1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
|
# Module containing non-deprecated functions borrowed from Numeric.
__docformat__ = "restructuredtext en"
# functions that are now methods
__all__ = ['take', 'reshape', 'choose', 'repeat', 'put',
'swapaxes', 'transpose', 'sort', 'argsort', 'argmax', 'argmin',
'searchsorted', 'alen',
'resize', 'diagonal', 'trace', 'ravel', 'nonzero', 'shape',
'compress', 'clip', 'sum', 'product', 'prod', 'sometrue', 'alltrue',
'any', 'all', 'cumsum', 'cumproduct', 'cumprod', 'ptp', 'ndim',
'rank', 'size', 'around', 'round_', 'mean', 'std', 'var', 'squeeze',
'amax', 'amin',
]
import multiarray as mu
import umath as um
import numerictypes as nt
from numeric import asarray, array, asanyarray, concatenate
_dt_ = nt.sctype2char
import types
try:
_gentype = types.GeneratorType
except AttributeError:
_gentype = types.NoneType
# save away Python sum
_sum_ = sum
# functions that are now methods
def _wrapit(obj, method, *args, **kwds):
try:
wrap = obj.__array_wrap__
except AttributeError:
wrap = None
result = getattr(asarray(obj),method)(*args, **kwds)
if wrap:
if not isinstance(result, mu.ndarray):
result = asarray(result)
result = wrap(result)
return result
def take(a, indices, axis=None, out=None, mode='raise'):
"""Return an array formed from the elements of a at the given indices.
This function does the same thing as "fancy" indexing; however, it can
be easier to use if you need to specify a given axis.
Parameters
----------
a : array
The source array
indices : int array
The indices of the values to extract.
axis : {None, int}, optional
The axis over which to select values. None signifies that the
operation should be performed over the flattened array.
out : {None, array}, optional
If provided, the result will be inserted into this array. It should
be of the appropriate shape and dtype.
mode : {'raise', 'wrap', 'clip'}, optional
Specifies how out-of-bounds indices will behave.
'raise' -- raise an error
'wrap' -- wrap around
'clip' -- clip to the range
Returns
-------
subarray : array
The returned array has the same type as a.
See Also
--------
ndarray.take : equivalent method
"""
try:
take = a.take
except AttributeError:
return _wrapit(a, 'take', indices, axis, out, mode)
return take(indices, axis, out, mode)
# not deprecated --- copy if necessary, view otherwise
def reshape(a, newshape, order='C'):
"""Returns an array containing the data of a, but with a new shape.
Parameters
----------
a : array
Array to be reshaped.
newshape : shape tuple or int
The new shape should be compatible with the original shape. If an
integer, then the result will be a 1D array of that length.
order : {'C', 'FORTRAN'}, optional
Determines whether the array data should be viewed as in C
(row-major) order or FORTRAN (column-major) order.
Returns
-------
reshaped_array : array
This will be a new view object if possible; otherwise, it will
be a copy.
See Also
--------
ndarray.reshape : Equivalent method.
"""
try:
reshape = a.reshape
except AttributeError:
return _wrapit(a, 'reshape', newshape, order=order)
return reshape(newshape, order=order)
def choose(a, choices, out=None, mode='raise'):
"""Use an index array to construct a new array from a set of
choices.
Given an array of integers and a set of n choice arrays, this function
will create a new array that merges each of the choice arrays. Where a
value in `a` is i, then the new array will have the value that
choices[i] contains in the same place.
Parameters
----------
a : int array
This array must contain integers in [0, n-1], where n is the number
of choices.
choices : sequence of arrays
Choice arrays. The index array and all of the choices should be
broadcastable to the same shape.
out : array, optional
If provided, the result will be inserted into this array. It should
be of the appropriate shape and dtype
mode : {'raise', 'wrap', 'clip'}, optional
Specifies how out-of-bounds indices will behave.
'raise' : raise an error
'wrap' : wrap around
'clip' : clip to the range
Returns
-------
merged_array : array
See Also
--------
ndarray.choose : equivalent method
Examples
--------
>>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],
... [20, 21, 22, 23], [30, 31, 32, 33]]
>>> choose([2, 3, 1, 0], choices)
array([20, 31, 12, 3])
>>> choose([2, 4, 1, 0], choices, mode='clip')
array([20, 31, 12, 3])
>>> choose([2, 4, 1, 0], choices, mode='wrap')
array([20, 1, 12, 3])
"""
try:
choose = a.choose
except AttributeError:
return _wrapit(a, 'choose', choices, out=out, mode=mode)
return choose(choices, out=out, mode=mode)
def repeat(a, repeats, axis=None):
"""Repeat elements of an array.
Parameters
----------
a : {array_like}
Input array.
repeats : {integer, integer_array}
The number of repetitions for each element. If a plain integer, then
it is applied to all elements. If an array, it needs to be of the
same length as the chosen axis.
axis : {None, integer}, optional
The axis along which to repeat values. If None, then this function
will operated on the flattened array `a` and return a similarly flat
result.
