1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
""" numarray.matrix ports/re-implements the Matrix module from Numeric.
The basic goal of numarray.matrix is to provide a quick and dirty matrix
class which is backward compatible with Numeric's Matrix class.
In numarray, Matrix() is a factory function for _Matrix, which is a
subclass of NumArray. _Matrix is not yet itself subclassable.
Because a _Matrix is a subclass of NumArray, it can be used where a
NumArray can be used without conversion, particularly in C.
A _Matrix can be constructed from a 2D nested sequence:
>>> m = Matrix( [[1,2,3],[11,12,13],[21,22,23]]); m
_Matrix([[ 1, 2, 3],
[11, 12, 13],
[21, 22, 23]])
Or, a _Matrix can be constructed from an abbreviated string description:
>>> m = Matrix("1 2 3; 6 5 4; 9 20 2"); m
_Matrix([[ 1, 2, 3],
[ 6, 5, 4],
[ 9, 20, 2]])
Because a _Matrix is a subclass of numarray, most NumArray methods and
behavior are identical. In particular, a _Matrix can be indexed as a 2D
array:
>>> m[1:2,1:2]
_Matrix([[5]])
_Matrix overloads the * operator to perform matrix multiplication rather
than elementwise multiplication:
>>> m*m
_Matrix([[ 40, 72, 17],
[ 72, 117, 46],
[147, 158, 111]])
_Matrix defines an "array" attribute to return the contents of the matrix
as a 2D NumArray. Here, NumArray multiplication is shown to be elementwise
multiplication:
>>> m.array*m.array
array([[ 1, 4, 9],
[ 36, 25, 16],
[ 81, 400, 4]])
Checking if the determinant is close to zero can determine if a matrix
is singular or not.
>>> EPS = 1e-13 # fudge an epsilon... your mileage may vary
>>> m.determinant() < EPS # singular?
0
_Matrix overloads the __pow__ special method to perform matrix
multiplication and inversion. Since m is non-singular, we can invert
it. _Matrix inversion is represented using **-1 notation:
>>> m**-1
_Matrix([[-0.34482759, 0.27586207, -0.03448276],
[ 0.1182266 , -0.12315271, 0.06896552],
[ 0.36945813, -0.00985222, -0.03448276]])
Of course multiplying by the inverse should give something close to identity.
>>> numarray.allclose(m*m**-1, numarray.identity(3), atol=EPS)
1
You can use numarray's transpose() function to compute the transpose of
a _Matrix:
>>> transpose(m)
_Matrix([[ 1, 6, 9],
[ 2, 5, 20],
[ 3, 4, 2]])
Raising a matrix to a positive power results in matrix multiplication
by itself as illustrated in the _fibonacci function:
>>> _fibonacci(10)
Fibonacci numbers: 1 1 2 3 5 8 13 21 34 55
"""
import string
import types
import numarray
from numarray import asarray, dot as _dot, identity, conjugate, NumArray, shape
from numarray import transpose as transpose
import numarray.linear_algebra as LinearAlgebra
def _fibonacci(n=10):
"""A self test demo function from Numeric's Matrix."""
print "Fibonacci numbers:",
m = Matrix([[1,1],[1,0]])
for i in range(n):
mm=m**i
print mm[0][0],
print
# make translation table
_table = [None]*256
for k in range(256):
_table[k] = chr(k)
_table = ''.join(_table)
_numchars = string.digits + ".-+jeEL"
_todelete = []
for k in _table:
if k not in _numchars:
_todelete.append(k)
_todelete = ''.join(_todelete)
def _eval(astr):
return eval(astr.translate(_table,_todelete))
def _convert_from_string(data):
data.find
rows = data.split(';')
newdata = []
count = 0
for row in rows:
trow = row.split(',')
newrow = []
for col in trow:
temp = col.split()
newrow.extend(map(_eval,temp))
if count == 0:
Ncols = len(newrow)
elif len(newrow) != Ncols:
raise ValueError, "Rows not the same size."
count += 1
newdata.append(newrow)
return newdata
_lkup = {'0':'000',
'1':'001',
'2':'010',
'3':'011',
'4':'100',
'5':'101',
'6':'110',
'7':'111'}
def _binary(num):
ostr = oct(num)
bin = ''
for ch in ostr[1:]:
bin += _lkup[ch]
ind = 0
while bin[ind] == '0':
ind += 1
return bin[ind:]
class _Matrix(NumArray):
def _rc(self, a):
if len(shape(a)) == 0:
return a
else:
return Matrix(a)
def __mul__(self, other):
aother = asarray(other)
if len(aother.shape) == 0:
return self._rc(self*aother)
else:
return self._rc(_dot(self, aother))
def __rmul__(self, other):
aother = asarray(other)
if len(aother.shape) == 0:
return self._rc(aother*self)
else:
return self._rc(_dot(aother, self))
def __imul__(self,other):
aother = asarray(other)
self[:] = _dot(self, aother)
return self
def __pow__(self, other):
shape = self.shape
if len(shape)!=2 or shape[0]!=shape[1]:
raise TypeError, "matrix is not square"
if type(other) not in (type(1), type(1L)):
raise TypeError, "exponent must be an integer"
if other==0:
return Matrix(identity(shape[0]))
if other<0:
result=Matrix(LinearAlgebra.inverse(self))
x=Matrix(result)
other=-other
else:
result=self
x=result
if other <= 3:
while(other>1):
result=result*x
other=other-1
return result
# binary decomposition to reduce the number of Matrix
# Multiplies for other > 3.
beta = _binary(other)
t = len(beta)
Z,q = x.copy(),0
while beta[t-q-1] == '0':
Z *= Z
q += 1
result = Z.copy()
for k in range(q+1,t):
Z *= Z
if beta[t-k-1] == '1':
result *= Z
return result
def __rpow__(self, other):
raise TypeError, "x**y not implemented for matrices y"
def __invert__(self):
return Matrix(conjugate(self))
def determinant(self):
"""Computes the determinant of the matrix."""
return LinearAlgebra.determinant(self)
def getarray(self):
v = self.view()
v.__class__ = NumArray
return v
array = property(getarray, None, "NumArray form of a Matrix")
def Matrix(data, typecode=None, copy=1, savespace=0):
if type(data) is types.StringType:
data = _convert_from_string(data)
a = numarray.fromlist(data, type=typecode)
a.__class__ = _Matrix
return a
def test():
import doctest, __init__
return doctest.testmod(__init__)
if __name__ == '__main__':
print test()
|