File: aggregate_numba.py

package info (click to toggle)
python-numpy-groupies 0.10.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 476 kB
  • sloc: python: 2,346; makefile: 12
file content (586 lines) | stat: -rw-r--r-- 16,535 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
import numba as nb
import numpy as np

from .utils import (
    aggregate_common_doc,
    aliasing,
    check_dtype,
    check_fill_value,
    funcs_no_separate_nan,
    get_func,
    input_validation,
)


class AggregateOp(object):
    """
    Every subclass of AggregateOp handles a different aggregation operation. There are
    several private class methods that need to be overwritten by the subclasses
    in order to implement different functionality.

    On object instantiation, all necessary static methods are compiled together into
    two jitted callables, one for scalar arguments, and one for arrays. Calling the
    instantiated object picks the right cached callable, does some further preprocessing
    and then executes the actual aggregation operation.
    """

    forced_fill_value = None
    counter_fill_value = 1
    counter_dtype = bool
    mean_fill_value = None
    mean_dtype = np.float64
    outer = False
    reverse = False
    nans = False

    def __init__(self, func=None, **kwargs):
        if func is None:
            func = type(self).__name__.lower()
        self.func = func
        self.__dict__.update(kwargs)
        # Cache the compiled functions, so they don't have to be recompiled on every call
        self._jit_scalar = self.callable(self.nans, self.reverse, scalar=True)
        self._jit_non_scalar = self.callable(self.nans, self.reverse, scalar=False)

    def __call__(
        self,
        group_idx,
        a,
        size=None,
        fill_value=0,
        order="C",
        dtype=None,
        axis=None,
        ddof=0,
    ):
        iv = input_validation(
            group_idx,
            a,
            size=size,
            order=order,
            axis=axis,
            check_bounds=False,
            func=self.func,
        )
        group_idx, a, flat_size, ndim_idx, size, unravel_shape = iv

        # TODO: The typecheck should be done by the class itself, not by check_dtype
        dtype = check_dtype(dtype, self.func, a, len(group_idx))
        check_fill_value(fill_value, dtype, func=self.func)
        input_dtype = type(a) if np.isscalar(a) else a.dtype
        ret, counter, mean, outer = self._initialize(flat_size, fill_value, dtype, input_dtype, group_idx.size)
        group_idx = np.ascontiguousarray(group_idx)

        if not np.isscalar(a):
            a = np.ascontiguousarray(a)
            jitfunc = self._jit_non_scalar
        else:
            jitfunc = self._jit_scalar
        jitfunc(group_idx, a, ret, counter, mean, outer, fill_value, ddof)
        self._finalize(ret, counter, fill_value)

        if self.outer:
            ret = outer

        # Deal with ndimensional indexing
        if ndim_idx > 1:
            if unravel_shape is not None:
                # argreductions only
                mask = ret == fill_value
                ret[mask] = 0
                ret = np.unravel_index(ret, unravel_shape)[axis]
                ret[mask] = fill_value
            ret = ret.reshape(size, order=order)
        return ret

    @classmethod
    def _initialize(cls, flat_size, fill_value, dtype, input_dtype, input_size):
        if cls.forced_fill_value is None:
            ret = np.full(flat_size, fill_value, dtype=dtype)
        else:
            ret = np.full(flat_size, cls.forced_fill_value, dtype=dtype)

        counter = mean = outer = None
        if cls.counter_fill_value is not None:
            counter = np.full_like(ret, cls.counter_fill_value, dtype=cls.counter_dtype)
        if cls.mean_fill_value is not None:
            dtype = cls.mean_dtype if cls.mean_dtype else input_dtype
            mean = np.full_like(ret, cls.mean_fill_value, dtype=dtype)
        if cls.outer:
            outer = np.full(input_size, fill_value, dtype=dtype)

        return ret, counter, mean, outer

    @classmethod
    def _finalize(cls, ret, counter, fill_value):
        if cls.forced_fill_value is not None and fill_value != cls.forced_fill_value:
            if cls.counter_dtype == bool:
                ret[counter] = fill_value
            else:
                ret[~counter.astype(bool)] = fill_value