Returns
-------
repeated_array : array
See Also
--------
ndarray.repeat : equivalent method
tile : tile an array
Examples
--------
>>> x = array([[1,2],[3,4]])
>>> repeat(x, 2)
array([1, 1, 2, 2, 3, 3, 4, 4])
>>> repeat(x, 3, axis=1)
array([[1, 1, 1, 2, 2, 2],
[3, 3, 3, 4, 4, 4]])
>>> repeat(x, [1, 2], axis=0)
array([[1, 2],
[3, 4],
[3, 4]])
"""
try:
repeat = a.repeat
except AttributeError:
return _wrapit(a, 'repeat', repeats, axis)
return repeat(repeats, axis)
def put(a, ind, v, mode='raise'):
"""Set a.flat[n] = v[n] for all n in ind.
If v is shorter than ind, it will repeat.
Parameters
----------
a : array_like (contiguous)
Target array.
ind : array_like
Target indices, interpreted as integers.
v : array_like
Values to place in `a` at target indices.
mode : {'raise', 'wrap', 'clip'}, optional
Specifies how out-of-bounds indices will behave.
'raise' -- raise an error
'wrap' -- wrap around
'clip' -- clip to the range
Notes
-----
If v is shorter than mask it will be repeated as necessary. In particular v
can be a scalar or length 1 array. The routine put is the equivalent of the
following (although the loop is in C for speed):
ind = array(indices, copy=False)
v = array(values, copy=False).astype(a.dtype)
for i in ind: a.flat[i] = v[i]
Examples
--------
>>> x = np.arange(5)
>>> np.put(x,[0,2,4],[-1,-2,-3])
>>> print x
[-1 1 -2 3 -3]
"""
return a.put(ind, v, mode)
def swapaxes(a, axis1, axis2):
"""Return a view of array a with axis1 and axis2 interchanged.
Parameters
----------
a : array_like
Input array.
axis1 : int
First axis.
axis2 : int
Second axis.
Examples
--------
>>> x = np.array([[1,2,3]])
>>> np.swapaxes(x,0,1)
array([[1],
[2],
[3]])
>>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]])
>>> x
array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
>>> np.swapaxes(x,0,2)
array([[[0, 4],
[2, 6]],
[[1, 5],
[3, 7]]])
"""
try:
swapaxes = a.swapaxes
except AttributeError:
return _wrapit(a, 'swapaxes', axis1, axis2)
return swapaxes(axis1, axis2)
def transpose(a, axes=None):
"""Return a view of the array with dimensions permuted.
Parameters
----------
a : array_like
Input array.
axes : {None, list of int}, optional
If None (the default), reverse dimensions, otherwise permute
axes according to the values given.
Examples
--------
>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0, 1],
[2, 3]])
>>> np.transpose(x)
array([[0, 2],
[1, 3]])
>>> np.transpose(x,(0,1)) # no change, axes are kept in current order
array([[0, 1],
[2, 3]])
"""
try:
transpose = a.transpose
except AttributeError:
return _wrapit(a, 'transpose', axes)
return transpose(axes)
def sort(a, axis=-1, kind='quicksort', order=None):
"""Return copy of 'a' sorted along the given axis.
Perform an inplace sort along the given axis using the algorithm
specified by the kind keyword.
Parameters
----------
a : array
Array to be sorted.
axis : {None, int} optional
Axis along which to sort. None indicates that the flattened
array should be used.
kind : {'quicksort', 'mergesort', 'heapsort'}, optional
Sorting algorithm to use.
order : {None, list type}, optional
When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.
Returns
-------
sorted_array : array of same type as a
See Also
--------
argsort : Indirect sort.
lexsort : Indirect stable sort on multiple keys.
searchsorted : Find keys in sorted array.
Notes
-----
The various sorts are characterized by average speed, worst case
performance, need for work space, and whether they are stable. A
stable sort keeps items with the same key in the same relative
order. The three available algorithms have the following
properties:
=========== ======= ============= ============ =======
kind speed worst case work space stable
=========== ======= ============= ============ =======
'quicksort' 1 O(n^2) 0 no
'mergesort' 2 O(n*log(n)) ~n/2 yes
'heapsort' 3 O(n*log(n)) 0 no
=========== ======= ============= ============ =======
All the sort algorithms make temporary copies of the data when
the sort is not along the last axis. Consequently, sorts along
the last axis are faster and use less space than sorts along
other axis.
"""
if axis is None:
a = asanyarray(a).flatten()
axis = 0
else:
a = asanyarray(a).copy()
a.sort(axis, kind, order)
return a
def argsort(a, axis=-1, kind='quicksort', order=None):
"""Returns array of indices that index 'a' in sorted order.
Perform an indirect sort along the given axis using the algorithm specified
by the kind keyword. It returns an array of indices of the same shape as a
that index data along the given axis in sorted order.
Parameters
----------
a : array
Array to be sorted.
axis : {None, int} optional
Axis along which to sort. None indicates that the flattened
array should be used.
kind : {'quicksort', 'mergesort', 'heapsort'}, optional
Sorting algorithm to use.
order : {None, list type}, optional
When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.
Returns
-------
index_array : {integer_array}
Array of indices that sort 'a' along the specified axis.
See Also
--------
lexsort : Indirect stable sort with multiple keys.
sort : Inplace sort.
