) is real and hermite, and the dimension we're
testing is a power of 2. If someone can cook up more general data
in their head or with another program/library, splice it in!
>>> toler = 1.e-10
>>> oosq2 = 1.0/Numeric.sqrt(2.0)
>>> p = Numeric.array(((1, 1, 1, 1, 1, 1, 1, 1),
... (1, oosq2, 0, -oosq2, -1, -oosq2, 0, oosq2),
... (1, 0, -1, 0, 1, 0, -1, 0),
... (1, -oosq2, 0, oosq2, -1, oosq2, 0, -oosq2),
... (1, -1, 1, -1, 1, -1, 1, -1),
... (1, 0, 0, 0, 0, 0, 0, 0),
... (0, 0, 0, 0, 0, 0, 0, 0)))
>>> q = Numeric.array(((8,0,0,0,0,0,0,0),
... (0,4,0,0,0,0,0,4),
... (0,0,4,0,0,0,4,0),
... (0,0,0,4,0,4,0,0),
... (0,0,0,0,8,0,0,0),
... (1,1,1,1,1,1,1,1),
... (0,0,0,0,0,0,0,0)))
Correctness testing dimension -1.
>>> P = fft.fft(p)
>>> cndns(P-q) / cndns(q) > toler
0
>>> RP = fft.real_fft(p)
>>> npt = p.getshape()[-1]; rpt = npt/2 + 1
>>> qr = q[:,:rpt]; cndns(RP-qr) / cndns(qr) > toler
0
>>> I = fft.inverse_real_fft(q, npt)
>>> cndns(I-p) / cndns(p) > toler
0
Consistency testing dimension 0, length 7.
>>> dim = 0
FFT
>>> P = fft.fft(p, None, dim)
>>> Q = fft.inverse_fft(P, None, dim)
>>> cndns(Q-p) / cndns(p) > toler
0
Real FFT
>>> RP = fft.real_fft(p, None, dim)
>>> npt = p.getshape()[dim]; rpt = npt/2 + 1
>>> P = Numeric.take(P, range(rpt), axis=dim)
>>> cndns(RP-P) / cndns(RP) > toler
0
Inverse FFT
>>> P = fft.fft(p, None, dim)
>>> Q = fft.inverse_fft(P, None, dim)
>>> cndns(Q-p) / cndns(p) > toler
0
Inverse Hermite FFT
>>> hp = fft.inverse_hermite_fft(q, npt, dim)
>>> Q = fft.inverse_fft(q, None, dim)
>>> Q = Numeric.take(Q, range(rpt), axis=dim)
>>> cndns(hp-Q) / cndns(hp) > toler
0
Consistency testing dimension 1, length 8.
>>> dim = 1
FFT
>>> P = fft.fft(p, None, dim)
>>> Q = fft.inverse_fft(P, None, dim)
>>> cndns(Q-p) / cndns(p) > toler
0
Real FFT
>>> RP = fft.real_fft(p, None, dim)
>>> npt = p.getshape()[dim]; rpt = npt/2 + 1
>>> P = Numeric.take(P, range(rpt), axis=dim)
>>> cndns(RP-P) / cndns(RP) > toler
0
Inverse FFT
>>> P = fft.fft(p, None, dim)
>>> Q = fft.inverse_fft(P, None, dim)
>>> cndns(Q-p) / cndns(p) > toler
0
Inverse Hermite FFT
>>> hp = fft.inverse_hermite_fft(q, npt, dim)
>>> Q = fft.inverse_fft(q, None, dim)
>>> Q = Numeric.take(Q, range(rpt), axis=dim)
>>> cndns(hp-Q) / cndns(hp) > toler
0
Multi-dimensional tests
>>> tee = Numeric.array(((2.0, 0, 2, 0),
... (0, 2, 0, 2),
... (2, 0, 2, 0),
... (0, 2, 0, 2)))
>>> eff = Numeric.array(((16.0, 0, 0, 0),
... (0, 0, 0, 0),
... (0, 0, 16, 0),
... (0, 0, 0, 0)))
FFT N-dimensional
>>> ftest = fft.fftnd(tee)
>>> cndns(ftest - eff) / cndns(eff) > toler
0
Inverse FFT N-Dimensional
>>> cndns(fft.inverse_fftnd(ftest) - tee) / cndns(tee) > toler
0
Real FFT N-dimensional
>>> fred = fft.real_fftnd(p)
>>> npts = p.getshape()[-1]; rpts = npts/2 + 1
>>> actual = fft.fftnd(p); ract = actual[..., :rpts]
>>> cndns(fred-ract) / cndns(ract) > toler
0
Inverse Real FFT N-dimensional
>>> ethel = fft.inverse_real_fftnd(fred)
>>> cndns(p-ethel) / cndns(p) > toler
0
FFT 2D shape test:
>>> axes = (0,1); shape = (7,4); barney = Numeric.zeros(shape,'d')
>>> betty = fft.fft2d(barney); betty.shape == barney.shape
1
>>> betty = fft.fft2d(barney, None, axes); betty.shape == barney.shape
1
>>> betty = fft.fft2d(barney, shape); betty.shape == barney.shape
1
>>> betty = fft.fft2d(barney, shape, axes); betty.shape == barney.shape
1
>>> betty = fft.real_fft2d(barney); wilma = fft.inverse_real_fft2d(betty)
>>> wilma.shape == barney.shape
1
>>> wilma = fft.inverse_real_fft2d(betty, shape); wilma.shape == barney.shape
1
>>> wilma = fft.inverse_real_fft2d(betty, None, axes); wilma.shape == barney.shape
1
>>> wilma = fft.inverse_real_fft2d(betty, shape, axes); wilma.shape == barney.shape
1
Codelet order test:
>>> for size in range (1,25):
... for i in range(3):
... a = random_array.random(size)
... b = fft.real_fft(a)
... c = fft.inverse_real_fft(b,size)
... if cndns(c-a) / cndns(a) > toler:
... print "real transforms failed for size %d" % size
... a = a + random_array.random(size) * 1j
... b = fft.fft(a)
... c = fft.inverse_fft(b,size)
... if cndns(c-a) / cndns(a) > toler:
... print "complex transforms failed for size %d" % size
>>> x = Numeric.cos(Numeric.arange(30.0)/30.0*2*Numeric.pi)
>>> y = fft.real_fft(x)
>>> z = fft.inverse_real_fft(y,30)
>>> cndns(x-z)/cndns(x) > toler
0
"""
import numarray.fft as fft
import numarray.numeric as Numeric
import numarray.random_array as random_array
import sys
class DoctestError(Exception):
pass
def cndns(m):
return Numeric.maximum.reduce(Numeric.abs(m).getflat())
def case(expr, ans, eps=1e-9):
if cndns(ans-expr) < eps:
print "OK"
else:
raise DoctestError, "failed"
def test():
import dtest
import doctest
return doctest.testmod(dtest)
if __name__ == '__main__':
test()
|