File: mlab.py

package info (click to toggle)
python-numarray 1.5.2-4
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 8,668 kB
  • ctags: 11,384
  • sloc: ansic: 113,864; python: 22,422; makefile: 197; sh: 11
file content (418 lines) | stat: -rw-r--r-- 12,223 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
"""Matlab(tm) compatibility functions.

This will hopefully become a complete set of the basic functions available in
matlab.  The syntax is kept as close to the matlab syntax as possible.  One 
fundamental change is that the first index in matlab varies the fastest (as in 
FORTRAN).  That means that it will usually perform reductions over columns, 
whereas with this object the most natural reductions are over rows.  It's perfectly
possible to make this work the way it does in matlab if that's desired.
"""
#import Matrix   --- cannot use Matrix module here because Linear Algebra imports it
#                    and Matrix depends on Linear Algebra.

from numarray.numeric import *

# Elementary Matrices

# zeros is from matrixmodule in C
# ones is from Numeric.py

def rand(*args):
    """rand(d1,...,dn) returns a matrix of the given dimensions
    which is initialized to random numbers from a uniform distribution
    in the range [0,1).
    """
    import numarray.random_array as ra
    return ra.random(args)

def randn(*args):
    """u = randn(d0,d1,...,dn) returns zero-mean, unit-variance Gaussian
    random numbers in an array of size (d0,d1,...,dn)."""
    import numarray.random_array as ra
    x1 = ra.random(args)
    x2 = ra.random(args)
    return sqrt(-2*log(x1))*cos(2*pi*x2)
 

def eye(N, M=None, k=0, typecode=None):
    """eye(N, M=N, k=0, typecode=None) returns a N-by-M matrix where the 
    k-th diagonal is all ones, and everything else is zeros.
    """
    if M is None: M = N
    if type(M) == type('d'): 
        typecode = M
        M = N
    m = equal(subtract.outer(arange(N), arange(M)),-k)
    return asarray(m,typecode=typecode)


def tri(N, M=None, k=0, typecode=None):
    """tri(N, M=N, k=0, typecode=None) returns a N-by-M matrix where all
    the diagonals starting from lower left corner up to the k-th are all ones.
    """
    if M is None: M = N
    if type(M) == type('d'): 
        typecode = M
        M = N
    m = greater_equal(subtract.outer(arange(N), arange(M)),-k)
    return m.astype(typecode)
    
# Matrix manipulation

def diag(v, k=0):
    """diag(v,k=0) returns the k-th diagonal if v is a matrix or
    returns a matrix with v as the k-th diagonal if v is a vector.
    """
    v = asarray(v)
    s = v.shape
    if len(s)==1:
        n = s[0]+abs(k)
        if k > 0:
            v = concatenate((zeros(k, v.typecode()),v))
        elif k < 0:
            v = concatenate((v,zeros(-k, v.typecode())))
        return eye(n, k=k)*v
    elif len(s)==2:
        v = add.reduce(eye(s[0], s[1], k=k)*v)
        if k > 0: return v[k:]
        elif k < 0: return v[:k]
        else: return v
    else:
            raise ValueError, "Input must be 1- or 2-D."
    

def fliplr(m):
    """fliplr(m) returns a 2-D matrix m with the rows preserved and
    columns flipped in the left/right direction.  Only works with 2-D
    numarray.
    """
    m = asarray(m)
    if len(m.shape) != 2:
        raise ValueError, "Input must be 2-D."
    return m[:, ::-1]

def flipud(m):
    """flipud(m) returns a 2-D matrix with the columns preserved and
    rows flipped in the up/down direction.  Only works with 2-D numarray.
    """
    m = asarray(m)
    if len(m.shape) != 2:
        raise ValueError, "Input must be 2-D."
    return m[::-1]
    
# reshape(x, m, n) is not used, instead use reshape(x, (m, n))

def rot90(m, k=1):
    """rot90(m,k=1) returns the matrix found by rotating m by k*90 degrees
    in the counterclockwise direction.
    """
    m = asarray(m)
    if len(m.shape) != 2:
        raise ValueError, "Input must be 2-D."
    k = k % 4
    if k == 0: return m
    elif k == 1: return transpose(fliplr(m))
    elif k == 2: return fliplr(flipud(m))
    elif k == 3: return fliplr(transpose(m))

def tril(m, k=0):
    """tril(m,k=0) returns the elements on and below the k-th diagonal of
    m.  k=0 is the main diagonal, k > 0 is above and k < 0 is below the main
    diagonal.
    """
    m = asarray(m)
    out = tri(m.shape[0], m.shape[1], k=k, typecode=m.typecode())*m
    return out

def triu(m, k=0):
    """triu(m,k=0) returns the elements on and above the k-th diagonal of
    m.  k=0 is the main diagonal, k > 0 is above and k < 0 is below the main
    diagonal.
    """
    m = asarray(m)
    out = (1-tri(m.shape[0], m.shape[1], k-1, m.typecode()))*m
    return out