Notes
-----
The various sorts are characterized by average speed, worst case
performance, need for work space, and whether they are stable. A
stable sort keeps items with the same key in the same relative
order. The three available algorithms have the following
properties:
+-----------+-------+-------------+------------+-------+
| kind | speed | worst case | work space | stable|
+===========+=======+=============+============+=======+
| quicksort | 1 | O(n^2) | 0 | no |
+-----------+-------+-------------+------------+-------+
| mergesort | 2 | O(n*log(n)) | ~n/2 | yes |
+-----------+-------+-------------+------------+-------+
| heapsort | 3 | O(n*log(n)) | 0 | no |
+-----------+-------+-------------+------------+-------+
All the sort algorithms make temporary copies of the data when
the sort is not along the last axis. Consequently, sorts along
the last axis are faster and use less space than sorts along
other axis.
"""
try:
argsort = a.argsort
except AttributeError:
return _wrapit(a, 'argsort', axis, kind, order)
return argsort(axis, kind, order)
def argmax(a, axis=None):
"""Returns array of indices of the maximum values of along the given axis.
Parameters
----------
a : {array_like}
Array to look in.
axis : {None, integer}
If None, the index is into the flattened array, otherwise along
the specified axis
Returns
-------
index_array : {integer_array}
Examples
--------
>>> a = arange(6).reshape(2,3)
>>> argmax(a)
5
>>> argmax(a,0)
array([1, 1, 1])
>>> argmax(a,1)
array([2, 2])
"""
try:
argmax = a.argmax
except AttributeError:
return _wrapit(a, 'argmax', axis)
return argmax(axis)
def argmin(a, axis=None):
"""Return array of indices to the minimum values along the given axis.
Parameters
----------
a : {array_like}
Array to look in.
axis : {None, integer}
If None, the index is into the flattened array, otherwise along
the specified axis
Returns
-------
index_array : {integer_array}
Examples
--------
>>> a = arange(6).reshape(2,3)
>>> argmin(a)
0
>>> argmin(a,0)
array([0, 0, 0])
>>> argmin(a,1)
array([0, 0])
"""
try:
argmin = a.argmin
except AttributeError:
return _wrapit(a, 'argmin', axis)
return argmin(axis)
def searchsorted(a, v, side='left'):
"""Return indices where keys in v should be inserted to maintain order.
Find the indices into a sorted array such that if the corresponding keys in
v were inserted before the indices the order of a would be preserved. If
side='left', then the first such index is returned. If side='right', then
the last such index is returned. If there is no such index because the key
is out of bounds, then the length of a is returned, i.e., the key would need
to be appended. The returned index array has the same shape as v.
Parameters
----------
a : 1-d array
Array must be sorted in ascending order.
v : array or list type
Array of keys to be searched for in a.
side : {'left', 'right'}, optional
If 'left', the index of the first location where the key could be
inserted is found, if 'right', the index of the last such element is
returned. If the is no such element, then either 0 or N is returned,
where N is the size of the array.
Returns
-------
indices : integer array
Array of insertion points with the same shape as v.
See Also
--------
sort : Inplace sort.
histogram : Produce histogram from 1-d data.
Notes
-----
The array a must be 1-d and is assumed to be sorted in ascending
order. Searchsorted uses binary search to find the required
insertion points.
Examples
--------
>>> searchsorted([1,2,3,4,5],[6,4,0])
array([5, 3, 0])
"""
try:
searchsorted = a.searchsorted
except AttributeError:
return _wrapit(a, 'searchsorted', v, side)
return searchsorted(v, side)
def resize(a, new_shape):
"""Return a new array with the specified shape.
The original array's total size can be any size. The new array is
filled with repeated copies of a.
Note that a.resize(new_shape) will fill the array with 0's beyond
current definition of a.
Parameters
----------
a : {array_like}
Array to be reshaped.
new_shape : {tuple}
Shape of reshaped array.
Returns
-------
reshaped_array : {array}
The new array is formed from the data in the old array, repeated if
necessary to fill out the required number of elements, with the new
shape.
"""
if isinstance(new_shape, (int, nt.integer)):
new_shape = (new_shape,)
a = ravel(a)
Na = len(a)
if not Na: return mu.zeros(new_shape, a.dtype.char)
total_size = um.multiply.reduce(new_shape)
n_copies = int(total_size / Na)
extra = total_size % Na
if total_size == 0:
return a[:0]
if extra != 0:
n_copies = n_copies+1
extra = Na-extra
a = concatenate( (a,)*n_copies)
if extra > 0:
a = a[:-extra]
return reshape(a, new_shape)
def squeeze(a):
"""Remove single-dimensional entries from the shape of a.
Examples
--------
>>> x = array([[[1,1,1],[2,2,2],[3,3,3]]])
>>> x.shape
(1, 3, 3)
>>> squeeze(x).shape
(3, 3)
"""
try:
squeeze = a.squeeze
except AttributeError:
return _wrapit(a, 'squeeze')
return squeeze()
def diagonal(a, offset=0, axis1=0, axis2=1):
"""Return specified diagonals.
