1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
|
""" Tests, that are run against all implemented versions of aggregate. """
import itertools
import warnings
import numpy as np
import pytest
from . import _impl_name, _implementations, _wrap_notimplemented_skip, func_list
@pytest.fixture(params=_implementations, ids=_impl_name)
def aggregate_all(request):
impl = request.param
if impl is None:
pytest.skip("Implementation not available")
name = _impl_name(impl)
return _wrap_notimplemented_skip(impl.aggregate, "aggregate_" + name)
def _deselect_purepy(aggregate_all, *args, **kwargs):
# purepy implementations does not handle nan values and ndim correctly.
# So it needs to be excluded from several tests."""
return aggregate_all.__name__.endswith("purepy")
def _deselect_purepy_and_pandas(aggregate_all, *args, **kwargs):
# purepy and pandas implementation handle some nan cases differently.
# So they need to be excluded from several tests."""
return aggregate_all.__name__.endswith(("pandas", "purepy"))
def _deselect_purepy_and_invalid_axis(aggregate_all, size, axis, *args, **kwargs):
if axis >= len(size):
return True
if aggregate_all.__name__.endswith("purepy"):
# purepy does not handle axis parameter
return True
def test_preserve_missing(aggregate_all):
res = aggregate_all(np.array([0, 1, 3, 1, 3]), np.arange(101, 106, dtype=int))
np.testing.assert_array_equal(res, np.array([101, 206, 0, 208]))
if not isinstance(res, list):
assert "int" in res.dtype.name
@pytest.mark.parametrize("group_idx_type", [int, "uint32", "uint64"])
def test_uint_group_idx(aggregate_all, group_idx_type):
group_idx = np.array([1, 1, 2, 2, 2, 2, 4, 4], dtype=group_idx_type)
res = aggregate_all(group_idx, np.ones(group_idx.size), dtype=int)
np.testing.assert_array_equal(res, np.array([0, 2, 4, 0, 2]))
if not isinstance(res, list):
assert "int" in res.dtype.name
def test_start_with_offset(aggregate_all):
group_idx = np.array([1, 1, 2, 2, 2, 2, 4, 4])
res = aggregate_all(group_idx, np.ones(group_idx.size), dtype=int)
np.testing.assert_array_equal(res, np.array([0, 2, 4, 0, 2]))
if not isinstance(res, list):
assert "int" in res.dtype.name
@pytest.mark.parametrize("floatfunc", [np.std, np.var, np.mean], ids=lambda x: x.__name__)
def test_float_enforcement(aggregate_all, floatfunc):
group_idx = np.arange(10).repeat(3)
a = np.arange(group_idx.size)
res = aggregate_all(group_idx, a, floatfunc)
if not isinstance(res, list):
assert "float" in res.dtype.name
assert np.all(np.array(res) > 0)
def test_start_with_offset_prod(aggregate_all):
group_idx = np.array([2, 2, 4, 4, 4, 7, 7, 7])
res = aggregate_all(group_idx, group_idx, func=np.prod, dtype=int)
np.testing.assert_array_equal(res, np.array([0, 0, 4, 0, 64, 0, 0, 343]))
def test_no_negative_indices(aggregate_all):
for pos in (0, 10, -1):
group_idx = np.arange(5).repeat(5)
group_idx[pos] = -1
pytest.raises(ValueError, aggregate_all, group_idx, np.arange(len(group_idx)))
def test_parameter_missing(aggregate_all):
pytest.raises(TypeError, aggregate_all, np.arange(5))
def test_shape_mismatch(aggregate_all):
pytest.raises(ValueError, aggregate_all, np.array((1, 2, 3)), np.array((1, 2)))
