File: aggregate_numpy.py

package info (click to toggle)
python-numpy-groupies 0.10.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 476 kB
  • sloc: python: 2,346; makefile: 12
file content (365 lines) | stat: -rw-r--r-- 12,518 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import numpy as np

from .utils import (
    aggregate_common_doc,
    aliasing,
    check_boolean,
    check_dtype,
    check_fill_value,
    funcs_no_separate_nan,
    get_func,
    input_validation,
    iscomplexobj,
    maxval,
    minimum_dtype,
    minimum_dtype_scalar,
    minval,
)


def _sum(group_idx, a, size, fill_value, dtype=None):
    dtype = minimum_dtype_scalar(fill_value, dtype, a)

    if np.ndim(a) == 0:
        ret = np.bincount(group_idx, minlength=size).astype(dtype, copy=False)
        if a != 1:
            ret *= a
    else:
        if iscomplexobj(a):
            ret = np.empty(size, dtype=dtype)
            ret.real = np.bincount(group_idx, weights=a.real, minlength=size)
            ret.imag = np.bincount(group_idx, weights=a.imag, minlength=size)
        else:
            ret = np.bincount(group_idx, weights=a, minlength=size).astype(dtype, copy=False)

    if fill_value != 0:
        _fill_untouched(group_idx, ret, fill_value)
    return ret


def _prod(group_idx, a, size, fill_value, dtype=None):
    dtype = minimum_dtype_scalar(fill_value, dtype, a)
    ret = np.full(size, fill_value, dtype=dtype)
    if fill_value != 1:
        ret[group_idx] = 1  # product starts from 1
    np.multiply.at(ret, group_idx, a)
    return ret


def _len(group_idx, a, size, fill_value, dtype=None):
    return _sum(group_idx, 1, size, fill_value, dtype=int)


def _last(group_idx, a, size, fill_value, dtype=None):
    dtype = minimum_dtype(fill_value, dtype or a.dtype)
    ret = np.full(size, fill_value, dtype=dtype)
    # repeated indexing gives last value, see:
    # the phrase "leaving behind the last value"  on this page:
    # http://wiki.scipy.org/Tentative_NumPy_Tutorial
    ret[group_idx] = a
    return ret


def _first(group_idx, a, size, fill_value, dtype=None):
    dtype = minimum_dtype(fill_value, dtype or a.dtype)
    ret = np.full(size, fill_value, dtype=dtype)
    ret[group_idx[::-1]] = a[::-1]  # same trick as _last, but in reverse
    return ret


def _all(group_idx, a, size, fill_value, dtype=None):
    check_boolean(fill_value)
    ret = np.full(size, fill_value, dtype=bool)
    if not fill_value:
        ret[group_idx] = True
    ret[group_idx.compress(np.logical_not(a))] = False
    return ret


def _any(group_idx, a, size, fill_value, dtype=None):
    check_boolean(fill_value)
    ret = np.full(size, fill_value, dtype=bool)
    if fill_value:
        ret[group_idx] = False
    ret[group_idx.compress(a)] = True
    return ret


def _min(group_idx, a, size, fill_value, dtype=None):
    dtype = minimum_dtype(fill_value, dtype or a.dtype)
    dmax = maxval(fill_value, dtype)
    with np.errstate(invalid="ignore"):
        ret = np.full(size, fill_value, dtype=dtype)
    if fill_value != dmax:
        ret[group_idx] = dmax  # min starts from maximum
    with np.errstate(invalid="ignore"):
        np.minimum.at(ret, group_idx, a)
    return ret


def _max(group_idx, a, size, fill_value, dtype=None):
    dtype = minimum_dtype(fill_value, dtype or a.dtype)
    dmin = minval(fill_value, dtype)
    with np.errstate(invalid="ignore"):
        ret = np.full(size, fill_value, dtype=dtype)
    if fill_value != dmin:
        ret[group_idx] = dmin  # max starts from minimum
    with np.errstate(invalid="ignore"):
        np.maximum.at(ret, group_idx, a)
    return ret


def _argmax(group_idx, a, size, fill_value, dtype=int, _nansqueeze=False):
    a_ = np.where(np.isnan(a), -np.inf, a) if _nansqueeze else a
    group_max = _max(group_idx, a_, size, np.nan)
    # nan should never be maximum, so use a and not a_
    is_max = a == group_max[group_idx]
    ret = np.full(size, fill_value, dtype=dtype)
    group_idx_max = group_idx[is_max]
    (argmax,) = is_max.nonzero()
    ret[group_idx_max[::-1]] = argmax[::-1]  # reverse to ensure first value for each group wins
    return ret