If a is 2-d, returns the diagonal of self with the given offset, i.e., the
collection of elements of the form a[i,i+offset]. If a has more than two
dimensions, then the axes specified by axis1 and axis2 are used to determine
the 2-d subarray whose diagonal is returned. The shape of the resulting
array can be determined by removing axis1 and axis2 and appending an index
to the right equal to the size of the resulting diagonals.
Parameters
----------
a : {array_like}
Array from whis the diagonals are taken.
offset : {0, integer}, optional
Offset of the diagonal from the main diagonal. Can be both positive
and negative. Defaults to main diagonal.
axis1 : {0, integer}, optional
Axis to be used as the first axis of the 2-d subarrays from which
the diagonals should be taken. Defaults to first axis.
axis2 : {1, integer}, optional
Axis to be used as the second axis of the 2-d subarrays from which
the diagonals should be taken. Defaults to second axis.
Returns
-------
array_of_diagonals : array of same type as a
If a is 2-d, a 1-d array containing the diagonal is
returned. If a has larger dimensions, then an array of
diagonals is returned.
See Also
--------
diag : Matlab workalike for 1-d and 2-d arrays.
diagflat : Create diagonal arrays.
trace : Sum along diagonals.
Examples
--------
>>> a = arange(4).reshape(2,2)
>>> a
array([[0, 1],
[2, 3]])
>>> a.diagonal()
array([0, 3])
>>> a.diagonal(1)
array([1])
>>> a = arange(8).reshape(2,2,2)
>>> a
array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
>>> a.diagonal(0,-2,-1)
array([[0, 3],
[4, 7]])
"""
return asarray(a).diagonal(offset, axis1, axis2)
def trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None):
"""Return the sum along diagonals of the array.
If a is 2-d, returns the sum along the diagonal of self with the given offset, i.e., the
collection of elements of the form a[i,i+offset]. If a has more than two
dimensions, then the axes specified by axis1 and axis2 are used to determine
the 2-d subarray whose trace is returned. The shape of the resulting
array can be determined by removing axis1 and axis2 and appending an index
to the right equal to the size of the resulting diagonals.
Parameters
----------
a : {array_like}
Array from whis the diagonals are taken.
offset : {0, integer}, optional
Offset of the diagonal from the main diagonal. Can be both positive
and negative. Defaults to main diagonal.
axis1 : {0, integer}, optional
Axis to be used as the first axis of the 2-d subarrays from which
the diagonals should be taken. Defaults to first axis.
axis2 : {1, integer}, optional
Axis to be used as the second axis of the 2-d subarrays from which
the diagonals should be taken. Defaults to second axis.
dtype : {None, dtype}, optional
Determines the type of the returned array and of the accumulator
where the elements are summed. If dtype has the value None and a is
of integer type of precision less than the default integer
precision, then the default integer precision is used. Otherwise,
the precision is the same as that of a.
out : {None, array}, optional
Array into which the sum can be placed. Its type is preserved and
it must be of the right shape to hold the output.
Returns
-------
sum_along_diagonals : array
If a is 2-d, a 0-d array containing the diagonal is
returned. If a has larger dimensions, then an array of
diagonals is returned.
Examples
--------
>>> trace(eye(3))
3.0
>>> a = arange(8).reshape((2,2,2))
>>> trace(a)
array([6, 8])
"""
return asarray(a).trace(offset, axis1, axis2, dtype, out)
def ravel(a, order='C'):
"""Return a 1d array containing the elements of a (copy only if needed).
Returns the elements of a as a 1d array. The elements in the new array
are taken in the order specified by the order keyword. The new array is
a view of a if possible, otherwise it is a copy.
Parameters
----------
a : {array_like}
order : {'C','F'}, optional
If order is 'C' the elements are taken in row major order. If order
is 'F' they are taken in column major order.
Returns
-------
1d_array : {array}
See Also
--------
ndarray.flat : 1d iterator over the array.
ndarray.flatten : 1d array copy of the elements of a in C order.
Examples
--------
>>> x = array([[1,2,3],[4,5,6]])
>>> x
array([[1, 2, 3],
[4, 5, 6]])
>>> ravel(x)
array([1, 2, 3, 4, 5, 6])
"""
return asarray(a).ravel(order)
def nonzero(a):
"""Return the indices of the elements of a which are not zero.
Parameters
----------
a : {array_like}
Returns
-------
tuple_of_arrays : {tuple}
Examples
--------
>>> eye(3)[nonzero(eye(3))]
array([ 1., 1., 1.])
>>> nonzero(eye(3))
(array([0, 1, 2]), array([0, 1, 2]))
>>> eye(3)[nonzero(eye(3))]
array([ 1., 1., 1.])
"""
try:
nonzero = a.nonzero
except AttributeError:
res = _wrapit(a, 'nonzero')
else:
res = nonzero()
return res
def shape(a):
"""Return the shape of a.
Parameters
----------
a : {array_like}
Array whose shape is desired. If a is not an array, a conversion is
attempted.
Returns
-------
tuple_of_integers :
The elements of the tuple are the length of the corresponding array
dimension.
Examples
--------
>>> shape(eye(3))
(3, 3)
>>> shape([[1,2]])
(1, 2)
"""
try:
result = a.shape
except AttributeError:
result = asarray(a).shape
return result
def compress(condition, a, axis=None, out=None):
"""Return selected slices of an array along given axis.