def test_create_lists(aggregate_all):
res = aggregate_all(np.array([0, 1, 3, 1, 3]), np.arange(101, 106, dtype=int), func=list)
np.testing.assert_array_equal(np.array(res[0]), np.array([101]))
assert res[2] == 0
np.testing.assert_array_equal(np.array(res[3]), np.array([103, 105]))
def test_item_counting(aggregate_all):
group_idx = np.array([0, 1, 2, 3, 3, 3, 3, 4, 5, 5, 5, 6, 5, 4, 3, 8, 8])
a = np.arange(group_idx.size)
res = aggregate_all(group_idx, a, func=lambda x: len(x) > 1)
np.testing.assert_array_equal(res, np.array([0, 0, 0, 1, 1, 1, 0, 0, 1]))
@pytest.mark.parametrize(["func", "fill_value"], [(np.array, None), (np.sum, -1)], ids=["array", "sum"])
def test_fill_value(aggregate_all, func, fill_value):
group_idx = np.array([0, 2, 2], dtype=int)
res = aggregate_all(
group_idx,
np.arange(len(group_idx), dtype=int),
func=func,
fill_value=fill_value,
)
assert res[1] == fill_value
@pytest.mark.parametrize("order", ["C", "F"])
def test_array_ordering(aggregate_all, order, size=10):
mat = np.zeros((size, size), order=order, dtype=float)
mat.flat[:] = np.arange(size * size)
assert aggregate_all(np.zeros(size, dtype=int), mat[0, :], order=order)[0] == sum(range(size))
@pytest.mark.deselect_if(func=_deselect_purepy)
@pytest.mark.parametrize("size", [None, (10, 2)])
def test_ndim_group_idx(aggregate_all, size):
group_idx = np.vstack((np.repeat(np.arange(10), 10), np.repeat([0, 1], 50)))
aggregate_all(group_idx, 1, size=size)
@pytest.mark.deselect_if(func=_deselect_purepy)
@pytest.mark.parametrize(["ndim", "order"], itertools.product([1, 2, 3], ["C", "F"]))
def test_ndim_indexing(aggregate_all, ndim, order, outsize=10):
nindices = int(outsize**ndim)
outshape = tuple([outsize] * ndim)
group_idx = np.random.randint(0, outsize, size=(ndim, nindices))
a = np.random.random(group_idx.shape[1])
res = aggregate_all(group_idx, a, size=outshape, order=order)
if ndim > 1 and order == "F":
# 1d arrays always return False here
assert np.isfortran(res)
else:
assert not np.isfortran(res)
assert res.shape == outshape
def test_len(aggregate_all, group_size=5):
group_idx = np.arange(0, 100, 2, dtype=int).repeat(group_size)
a = np.arange(group_idx.size)
res = aggregate_all(group_idx, a, func="len")
ref = aggregate_all(group_idx, 1, func="sum")
if isinstance(res, np.ndarray):
assert issubclass(res.dtype.type, np.integer)
else:
assert isinstance(res[0], int)
np.testing.assert_array_equal(res, ref)
group_idx = np.arange(0, 100, dtype=int).repeat(group_size)
a = np.arange(group_idx.size)
res = aggregate_all(group_idx, a, func=len)
if isinstance(res, np.ndarray):
assert np.all(res == group_size)
else:
assert all(x == group_size for x in res)
def test_nan_len(aggregate_all):
group_idx = np.arange(0, 20, 2, dtype=int).repeat(5)
a = np.random.random(group_idx.size)
a[::4] = np.nan
a[::5] = np.nan
res = aggregate_all(group_idx, a, func="nanlen")
ref = aggregate_all(group_idx[~np.isnan(a)], 1, func="sum")
if isinstance(res, np.ndarray):
assert issubclass(res.dtype.type, np.integer)
else:
assert isinstance(res[0], int)
np.testing.assert_array_equal(res, ref)
@pytest.mark.parametrize("first_last", ["first", "last"])