    @classmethod
    def callable(cls, nans=False, reverse=False, scalar=False):
        """Compile a jitted function doing the hard part of the job"""
        _valgetter = cls._valgetter_scalar if scalar else cls._valgetter
        valgetter = nb.njit(_valgetter)
        outersetter = nb.njit(cls._outersetter)

        if not nans:
            inner = nb.njit(cls._inner)
        else:
            cls_inner = nb.njit(cls._inner)
            cls_nan_check = nb.njit(cls._nan_check)

            @nb.njit
            def inner(ri, val, ret, counter, mean, fill_value):
                if not cls_nan_check(val):
                    cls_inner(ri, val, ret, counter, mean, fill_value)

        @nb.njit
        def loop(group_idx, a, ret, counter, mean, outer, fill_value, ddof):
            # ddof needs to be present for being exchangeable with loop_2pass
            size = len(ret)
            rng = range(len(group_idx) - 1, -1, -1) if reverse else range(len(group_idx))
            for i in rng:
                ri = group_idx[i]
                if ri < 0:
                    raise ValueError("negative indices not supported")
                if ri >= size:
                    raise ValueError("one or more indices in group_idx are too large")
                val = valgetter(a, i)
                inner(ri, val, ret, counter, mean, fill_value)
                outersetter(outer, i, ret[ri])

        return loop

    @staticmethod
    def _valgetter(a, i):
        return a[i]

    @staticmethod
    def _valgetter_scalar(a, i):
        return a

    @staticmethod
    def _nan_check(val):
        return val != val

    @staticmethod
    def _inner(ri, val, ret, counter, mean, fill_value):
        raise NotImplementedError("subclasses need to overwrite _inner")

    @staticmethod
    def _outersetter(outer, i, val):
        pass


class Aggregate2pass(AggregateOp):
    """Base class for everything that needs to process the data twice like mean, var and std."""

    @classmethod
    def callable(cls, nans=False, reverse=False, scalar=False):
        # Careful, cls needs to be passed, so that the overwritten methods remain available in
        # AggregateOp.callable
        loop_1st = super().callable(nans=nans, reverse=reverse, scalar=scalar)

        _2pass_inner = nb.njit(cls._2pass_inner)

        @nb.njit
        def loop_2nd(ret, counter, mean, fill_value, ddof):
            for ri in range(len(ret)):
                if counter[ri] > ddof:
                    ret[ri] = _2pass_inner(ri, ret, counter, mean, ddof)
                else:
                    ret[ri] = fill_value

        @nb.njit
        def loop_2pass(group_idx, a, ret, counter, mean, outer, fill_value, ddof):
            loop_1st(group_idx, a, ret, counter, mean, outer, fill_value, ddof)
            loop_2nd(ret, counter, mean, fill_value, ddof)

        return loop_2pass

    @staticmethod
    def _2pass_inner(ri, ret, counter, mean, ddof):
        raise NotImplementedError("subclasses need to overwrite _2pass_inner")

    @classmethod
    def _finalize(cls, ret, counter, fill_value):
        """Copying the fill value is already done in the 2nd pass"""
        pass


class AggregateNtoN(AggregateOp):
    """Base class for cumulative functions, where the output size matches the input size."""

    outer = True

    @staticmethod
    def _outersetter(outer, i, val):
        outer[i] = val


class AggregateGeneric(AggregateOp):
    """Base class for jitting arbitrary functions."""

    counter_fill_value = None

    def __init__(self, func, **kwargs):
        self.func = func
        self.__dict__.update(kwargs)
        self._jitfunc = self.callable(self.nans)

    def __call__(
        self,
        group_idx,
        a,
        size=None,
        fill_value=0,
        order="C",
        dtype=None,
        axis=None,
        ddof=0,
    ):
        iv = input_validation(group_idx, a, size=size, order=order, axis=axis, check_bounds=False)
        group_idx, a, flat_size, ndim_idx, size, _ = iv

        # TODO: The typecheck should be done by the class itself, not by check_dtype
        dtype = check_dtype(dtype, self.func, a, len(group_idx))
        check_fill_value(fill_value, dtype, func=self.func)
        input_dtype = type(a) if np.isscalar(a) else a.dtype
        ret, _, _, _ = self._initialize(flat_size, fill_value, dtype, input_dtype, group_idx.size)
        group_idx = np.ascontiguousarray(group_idx)

        sortidx = np.argsort(group_idx, kind="mergesort")
        self._jitfunc(sortidx, group_idx, a, ret)