Parameters
----------
condition : {array}
Boolean 1-d array selecting which entries to return. If len(condition)
is less than the size of a along the axis, then output is truncated
to length of condition array.
a : {array_type}
Array from which to extract a part.
axis : {None, integer}
Axis along which to take slices. If None, work on the flattened array.
out : array, optional
Output array. Its type is preserved and it must be of the right
shape to hold the output.
Returns
-------
compressed_array : array
A copy of a, without the slices along axis for which condition is false.
Examples
--------
>>> a = np.array([[1, 2], [3, 4]])
>>> np.compress([0, 1], a, axis=0)
array([[3, 4]])
>>> np.compress([1], a, axis=1)
array([[1],
[3]])
>>> np.compress([0,1,1], a)
array([2, 3])
"""
try:
compress = a.compress
except AttributeError:
return _wrapit(a, 'compress', condition, axis, out)
return compress(condition, axis, out)
def clip(a, a_min, a_max, out=None):
"""Return an array whose values are limited to [a_min, a_max].
Parameters
----------
a : {array_like}
Array containing elements to clip.
a_min :
Minimum value
a_max :
Maximum value
out : array, optional
The results will be placed in this array. It may be the input array for
inplace clipping.
Returns
-------
clipped_array : {array}
A new array whose elements are same as for a, but values
< a_min are replaced with a_min, and > a_max with a_max.
Examples
--------
>>> a = np.arange(10)
>>> np.clip(a, 1, 8)
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, 3, 6, out=a)
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
"""
try:
clip = a.clip
except AttributeError:
return _wrapit(a, 'clip', a_min, a_max, out)
return clip(a_min, a_max, out)
def sum(a, axis=None, dtype=None, out=None):
"""Return the sum of the array elements over the given axis
Parameters
----------
a : {array_type}
Array containing elements whose sum is desired. If a is not an array, a
conversion is attempted.
axis : {None, integer}
Axis over which the sum is taken. If None is used, then the sum is
over all the array elements.
dtype : {None, dtype}, optional
Determines the type of the returned array and of the accumulator
where the elements are summed. If dtype has the value None and the
type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.
out : {None, array}, optional
Array into which the sum can be placed. Its type is preserved and
it must be of the right shape to hold the output.
Returns
-------
sum_along_axis : {array, scalar}, see dtype parameter above.
Returns an array whose shape is the same as a with the specified
axis removed. Returns a 0d array when a is 1d or axis=None.
Returns a reference to the specified output array if specified.
See Also
--------
ndarray.sum : equivalent method
Examples
--------
>>> sum([0.5, 1.5])
2.0
>>> sum([0.5, 1.5], dtype=N.int32)
1
>>> sum([[0, 1], [0, 5]])
6
>>> sum([[0, 1], [0, 5]], axis=1)
array([1, 5])
>>> ones(128, dtype=int8).sum(dtype=int8) # overflow!
-128
Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.
"""
if isinstance(a, _gentype):
res = _sum_(a)
if out is not None:
out[...] = res
return out
return res
try:
sum = a.sum
except AttributeError:
return _wrapit(a, 'sum', axis, dtype, out)
return sum(axis, dtype, out)
def product (a, axis=None, dtype=None, out=None):
"""Return the product of the array elements over the given axis
Parameters
----------
a : {array_like}
Array containing elements whose product is desired. If a is not an array, a
conversion is attempted.
axis : {None, integer}
Axis over which the product is taken. If None is used, then the
product is over all the array elements.
dtype : {None, dtype}, optional
Determines the type of the returned array and of the accumulator
where the elements are multiplied. If dtype has the value None and
the type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.
out : {None, array}, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.
Returns
-------
product_along_axis : {array, scalar}, see dtype parameter above.
Returns an array whose shape is the same as a with the specified
axis removed. Returns a 0d array when a is 1d or axis=None.
Returns a reference to the specified output array if specified.
See Also
--------
ndarray.prod : equivalent method
Examples
--------
>>> product([1.,2.])
2.0
>>> product([1.,2.], dtype=int32)
2
>>> product([[1.,2.],[3.,4.]])
24.0
>>> product([[1.,2.],[3.,4.]], axis=1)
array([ 2., 12.])
Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.
"""
try:
prod = a.prod
except AttributeError:
return _wrapit(a, 'prod', axis, dtype, out)
return prod(axis, dtype, out)
def sometrue(a, axis=None, out=None):
"""
Assert whether some values are true.
`sometrue` performs a logical_or over the given axis.
Parameters
----------
a : array_like
Array on which to operate.
axis : {None, integer}
Axis to perform the operation over.
If `None` (default), perform over flattened array.
out : {None, array}, optional
Array into which the product can be placed. Its type is preserved
and it must be of the right shape to hold the output.
See Also
--------
ndarray.any : equivalent method
Examples
--------
>>> b = numpy.array([True, False, True, True])
>>> numpy.sometrue(b)
True
>>> a = numpy.array([1, 5, 2, 7])
>>> numpy.sometrue(a >= 5)
True
"""
try:
any = a.any
except AttributeError:
return _wrapit(a, 'any', axis, out)
return any(axis, out)
def alltrue (a, axis=None, out=None):
"""Check if all of the elements of `a` are true.