def test_first_last(aggregate_all, first_last):
group_idx = np.arange(0, 100, 2, dtype=int).repeat(5)
a = np.arange(group_idx.size)
res = aggregate_all(group_idx, a, func=first_last, fill_value=-1)
ref = np.zeros(np.max(group_idx) + 1)
ref.fill(-1)
ref[::2] = np.arange(0 if first_last == "first" else 4, group_idx.size, 5, dtype=int)
np.testing.assert_array_equal(res, ref)
@pytest.mark.parametrize(["first_last", "nanoffset"], itertools.product(["nanfirst", "nanlast"], [0, 2, 4]))
def test_nan_first_last(aggregate_all, first_last, nanoffset):
group_idx = np.arange(0, 100, 2, dtype=int).repeat(5)
a = np.arange(group_idx.size, dtype=float)
a[nanoffset::5] = np.nan
res = aggregate_all(group_idx, a, func=first_last, fill_value=-1)
ref = np.zeros(np.max(group_idx) + 1)
ref.fill(-1)
if first_last == "nanfirst":
ref_offset = 1 if nanoffset == 0 else 0
else:
ref_offset = 3 if nanoffset == 4 else 4
ref[::2] = np.arange(ref_offset, group_idx.size, 5, dtype=int)
np.testing.assert_array_equal(res, ref)
@pytest.mark.parametrize(["func", "ddof"], itertools.product(["var", "std"], [0, 1, 2]))
def test_ddof(aggregate_all, func, ddof, size=20):
group_idx = np.zeros(20, dtype=int)
a = np.random.random(group_idx.size)
res = aggregate_all(group_idx, a, func, ddof=ddof)
ref_func = {"std": np.std, "var": np.var}.get(func)
ref = ref_func(a, ddof=ddof)
assert abs(res[0] - ref) < 1e-10
@pytest.mark.parametrize("func", ["sum", "prod", "mean", "var", "std"])
def test_scalar_input(aggregate_all, func):
group_idx = np.arange(0, 100, dtype=int).repeat(5)
if func not in ("sum", "prod"):
pytest.raises((ValueError, NotImplementedError), aggregate_all, group_idx, 1, func=func)
else:
res = aggregate_all(group_idx, 1, func=func)
ref = aggregate_all(group_idx, np.ones_like(group_idx, dtype=int), func=func)
np.testing.assert_array_equal(res, ref)
@pytest.mark.parametrize("func", ["sum", "prod", "mean", "var", "std", "all", "any"])
def test_nan_input(aggregate_all, func, groups=100):
if aggregate_all.__name__.endswith("pandas"):
pytest.skip("pandas always skips nan values")
group_idx = np.arange(0, groups, dtype=int).repeat(5)
a = np.random.random(group_idx.size)
a[::2] = np.nan
if func in ("all", "any"):
ref = np.ones(groups, dtype=bool)
else:
ref = np.full(groups, np.nan, dtype=float)
res = aggregate_all(group_idx, a, func=func)
np.testing.assert_array_equal(res, ref)
def test_nan_input_len(aggregate_all, groups=100, group_size=5):
if aggregate_all.__name__.endswith("pandas"):
pytest.skip("pandas always skips nan values")
group_idx = np.arange(0, groups, dtype=int).repeat(group_size)
a = np.random.random(len(group_idx))
a[::2] = np.nan
ref = np.full(groups, group_size, dtype=int)
res = aggregate_all(group_idx, a, func=len)
np.testing.assert_array_equal(res, ref)
def test_argmin_argmax_nonans(aggregate_all):
group_idx = np.array([0, 0, 0, 0, 3, 3, 3, 3])
a = np.array([4, 4, 3, 1, 10, 9, 9, 11])
res = aggregate_all(group_idx, a, func="argmax", fill_value=-1)
np.testing.assert_array_equal(res, [0, -1, -1, 7])
res = aggregate_all(group_idx, a, func="argmin", fill_value=-1)
np.testing.assert_array_equal(res, [3, -1, -1, 5])