def _argmin(group_idx, a, size, fill_value, dtype=int, _nansqueeze=False):
    a_ = np.where(np.isnan(a), np.inf, a) if _nansqueeze else a
    group_min = _min(group_idx, a_, size, np.nan)
    # nan should never be minimum, so use a and not a_
    is_min = a == group_min[group_idx]
    ret = np.full(size, fill_value, dtype=dtype)
    group_idx_min = group_idx[is_min]
    (argmin,) = is_min.nonzero()
    ret[group_idx_min[::-1]] = argmin[::-1]  # reverse to ensure first value for each group wins
    return ret


def _mean(group_idx, a, size, fill_value, dtype=np.dtype(np.float64)):
    if np.ndim(a) == 0:
        raise ValueError("cannot take mean with scalar a")
    counts = np.bincount(group_idx, minlength=size)
    if iscomplexobj(a):
        dtype = a.dtype  # TODO: this is a bit clumsy
        sums = np.empty(size, dtype=dtype)
        sums.real = np.bincount(group_idx, weights=a.real, minlength=size)
        sums.imag = np.bincount(group_idx, weights=a.imag, minlength=size)
    else:
        sums = np.bincount(group_idx, weights=a, minlength=size).astype(dtype, copy=False)

    with np.errstate(divide="ignore", invalid="ignore"):
        ret = sums.astype(dtype, copy=False) / counts
    if not np.isnan(fill_value):
        ret[counts == 0] = fill_value
    return ret


def _sum_of_squres(group_idx, a, size, fill_value, dtype=np.dtype(np.float64)):
    ret = np.bincount(group_idx, weights=a * a, minlength=size)
    if fill_value != 0:
        counts = np.bincount(group_idx, minlength=size)
        ret[counts == 0] = fill_value
    return ret


def _var(group_idx, a, size, fill_value, dtype=np.dtype(np.float64), sqrt=False, ddof=0):
    if np.ndim(a) == 0:
        raise ValueError("cannot take variance with scalar a")
    counts = np.bincount(group_idx, minlength=size)
    sums = np.bincount(group_idx, weights=a, minlength=size)
    with np.errstate(divide="ignore", invalid="ignore"):
        means = sums.astype(dtype, copy=False) / counts
        counts = np.where(counts > ddof, counts - ddof, 0)
        ret = np.bincount(group_idx, (a - means[group_idx]) ** 2, minlength=size) / counts
    if sqrt:
        ret = np.sqrt(ret)  # this is now std not var
    if not np.isnan(fill_value):
        ret[counts == 0] = fill_value
    return ret


def _std(group_idx, a, size, fill_value, dtype=np.dtype(np.float64), ddof=0):
    return _var(group_idx, a, size, fill_value, dtype=dtype, sqrt=True, ddof=ddof)


def _allnan(group_idx, a, size, fill_value, dtype=bool):
    return _all(group_idx, np.isnan(a), size, fill_value=fill_value, dtype=dtype)


def _anynan(group_idx, a, size, fill_value, dtype=bool):
    return _any(group_idx, np.isnan(a), size, fill_value=fill_value, dtype=dtype)


def _sort(group_idx, a, size=None, fill_value=None, dtype=None, reverse=False):
    sortidx = np.lexsort((-a if reverse else a, group_idx))
    # Reverse sorting back to into grouped order, but preserving groupwise sorting
    revidx = np.argsort(np.argsort(group_idx, kind="mergesort"), kind="mergesort")
    return a[sortidx][revidx]


def _array(group_idx, a, size, fill_value, dtype=None):
    """groups a into separate arrays, keeping the order intact."""
    if fill_value is not None and not (np.isscalar(fill_value) or len(fill_value) == 0):
        raise ValueError("fill_value must be None, a scalar or an empty sequence")
    order_group_idx = np.argsort(group_idx, kind="mergesort")
    counts = np.bincount(group_idx, minlength=size)
    ret = np.split(a[order_group_idx], np.cumsum(counts)[:-1])
    ret = np.asanyarray(ret, dtype="object")
    if fill_value is None or np.isscalar(fill_value):
        _fill_untouched(group_idx, ret, fill_value)
    return ret


def _generic_callable(group_idx, a, size, fill_value, dtype=None, func=lambda g: g, **kwargs):
    """groups a by inds, and then applies foo to each group in turn, placing
    the results in an array."""
    groups = _array(group_idx, a, size, ())
    ret = np.full(size, fill_value, dtype=dtype or np.float64)

    for i, grp in enumerate(groups):
        if np.ndim(grp) == 1 and len(grp) > 0:
            ret[i] = func(grp)
    return ret


def _cumsum(group_idx, a, size, fill_value=None, dtype=None):
    """
    N to N aggregate operation of cumsum. Perform cumulative sum for each group.