Performs a logical_and over the given axis and returns the result
Parameters
----------
a : array_like
axis : {None, integer}
Axis to perform the operation over.
If None, perform over flattened array.
out : {None, array}, optional
Array into which the product can be placed. Its type is preserved
and it must be of the right shape to hold the output.
See Also
--------
ndarray.all : equivalent method
"""
try:
all = a.all
except AttributeError:
return _wrapit(a, 'all', axis, out)
return all(axis, out)
def any(a,axis=None, out=None):
"""Check if any of the elements of `a` are true.
Performs a logical_or over the given axis and returns the result
Parameters
----------
a : array_like
axis : {None, integer}
Axis to perform the operation over.
If None, perform over flattened array and return a scalar.
out : {None, array}, optional
Array into which the product can be placed. Its type is preserved
and it must be of the right shape to hold the output.
See Also
--------
ndarray.any : equivalent method
"""
try:
any = a.any
except AttributeError:
return _wrapit(a, 'any', axis, out)
return any(axis, out)
def all(a,axis=None, out=None):
"""Check if all of the elements of `a` are true.
Performs a logical_and over the given axis and returns the result
Parameters
----------
a : array_like
axis : {None, integer}
Axis to perform the operation over.
If None, perform over flattened array and return a scalar.
out : {None, array}, optional
Array into which the product can be placed. Its type is preserved
and it must be of the right shape to hold the output.
See Also
--------
ndarray.all : equivalent method
"""
try:
all = a.all
except AttributeError:
return _wrapit(a, 'all', axis, out)
return all(axis, out)
def cumsum (a, axis=None, dtype=None, out=None):
"""
Return the cumulative sum of the elements along a given axis.
Parameters
----------
a : array-like
Input array or object that can be converted to an array.
axis : {None, -1, int}, optional
Axis along which the sum is computed. The default
(`axis` = `None`) is to compute over the flattened array.
dtype : {None, dtype}, optional
Type of the returned array and of the accumulator in which the
elements are summed. If `dtype` is not specified, it defaults
to the dtype of `a`, unless `a` has an integer dtype with a
precision less than that of the default platform integer. In
that case, the default platform integer is used.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.
Returns
-------
cumsum : ndarray.
A new array holding the result is returned unless `out` is
specified, in which case a reference to `out` is returned.
Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.
Examples
--------
>>> import numpy
>>> a=numpy.array([[1,2,3],[4,5,6]])
>>> numpy.cumsum(a) # cumulative sum = intermediate summing results & total sum. Default axis=None results in raveling the array first.
array([ 1, 3, 6, 10, 15, 21])
>>> numpy.cumsum(a,dtype=float) # specifies type of output value(s)
array([ 1., 3., 6., 10., 15., 21.])
>>> numpy.cumsum(a,axis=0) # sum over rows for each of the 3 columns
array([[1, 2, 3],
[5, 7, 9]])
>>> numpy.cumsum(a,axis=1) # sum over columns for each of the 2 rows
array([[ 1, 3, 6],
[ 4, 9, 15]])
"""
try:
cumsum = a.cumsum
except AttributeError:
return _wrapit(a, 'cumsum', axis, dtype, out)
return cumsum(axis, dtype, out)
def cumproduct(a, axis=None, dtype=None, out=None):
"""Return the cumulative product over the given axis.
See Also
--------
cumprod
"""
try:
cumprod = a.cumprod
except AttributeError:
return _wrapit(a, 'cumprod', axis, dtype, out)
return cumprod(axis, dtype, out)
def ptp(a, axis=None, out=None):
"""Return (maximum - minimum) along the the given dimension
(i.e. peak-to-peak value).
Parameters
----------
a : array_like
Input values.
axis : {None, int}, optional
Axis along which to find the peaks. If None (default) the
flattened array is used.
out : array_like
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.
Returns
-------
ptp : ndarray.
A new array holding the result, unless ``out`` was
specified, in which case a reference to ``out`` is returned.
Examples
--------
>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0, 1],
[2, 3]])
>>> np.ptp(x,0)
array([2, 2])
>>> np.ptp(x,1)
array([1, 1])
"""
try:
ptp = a.ptp
except AttributeError:
return _wrapit(a, 'ptp', axis, out)
return ptp(axis, out)
def amax(a, axis=None, out=None):
"""Return the maximum along a given axis.
Parameters
----------
a : array_like
Input data.
axis : {None, int}, optional
Axis along which to operate. By default, ``axis`` is None and the
flattened input is used.
out : array_like, optional
Alternative output array in which to place the result. Must
be of the same shape and buffer length as the expected output.
Returns
-------
amax : array_like
New array holding the result, unless ``out`` was specified.
Examples
--------
>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0, 1],
[2, 3]])
>>> np.amax(x,0)
array([2, 3])
>>> np.amax(x,1)
array([1, 3])
"""
try:
amax = a.max
except AttributeError:
return _wrapit(a, 'max', axis, out)
return amax(axis, out)
def amin(a, axis=None, out=None):
"""Return the minimum along a given axis.