@pytest.mark.deselect_if(func=_deselect_purepy)
def test_argmin_argmax_nans(aggregate_all):
if aggregate_all.__name__.endswith("pandas"):
pytest.skip("pandas always ignores nans")
group_idx = np.array([0, 0, 0, 0, 3, 3, 3, 3])
a = np.array([4, 4, 3, 1, np.nan, 1, 2, 3])
res = aggregate_all(group_idx, a, func="argmax", fill_value=-1)
np.testing.assert_array_equal(res, [0, -1, -1, -1])
res = aggregate_all(group_idx, a, func="argmin", fill_value=-1)
np.testing.assert_array_equal(res, [3, -1, -1, -1])
@pytest.mark.deselect_if(func=_deselect_purepy)
def test_nanargmin_nanargmax_nans(aggregate_all):
if aggregate_all.__name__.endswith("pandas"):
pytest.skip("pandas doesn't fill indices for all-nan groups with fill_value but with -inf instead")
group_idx = np.array([0, 0, 0, 0, 3, 3, 3, 3])
a = np.array([4, 4, np.nan, 1, np.nan, np.nan, np.nan, np.nan])
res = aggregate_all(group_idx, a, func="nanargmax", fill_value=-1)
np.testing.assert_array_equal(res, [0, -1, -1, -1])
res = aggregate_all(group_idx, a, func="nanargmin", fill_value=-1)
np.testing.assert_array_equal(res, [3, -1, -1, -1])
def test_nanargmin_nanargmax_nonans(aggregate_all):
group_idx = np.array([0, 0, 0, 0, 3, 3, 3, 3])
a = np.array([4, 4, 3, 1, 10, 9, 9, 11])
res = aggregate_all(group_idx, a, func="nanargmax", fill_value=-1)
np.testing.assert_array_equal(res, [0, -1, -1, 7])
res = aggregate_all(group_idx, a, func="nanargmin", fill_value=-1)
np.testing.assert_array_equal(res, [3, -1, -1, 5])
def test_min_max_inf(aggregate_all):
# https://github.com/ml31415/numpy-groupies/issues/40
res = aggregate_all(
np.array([0, 1, 2, 0, 1, 2]),
np.array([-np.inf, 0, -np.inf, -np.inf, 0, 0]),
func="max",
)
np.testing.assert_array_equal(res, [-np.inf, 0, 0])
res = aggregate_all(
np.array([0, 1, 2, 0, 1, 2]),
np.array([np.inf, 0, np.inf, np.inf, 0, 0]),
func="min",
)
np.testing.assert_array_equal(res, [np.inf, 0, 0])
def test_argmin_argmax_inf(aggregate_all):
# https://github.com/ml31415/numpy-groupies/issues/40
res = aggregate_all(
np.array([0, 1, 2, 0, 1, 2]),
np.array([-np.inf, 0, -np.inf, -np.inf, 0, 0]),
func="argmax",
fill_value=-1,
)
np.testing.assert_array_equal(res, [0, 1, 5])
res = aggregate_all(
np.array([0, 1, 2, 0, 1, 2]),
np.array([np.inf, 0, np.inf, np.inf, 0, 0]),
func="argmin",
fill_value=-1,
)
np.testing.assert_array_equal(res, [0, 1, 5])
def test_mean(aggregate_all):
group_idx = np.array([0, 0, 0, 0, 3, 3, 3, 3])
a = np.arange(len(group_idx))
res = aggregate_all(group_idx, a, func="mean")
np.testing.assert_array_equal(res, [1.5, 0, 0, 5.5])
def test_cumsum(aggregate_all):
group_idx = np.array([4, 3, 3, 4, 4, 1, 1, 1, 7, 8, 7, 4, 3, 3, 1, 1])
a = np.array([3, 4, 1, 3, 9, 9, 6, 7, 7, 0, 8, 2, 1, 8, 9, 8])
ref = np.array([3, 4, 5, 6, 15, 9, 15, 22, 7, 0, 15, 17, 6, 14, 31, 39])
res = aggregate_all(group_idx, a, func="cumsum")
np.testing.assert_array_equal(res, ref)
@pytest.mark.deselect_if(func=_deselect_purepy_and_pandas)
def test_nancumsum(aggregate_all):
# https://github.com/ml31415/numpy-groupies/issues/79
group_idx = [0, 0, 0, 1, 1, 0, 0]
a = [2, 2, np.nan, 2, 2, 2, 2]
ref = [2., 4., 4., 2., 4., 6., 8.]