# Data analysis

# Basic operations
def max(m,axis=0):
    """max(m,axis=0) returns the maximum of m along dimension axis.
    """
    m = asarray(m)
    return maximum.reduce(m,axis)

def min(m,axis=0):
    """min(m,axis=0) returns the minimum of m along dimension axis.
    """
    m = asarray(m)
    return minimum.reduce(m,axis)

# Actually from Basis, but it fits in so naturally here...

def ptp(m,axis=0):
    """ptp(m,axis=0) returns the maximum - minimum along the the given dimension
    """
    m = asarray(m)
    return max(m,axis)-min(m,axis)

def mean(m,axis=0):
    """mean(m,axis=0) returns the mean of m along the given dimension.
       If m is of integer type, returns a floating point answer.
    """
    m = asarray(m)
    return add.reduce(m,axis)/float(m.shape[axis])

# sort is done in C but is done row-wise rather than column-wise
def msort(m):
    """msort(m) returns a sort along the first dimension of m as in MATLAB.
    """
    m = asarray(m)
    return transpose(sort(transpose(m)))

def median(m):
    """median(m) returns a median of m along the first dimension of m.
    """
    sorted = msort(m)
    if sorted.shape[0] % 2 == 1:
        return sorted[int(sorted.shape[0]/2)]
    else:
        index=sorted.shape[0]/2
        return (sorted[index-1]+sorted[index])/2.0

def std(m,axis=0):
    """std(m,axis=0) returns the standard deviation along the given 
    dimension of m.  The result is unbiased with division by N-1.
    If m is of integer type returns a floating point answer.
    """
    x = asarray(m)
    n = float(x.shape[axis])
    mx = asarray(mean(x,axis))
    if axis < 0:
        axis = len(x.shape) + axis
    mx.shape = mx.shape[:axis] + (1,) + mx.shape[axis:]
    x = x - mx
    return sqrt(add.reduce(x*x,axis)/(n-1.0))

def cumsum(m,axis=0):
    """cumsum(m,axis=0) returns the cumulative sum of the elements along the
    given dimension of m.
    """
    m = asarray(m)
    return add.accumulate(m,axis)

def prod(m,axis=0):
    """prod(m,axis=0) returns the product of the elements along the given
    dimension of m.
    """
    m = asarray(m)
    return multiply.reduce(m,axis)

def cumprod(m,axis=0):
    """cumprod(m) returns the cumulative product of the elments along the
    given dimension of m.
    """
    m = asarray(m)
    return multiply.accumulate(m,axis)

def trapz(y, x=None, axis=-1):
    """trapz(y,x=None,axis=-1) integrates y along the given dimension of
    the data array using the trapezoidal rule.
    """
    y = asarray(y)
    if x is None:
        d = 1.0
    else:
        d = diff(x,axis=axis)
    y = asarray(y)
    nd = len(y.shape)
    slice1 = [slice(None)]*nd
    slice2 = [slice(None)]*nd
    slice1[axis] = slice(1,None)
    slice2[axis] = slice(None,-1)
    return add.reduce(d * (y[slice1]+y[slice2])/2.0,axis)

def diff(x, n=1,axis=-1):
    """diff(x,n=1,axis=-1) calculates the n'th difference along the axis specified.
       Note that the result is one shorter in the axis'th dimension.
       Returns x if n == 0. Raises ValueError if n < 0.
    """
    x = asarray(x)
    nd = len(x.shape)
    if nd == 0:
        nd = 1    
    if n < 0:
        raise ValueError, 'MLab.diff, order argument negative.'
    elif n == 0: 
        return x
    elif n == 1:
        slice1 = [slice(None)]*nd
        slice2 = [slice(None)]*nd
        slice1[axis] = slice(1,None)
        slice2[axis] = slice(None,-1)
        return x[slice1]-x[slice2]
    else:
        return diff(diff(x,1,axis), n-1)

def cov(m,y=None, rowvar=0, bias=0):
    """Estimate the covariance matrix.