Parameters
----------
a : array_like
Input data.
axis : {None, int}, optional
Axis along which to operate. By default, ``axis`` is None and the
flattened input is used.
out : array_like, optional
Alternative output array in which to place the result. Must
be of the same shape and buffer length as the expected output.
Returns
-------
amin : array_like
New array holding the result, unless ``out`` was specified.
Examples
--------
>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0, 1],
[2, 3]])
>>> np.amin(x,0)
array([0, 1])
>>> np.amin(x,1)
array([0, 2])
"""
try:
amin = a.min
except AttributeError:
return _wrapit(a, 'min', axis, out)
return amin(axis, out)
def alen(a):
"""
Return the length of a Python object interpreted as an array
of at least 1 dimension.
Parameters
----------
a : array_like
Returns
-------
alen : int
Length of the first dimension of `a`.
Examples
--------
>>> z = numpy.zeros((7,4,5))
>>> z.shape[0]
7
>>> numpy.alen(z)
7
"""
try:
return len(a)
except TypeError:
return len(array(a,ndmin=1))
def prod(a, axis=None, dtype=None, out=None):
"""Return the product of the array elements over the given axis
Parameters
----------
a : {array_like}
Array containing elements whose product is desired. If a is not an array, a
conversion is attempted.
axis : {None, integer}
Axis over which the product is taken. If None is used, then the
product is over all the array elements.
dtype : {None, dtype}, optional
Determines the type of the returned array and of the accumulator
where the elements are multiplied. If dtype has the value None and
the type of a is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the dtype is the same as that of a.
out : {None, array}, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.
Returns
-------
product_along_axis : {array, scalar}, see dtype parameter above.
Returns an array whose shape is the same as a with the specified
axis removed. Returns a 0d array when a is 1d or axis=None.
Returns a reference to the specified output array if specified.
See Also
--------
ndarray.prod : equivalent method
Examples
--------
>>> prod([1.,2.])
2.0
>>> prod([1.,2.], dtype=int32)
2
>>> prod([[1.,2.],[3.,4.]])
24.0
>>> prod([[1.,2.],[3.,4.]], axis=1)
array([ 2., 12.])
Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.
"""
try:
prod = a.prod
except AttributeError:
return _wrapit(a, 'prod', axis, dtype, out)
return prod(axis, dtype, out)
def cumprod(a, axis=None, dtype=None, out=None):
"""
Return the cumulative product of the elements along the given axis.
The cumulative product is taken over the flattened array by
default, otherwise over the specified axis.
Parameters
----------
a : array-like
Input array or object that can be converted to an array.
axis : {None, -1, int}, optional
Axis along which the product is computed. The default
(`axis` = `None`) is to compute over the flattened array.
dtype : {None, dtype}, optional
Type of the returned array and of the accumulator
where the elements are multiplied. If `dtype` has the value `None` and
the type of `a` is an integer type of precision less than the default
platform integer, then the default platform integer precision is
used. Otherwise, the `dtype` is the same as that of `a`.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.
Returns
-------
cumprod : ndarray.
A new array holding the result is returned unless `out` is
specified, in which case a reference to out is returned.
Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.
Examples
--------
>>> a=numpy.array([[1,2,3],[4,5,6]])
>>> a=numpy.array([1,2,3])
>>> numpy.cumprod(a) # intermediate results 1, 1*2
... # total product 1*2*3 = 6
array([1, 2, 6])
>>> a=numpy.array([[1,2,3],[4,5,6]])
>>> numpy.cumprod(a,dtype=float) # specify type of output
array([ 1., 2., 6., 24., 120., 720.])
>>> numpy.cumprod(a,axis=0) # for each of the 3 columns:
... # product and intermediate results
array([[ 1, 2, 3],
[ 4, 10, 18]])
>>> numpy.cumprod(a,axis=1) # for each of the two rows:
... # product and intermediate results
array([[ 1, 2, 6],
[ 4, 20, 120]])
"""
try:
cumprod = a.cumprod
except AttributeError:
return _wrapit(a, 'cumprod', axis, dtype, out)
return cumprod(axis, dtype, out)
def ndim(a):
"""Return the number of dimensions of a.
If a is not already an array, a conversion is attempted. Scalars are zero
dimensional.
Parameters
----------
a : {array_like}
Array whose number of dimensions are desired. If a is not an
array, a conversion is attempted.
Returns
-------
number_of_dimensions : {integer}
Returns the number of dimensions.
See Also
--------
rank : equivalent function.
ndarray.ndim : equivalent method
shape : dimensions of array
ndarray.shape : dimensions of array
Examples
--------
>>> ndim([[1,2,3],[4,5,6]])
2
>>> ndim(array([[1,2,3],[4,5,6]]))
2
>>> ndim(1)
0
"""
try:
return a.ndim
except AttributeError:
return asarray(a).ndim
def rank(a):
"""Return the number of dimensions of a.
In old Numeric, rank was the term used for the number of dimensions. If a is
not already an array, a conversion is attempted. Scalars are zero
dimensional.
Parameters
----------
a : {array_like}
Array whose number of dimensions is desired. If a is not an array, a
conversion is attempted.
Returns
-------
number_of_dimensions : {integer}
Returns the number of dimensions.