res = aggregate_all(group_idx, a, func="nancumsum")
np.testing.assert_array_equal(res, ref)
def test_cummax(aggregate_all):
group_idx = np.array([4, 3, 3, 4, 4, 1, 1, 1, 7, 8, 7, 4, 3, 3, 1, 1])
a = np.array([3, 4, 1, 3, 9, 9, 6, 7, 7, 0, 8, 2, 1, 8, 9, 8])
ref = np.array([3, 4, 4, 3, 9, 9, 9, 9, 7, 0, 8, 9, 4, 8, 9, 9])
res = aggregate_all(group_idx, a, func="cummax")
np.testing.assert_array_equal(res, ref)
@pytest.mark.parametrize("order", ["normal", "reverse"])
def test_list_ordering(aggregate_all, order):
group_idx = np.repeat(np.arange(5), 4)
a = np.arange(group_idx.size)
if order == "reverse":
a = a[::-1]
ref = a[:4]
res = aggregate_all(group_idx, a, func=list)
np.testing.assert_array_equal(np.array(res[0]), ref)
@pytest.mark.parametrize("order", ["normal", "reverse"])
def test_sort(aggregate_all, order):
group_idx = np.array([3, 3, 3, 2, 2, 2, 1, 1, 1])
a = np.array([3, 2, 1, 3, 4, 5, 5, 10, 1])
ref_normal = np.array([1, 2, 3, 3, 4, 5, 1, 5, 10])
ref_reverse = np.array([3, 2, 1, 5, 4, 3, 10, 5, 1])
reverse = order == "reverse"
ref = ref_reverse if reverse else ref_normal
res = aggregate_all(group_idx, a, func="sort", reverse=reverse)
np.testing.assert_array_equal(res, ref)
@pytest.mark.deselect_if(func=_deselect_purepy_and_invalid_axis)
@pytest.mark.parametrize("axis", (0, 1))
@pytest.mark.parametrize("size", ((12,), (12, 5)))
@pytest.mark.parametrize("func", func_list)
def test_along_axis(aggregate_all, func, size, axis):
group_idx = np.zeros(size[axis], dtype=int)
a = np.random.randn(*size)
# add some NaNs to test out nan-skipping
if "nan" in func and "nanarg" not in func:
a[[1, 4, 5], ...] = np.nan
elif "nanarg" in func and a.ndim > 1:
a[[1, 4, 5], 1] = np.nan
if func in ["any", "all"]:
a = a > 0.5
# construct expected values for all cases
if func == "len":
expected = np.array(size[axis])
elif func == "nanlen":
expected = np.array((~np.isnan(a)).sum(axis=axis))
elif func == "anynan":
expected = np.isnan(a).any(axis=axis)
elif func == "allnan":
expected = np.isnan(a).all(axis=axis)
elif func == "sumofsquares":
expected = np.sum(a * a, axis=axis)
elif func == "nansumofsquares":
expected = np.nansum(a * a, axis=axis)
else:
with warnings.catch_warnings():