    group_idx = np.array([4, 3, 3, 4, 4, 1, 1, 1, 7, 8, 7, 4, 3, 3, 1, 1])
    a = np.array([3, 4, 1, 3, 9, 9, 6, 7, 7, 0, 8, 2, 1, 8, 9, 8])
    _cumsum(group_idx, a, np.max(group_idx) + 1)
    >>> array([ 3,  4,  5,  6, 15,  9, 15, 22,  7,  0, 15, 17,  6, 14, 31, 39])
    """
    sortidx = np.argsort(group_idx, kind="mergesort")
    invsortidx = np.argsort(sortidx, kind="mergesort")
    group_idx_srt = group_idx[sortidx]

    a_srt = a[sortidx]
    a_srt_cumsum = np.cumsum(a_srt, dtype=dtype)

    increasing = np.arange(len(a), dtype=int)
    group_starts = _min(group_idx_srt, increasing, size, fill_value=0)[group_idx_srt]
    a_srt_cumsum += -a_srt_cumsum[group_starts] + a_srt[group_starts]
    return a_srt_cumsum[invsortidx]


def _nancumsum(group_idx, a, size, fill_value=None, dtype=None):
    a_nonans = np.where(np.isnan(a), 0, a)
    group_idx_nonans = np.where(np.isnan(group_idx), np.nanmax(group_idx) + 1, group_idx)
    return _cumsum(group_idx_nonans, a_nonans, size, fill_value=fill_value, dtype=dtype)


_impl_dict = dict(
    min=_min,
    max=_max,
    sum=_sum,
    prod=_prod,
    last=_last,
    first=_first,
    all=_all,
    any=_any,
    mean=_mean,
    std=_std,
    var=_var,
    anynan=_anynan,
    allnan=_allnan,
    sort=_sort,
    array=_array,
    argmax=_argmax,
    argmin=_argmin,
    len=_len,
    cumsum=_cumsum,
    sumofsquares=_sum_of_squres,
    generic=_generic_callable,
)
_impl_dict.update(("nan" + k, v) for k, v in list(_impl_dict.items()) if k not in funcs_no_separate_nan)
_impl_dict["nancumsum"] = _nancumsum


def _aggregate_base(
    group_idx,
    a,
    func="sum",
    size=None,
    fill_value=0,
    order="C",
    dtype=None,
    axis=None,
    _impl_dict=_impl_dict,
    is_pandas=False,
    **kwargs,
):
    iv = input_validation(group_idx, a, size=size, order=order, axis=axis, func=func)
    group_idx, a, flat_size, ndim_idx, size, unravel_shape = iv

    if group_idx.dtype == np.dtype("uint64"):
        # Force conversion to signed int, to avoid issues with bincount etc later
        group_idx = group_idx.astype(int)

    func = get_func(func, aliasing, _impl_dict)
    if not isinstance(func, str):
        # do simple grouping and execute function in loop
        ret = _impl_dict.get("generic", _generic_callable)(
            group_idx, a, flat_size, fill_value, func=func, dtype=dtype, **kwargs
        )
    else:
        # deal with nans and find the function
        if func.startswith("nan"):
            if np.ndim(a) == 0:
                raise ValueError("nan-version not supported for scalar input.")
            if "nan" in func:
                if "arg" in func:
                    kwargs["_nansqueeze"] = True
                elif "cum" in func:
                    pass
                else:
                    good = ~np.isnan(a)
                    if "len" not in func or is_pandas:
                        # a is not needed for len, nanlen!
                        a = a[good]
                    group_idx = group_idx[good]

        dtype = check_dtype(dtype, func, a, flat_size)
        check_fill_value(fill_value, dtype, func=func)
        func = _impl_dict[func]
        ret = func(group_idx, a, flat_size, fill_value=fill_value, dtype=dtype, **kwargs)

    # deal with ndimensional indexing
    if ndim_idx > 1:
        if unravel_shape is not None:
            # A negative fill_value cannot, and should not, be unraveled.
            mask = ret == fill_value
            ret[mask] = 0
            ret = np.unravel_index(ret, unravel_shape)[axis]
            ret[mask] = fill_value
        ret = ret.reshape(size, order=order)
    return ret


def aggregate(group_idx, a, func="sum", size=None, fill_value=0, order="C", dtype=None, axis=None, **kwargs):
    return _aggregate_base(
        group_idx,
        a,
        size=size,
        fill_value=fill_value,
        order=order,
        dtype=dtype,
        func=func,
        axis=axis,
        _impl_dict=_impl_dict,
        **kwargs,
    )


aggregate.__doc__ = (
    """
    This is the pure numpy implementation of aggregate.
    """
    + aggregate_common_doc
)


def _fill_untouched(idx, ret, fill_value):
    """any elements of ret not indexed by idx are set to fill_value."""
    untouched = np.ones_like(ret, dtype=bool)
    untouched[idx] = False
    ret[untouched] = fill_value