        # Deal with ndimensional indexing
        if ndim_idx > 1:
            ret = ret.reshape(size, order=order)
        return ret

    def callable(self, nans=False):
        """Compile a jitted function and loop it over the sorted data."""
        func = nb.njit(self.func)

        @nb.njit
        def loop(sortidx, group_idx, a, ret):
            size = len(ret)
            group_idx_srt = group_idx[sortidx]
            a_srt = a[sortidx]

            indices = step_indices(group_idx_srt)
            for i in range(len(indices) - 1):
                start_idx, stop_idx = indices[i], indices[i + 1]
                ri = group_idx_srt[start_idx]
                if ri < 0:
                    raise ValueError("negative indices not supported")
                if ri >= size:
                    raise ValueError("one or more indices in group_idx are too large")
                ret[ri] = func(a_srt[start_idx:stop_idx])

        return loop


class Sum(AggregateOp):
    forced_fill_value = 0

    @staticmethod
    def _inner(ri, val, ret, counter, mean, fill_value):
        counter[ri] = 0
        ret[ri] += val


class Prod(AggregateOp):
    forced_fill_value = 1

    @staticmethod
    def _inner(ri, val, ret, counter, mean, fill_value):
        counter[ri] = 0
        ret[ri] *= val


class Len(AggregateOp):
    forced_fill_value = 0

    @staticmethod
    def _inner(ri, val, ret, counter, mean, fill_value):
        counter[ri] = 0
        ret[ri] += 1


class All(AggregateOp):
    forced_fill_value = 1

    @staticmethod
    def _inner(ri, val, ret, counter, mean, fill_value):
        counter[ri] = 0
        ret[ri] &= bool(val)


class Any(AggregateOp):
    forced_fill_value = 0

    @staticmethod
    def _inner(ri, val, ret, counter, mean, fill_value):
        counter[ri] = 0
        ret[ri] |= bool(val)


class Last(AggregateOp):
    counter_fill_value = None

    @staticmethod
    def _inner(ri, val, ret, counter, mean, fill_value):
        ret[ri] = val


class First(Last):
    reverse = True


class AllNan(AggregateOp):
    forced_fill_value = 1

    @staticmethod
    def _inner(ri, val, ret, counter, mean, fill_value):
        counter[ri] = 0
        ret[ri] &= val != val


class AnyNan(AggregateOp):
    forced_fill_value = 0

    @staticmethod
    def _inner(ri, val, ret, counter, mean, fill_value):
        counter[ri] = 0
        ret[ri] |= val != val


class Max(AggregateOp):
    @staticmethod
    def _inner(ri, val, ret, counter, mean, fill_value):
        if counter[ri]:
            ret[ri] = val
            counter[ri] = 0
        elif ret[ri] < val:
            ret[ri] = val


class Min(AggregateOp):
    @staticmethod
    def _inner(ri, val, ret, counter, mean, fill_value):
        if counter[ri]:
            ret[ri] = val
            counter[ri] = 0
        elif ret[ri] > val:
            ret[ri] = val


class ArgMax(AggregateOp):
    mean_fill_value = np.nan

    @staticmethod
    def _valgetter(a, i):
        return a[i], i

    @staticmethod
    def _nan_check(val):
        return val[0] != val[0]

    @staticmethod
    def _inner(ri, val, ret, counter, mean, fill_value):
        cmp_val, arg = val
        if counter[ri]:
            # start of a new group
            counter[ri] = 0
            mean[ri] = cmp_val
            if cmp_val == cmp_val:
                # Don't point on nans
                ret[ri] = arg
        elif mean[ri] < cmp_val:
            # larger valid value found
            mean[ri] = cmp_val
            ret[ri] = arg
        elif cmp_val != cmp_val:
            # nan found, reset group
            mean[ri] = cmp_val
            ret[ri] = fill_value