    If m is a vector, return the variance.  For matrices where each row
    is an observation, and each column a variable, return the covariance
    matrix.  Note that in this case diag(cov(m)) is a vector of
    variances for each column.

    cov(m) is the same as cov(m, m)

    Normalization is by (N-1) where N is the number of observations
    (unbiased estimate).  If bias is 1 then normalization is by N.

    If rowvar is zero, then each row is a variable with
    observations in the columns.
    """
    if y is None:
        y = m
    else:
        y = y
    if rowvar:
        m = transpose(m)
        y = transpose(y)
    if (m.shape[0] == 1):
        m = transpose(m)
    if (y.shape[0] == 1):
        y = transpose(y)
    N = m.shape[0]
    if (y.shape[0] != N):
        raise ValueError, "x and y must have the same number of observations."    
    m = m - mean(m,axis=0)
    y = y - mean(y,axis=0)
    if bias:
        fact = N*1.0
    else:
        fact = N-1.0
    # 
    val = squeeze(dot(transpose(m),conjugate(y)) / fact)
    return val

def corrcoef(x, y=None):
    """The correlation coefficients
    """
    c = cov(x, y)
    d = diag(c)
    return c/sqrt(multiply.outer(d,d))


# Added functions supplied by Travis Oliphant
import LinearAlgebra2 as LinearAlgebra

def squeeze(a):
    "squeeze(a) returns a with any ones from the shape of a removed"
    a = asarray(a)
    b = asarray(a.shape)
    return reshape (a, tuple (compress (not_equal (b, 1), b)))


def kaiser(M,beta):
    """kaiser(M, beta) returns a Kaiser window of length M with shape parameter
    beta. It depends on the cephes module for the modified bessel function i0.
    """
    import cephes
    n = arange(0,M)
    alpha = (M-1)/2.0
    return cephes.i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/cephes.i0(beta)

def blackman(M):
    """blackman(M) returns the M-point Blackman window.
    """
    n = arange(0,M)
    return 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1))


def bartlett(M):
    """bartlett(M) returns the M-point Bartlett window.
    """
    n = arange(0,M)
    return where(less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1))

def hanning(M):
    """hanning(M) returns the M-point Hanning window.
    """
    n = arange(0,M)
    return 0.5-0.5*cos(2.0*pi*n/(M-1))

def hamming(M):
    """hamming(M) returns the M-point Hamming window.
    """
    n = arange(0,M)
    return 0.54-0.46*cos(2.0*pi*n/(M-1))

def sinc(x):
    """sinc(x) returns sin(pi*x)/(pi*x) at all points of array x.
    """
    y = pi* where(x == 0, 1.0e-20, x) 
    return sin(y)/y 

def eig(v):
    """[x,v] = eig(m) returns the eigenvalues of m in x and the corresponding
    eigenvectors in the rows of v.
    """
    return LinearAlgebra.eigenvectors(v)

def svd(v):
    """[u,x,v] = svd(m) return the singular value decomposition of m.
    """
    return LinearAlgebra.singular_value_decomposition(v)


def angle(z):
    """phi = angle(z) return the angle of complex argument z."""
    z = asarray(z)
    if z.typecode() in ['D','F']:
       zimag = z.imag
       zreal = z.real
    else:
       zimag = 0
       zreal = z
    return arctan2(zimag,zreal)


def roots(p):
    """ return the roots of the polynomial coefficients in p.

    The values in the rank-1 array p are coefficients of a polynomial.
    If the length of p is n+1 then the polynomial is
    p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]
    """
    if type(p) in [types.IntType, types.FloatType, types.ComplexType]:
        p = asarray([p])
    else:
        p = asarray(p)

    n = len(p)
    if len(p.shape) != 1:
        raise ValueError, "Input must be a rank-1 array."

    # Strip zeros at front of array
    ind = 0
    while (p[ind] == 0):
        ind = ind + 1
    p = asarray(p[ind:])

    N = len(p)
    root = zeros((N-1,),'D')
    # Strip zeros at end of array which correspond to zero-valued roots
    ind = len(p)
    while (p[ind-1]==0):
        ind = ind - 1
    p = asarray(p[:ind])

    N = len(p)
    if N > 1:
        A = diag(ones((N-2,),p.typecode()),-1)
        A[0,:] = -p[1:] / p[0]
        root[:N-1] = eig(A)[0]
    if ((root.typecode() == 'F' and allclose(root.imag, 0, rtol=1e-7)) or
        (root.typecode() == 'D' and allclose(root.imag, 0, rtol=1e-14))):
        root = root.real
    return root