# Filter expected warnings:
# - RuntimeWarning: All-NaN slice encountered
# - RuntimeWarning: Mean of empty slice
# - RuntimeWarning: Degrees of freedom <= 0 for slice.
warnings.simplefilter("ignore", RuntimeWarning)
expected = getattr(np, func)(a, axis=axis)
# The default fill_value is 0, the following makes the output match numpy
fill_value = {
"nanprod": 1,
"nanvar": np.nan,
"nanstd": np.nan,
"nanmax": np.nan,
"nanmin": np.nan,
"nanmean": np.nan,
}.get(func, 0)
actual = aggregate_all(group_idx, a, axis=axis, func=func, fill_value=fill_value)
assert actual.ndim == a.ndim
# argmin, argmax don't support keepdims, so we can't use that to construct expected
# instead we squeeze out the extra dims in actual.
np.testing.assert_allclose(actual.squeeze(), expected)
@pytest.mark.deselect_if(func=_deselect_purepy)
def test_not_last_axis_reduction(aggregate_all):
group_idx = np.array([1, 2, 2, 0, 1])
a = np.array([[1.0, 2.0], [4.0, 4.0], [5.0, 2.0], [np.nan, 3.0], [8.0, 7.0]])
func = "nanmax"
fill_value = np.nan
axis = 0
actual = aggregate_all(group_idx, a, axis=axis, func=func, fill_value=fill_value)
expected = np.array([[np.nan, 3.0], [8.0, 7.0], [5.0, 4.0]])
np.testing.assert_allclose(expected, actual)
@pytest.mark.deselect_if(func=_deselect_purepy)
def test_custom_callable(aggregate_all):
def custom_callable(x):
return x.sum()
size = (10,)
axis = -1
group_idx = np.zeros(size, dtype=int)
a = np.random.randn(*size)
expected = a.sum(axis=axis, keepdims=True)
actual = aggregate_all(group_idx, a, axis=axis, func=custom_callable, fill_value=0)
assert actual.ndim == a.ndim
np.testing.assert_allclose(actual, expected)
@pytest.mark.deselect_if(func=_deselect_purepy)
def test_argreduction_nD_array_1D_idx(aggregate_all):
# https://github.com/ml31415/numpy-groupies/issues/41
group_idx = np.array([0, 0, 2, 2, 2, 1, 1, 2, 2, 1, 1, 0], dtype=int)
a = np.array([[1] * 12, [1] * 12])
actual = aggregate_all(group_idx, a, axis=-1, func="argmax")
expected = np.array([[0, 5, 2], [0, 5, 2]])
np.testing.assert_equal(actual, expected)
@pytest.mark.deselect_if(func=_deselect_purepy)
def test_argreduction_negative_fill_value(aggregate_all):
if aggregate_all.__name__.endswith("pandas"):
pytest.skip("pandas always skips nan values")
group_idx = np.array([0, 0, 2, 2, 2, 1, 1, 2, 2, 1, 1, 0], dtype=int)
a = np.array([[1] * 12, [np.nan] * 12])
actual = aggregate_all(group_idx, a, axis=-1, fill_value=-1, func="argmax")
expected = np.array([[0, 5, 2], [-1, -1, -1]])
np.testing.assert_equal(actual, expected)
@pytest.mark.deselect_if(func=_deselect_purepy)
@pytest.mark.parametrize("nan_inds", (None, tuple([[1, 4, 5], Ellipsis]), tuple((1, (0, 1, 2, 3)))))
@pytest.mark.parametrize("ddof", (0, 1))
@pytest.mark.parametrize("func", ("nanvar", "nanstd"))
def test_var_with_nan_fill_value(aggregate_all, ddof, nan_inds, func):
a = np.ones((12, 5))
group_idx = np.zeros(a.shape[-1:], dtype=int)
if nan_inds is not None:
a[nan_inds] = np.nan
with warnings.catch_warnings():
# Filter RuntimeWarning: Degrees of freedom <= 0 for slice.
warnings.simplefilter("ignore", RuntimeWarning)
expected = getattr(np, func)(a, keepdims=True, axis=-1, ddof=ddof)
actual = aggregate_all(group_idx, a, axis=-1, fill_value=np.nan, func=func, ddof=ddof)
np.testing.assert_equal(actual, expected)
|