class ArgMin(ArgMax):
    @staticmethod
    def _inner(ri, val, ret, counter, mean, fill_value):
        cmp_val, arg = val
        if counter[ri]:
            # start of a new group
            counter[ri] = 0
            mean[ri] = cmp_val
            if cmp_val == cmp_val:
                # Don't point on nans
                ret[ri] = arg
        elif mean[ri] > cmp_val:
            # larger valid value found
            mean[ri] = cmp_val
            ret[ri] = arg
        elif cmp_val != cmp_val:
            # nan found, reset group
            mean[ri] = cmp_val
            ret[ri] = fill_value


class SumOfSquares(AggregateOp):
    forced_fill_value = 0

    @staticmethod
    def _inner(ri, val, ret, counter, mean, fill_value):
        counter[ri] = 0
        ret[ri] += val * val


class Mean(Aggregate2pass):
    forced_fill_value = 0
    counter_fill_value = 0
    counter_dtype = int

    @staticmethod
    def _inner(ri, val, ret, counter, mean, fill_value):
        counter[ri] += 1
        ret[ri] += val

    @staticmethod
    def _2pass_inner(ri, ret, counter, mean, ddof):
        return ret[ri] / counter[ri]


class Std(Mean):
    mean_fill_value = 0

    @staticmethod
    def _inner(ri, val, ret, counter, mean, fill_value):
        counter[ri] += 1
        mean[ri] += val
        ret[ri] += val * val

    @staticmethod
    def _2pass_inner(ri, ret, counter, mean, ddof):
        mean2 = mean[ri] * mean[ri]
        return np.sqrt((ret[ri] - mean2 / counter[ri]) / (counter[ri] - ddof))


class Var(Std):
    @staticmethod
    def _2pass_inner(ri, ret, counter, mean, ddof):
        mean2 = mean[ri] * mean[ri]
        return (ret[ri] - mean2 / counter[ri]) / (counter[ri] - ddof)


class CumSum(AggregateNtoN, Sum):
    pass


class CumProd(AggregateNtoN, Prod):
    pass


class CumMax(AggregateNtoN, Max):
    pass


class CumMin(AggregateNtoN, Min):
    pass


def get_funcs():
    funcs = dict()
    for op in (
        Sum,
        Prod,
        Len,
        All,
        Any,
        Last,
        First,
        AllNan,
        AnyNan,
        Min,
        Max,
        ArgMin,
        ArgMax,
        Mean,
        Std,
        Var,
        SumOfSquares,
        CumSum,
        CumProd,
        CumMax,
        CumMin,
    ):
        funcname = op.__name__.lower()
        funcs[funcname] = op(funcname)
        if funcname not in funcs_no_separate_nan:
            funcname = "nan" + funcname
            funcs[funcname] = op(funcname, nans=True)
    return funcs


_impl_dict = get_funcs()
_default_cache = {}


def aggregate(
    group_idx, a, func="sum", size=None, fill_value=0, order="C", dtype=None, axis=None, cache=True, **kwargs
):
    func = get_func(func, aliasing, _impl_dict)
    if not isinstance(func, str):
        if cache in (None, False):
            # Keep None and False in order to accept empty dictionaries
            aggregate_op = AggregateGeneric(func)
        else:
            if cache is True:
                cache = _default_cache
            aggregate_op = cache.setdefault(func, AggregateGeneric(func))
        return aggregate_op(group_idx, a, size, fill_value, order, dtype, axis, **kwargs)
    else:
        func = _impl_dict[func]
        return func(group_idx, a, size, fill_value, order, dtype, axis, **kwargs)


aggregate.__doc__ = (
    """
    This is the numba implementation of aggregate.
    """
    + aggregate_common_doc
)


@nb.njit
def step_count(group_idx):
    """Return the amount of index changes within group_idx."""
    cmp_pos = 0
    steps = 1
    if len(group_idx) < 1:
        return 0
    for i in range(len(group_idx)):
        if group_idx[cmp_pos] != group_idx[i]:
            cmp_pos = i
            steps += 1
    return steps


@nb.njit
def step_indices(group_idx):
    """Return the edges of areas within group_idx, which are filled with the same value."""
    ilen = step_count(group_idx) + 1
    indices = np.empty(ilen, np.int64)
    indices[0] = 0
    indices[-1] = group_idx.size
    cmp_pos = 0
    ri = 1
    for i in range(len(group_idx)):
        if group_idx[cmp_pos] != group_idx[i]:
            cmp_pos = i
            indices[ri] = i
            ri += 1
    return indices