See Also
--------
ndim : equivalent function
ndarray.ndim : equivalent method
shape : dimensions of array
ndarray.shape : dimensions of array
Examples
--------
>>> rank([[1,2,3],[4,5,6]])
2
>>> rank(array([[1,2,3],[4,5,6]]))
2
>>> rank(1)
0
"""
try:
return a.ndim
except AttributeError:
return asarray(a).ndim
def size(a, axis=None):
"""Return the number of elements along given axis.
Parameters
----------
a : {array_like}
Array whose axis size is desired. If a is not an array, a
conversion is attempted.
axis : {None, integer}, optional
Axis along which the elements are counted. None means all
elements in the array.
Returns
-------
element_count : {integer}
Count of elements along specified axis.
See Also
--------
shape : dimensions of array
ndarray.shape : dimensions of array
ndarray.size : number of elements in array
Examples
--------
>>> a = array([[1,2,3],[4,5,6]])
>>> size(a)
6
>>> size(a,1)
3
>>> size(a,0)
2
"""
if axis is None:
try:
return a.size
except AttributeError:
return asarray(a).size
else:
try:
return a.shape[axis]
except AttributeError:
return asarray(a).shape[axis]
def around(a, decimals=0, out=None):
"""Round a to the given number of decimals.
The real and imaginary parts of complex numbers are rounded separately. The
result of rounding a float is a float so the type must be cast if integers
are desired. Nothing is done if the input is an integer array and the
decimals parameter has a value >= 0.
Parameters
----------
a : {array_like}
Array containing numbers whose rounded values are desired. If a is
not an array, a conversion is attempted.
decimals : {0, int}, optional
Number of decimal places to round to. When decimals is negative it
specifies the number of positions to the left of the decimal point.
out : {None, array}, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary. Numpy rounds floats to floats by default.
Returns
-------
rounded_array : {array}
If out=None, returns a new array of the same type as a containing
the rounded values, otherwise a reference to the output array is
returned.
See Also
--------
round_ : equivalent function
ndarray.round : equivalent method
Notes
-----
Numpy rounds to even. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round
to 0.0, etc. Results may also be surprising due to the inexact
representation of decimal fractions in IEEE floating point and the
errors introduced when scaling by powers of ten.
Examples
--------
>>> around([.5, 1.5, 2.5, 3.5, 4.5])
array([ 0., 2., 2., 4., 4.])
>>> around([1,2,3,11], decimals=1)
array([ 1, 2, 3, 11])
>>> around([1,2,3,11], decimals=-1)
array([ 0, 0, 0, 10])
"""
try:
round = a.round
except AttributeError:
return _wrapit(a, 'round', decimals, out)
return round(decimals, out)
def round_(a, decimals=0, out=None):
"""Round a to the given number of decimals.
The real and imaginary parts of complex numbers are rounded separately. The
result of rounding a float is a float so the type must be cast if integers
are desired. Nothing is done if the input is an integer array and the
decimals parameter has a value >= 0.
Parameters
----------
a : {array_like}
Array containing numbers whose rounded values are desired. If a is
not an array, a conversion is attempted.
decimals : {0, integer}, optional
Number of decimal places to round to. When decimals is negative it
specifies the number of positions to the left of the decimal point.
out : {None, array}, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.
Returns
-------
rounded_array : {array}
If out=None, returns a new array of the same type as a containing
the rounded values, otherwise a reference to the output array is
returned.
See Also
--------
around : equivalent function
ndarray.round : equivalent method
Notes
-----
Numpy rounds to even. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round
to 0.0, etc. Results may also be surprising due to the inexact
representation of decimal fractions in IEEE floating point and the
errors introduced when scaling by powers of ten.
Examples
--------
>>> round_([.5, 1.5, 2.5, 3.5, 4.5])
array([ 0., 2., 2., 4., 4.])
>>> round_([1,2,3,11], decimals=1)
array([ 1, 2, 3, 11])
>>> round_([1,2,3,11], decimals=-1)
array([ 0, 0, 0, 10])
"""
try:
round = a.round
except AttributeError:
return _wrapit(a, 'round', decimals, out)
return round(decimals, out)
def mean(a, axis=None, dtype=None, out=None):
"""Compute the mean along the specified axis.
Returns the average of the array elements. The average is taken
over the flattened array by default, otherwise over the specified
axis. The dtype returned for integer type arrays is float.
Parameters
----------
a : {array_like}
Array containing numbers whose mean is desired. If a is not an
array, a conversion is attempted.
axis : {None, integer}, optional
Axis along which the means are computed. The default is to compute
the mean of the flattened array.
dtype : {None, dtype}, optional
Type to use in computing the mean. For arrays of integer type the
default is float32, for arrays of float types it is the same as the
array type.
out : {None, array}, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.
Returns
-------
mean : {array, scalar}, see dtype parameter above
If out=None, returns a new array containing the mean values,
otherwise a reference to the output array is returned.
See Also
--------
average : Weighted average
Notes
-----
The mean is the sum of the elements along the axis divided by the
number of elements.
Examples
--------
>>> a = array([[1,2],[3,4]])
>>> mean(a)
2.5
>>> mean(a,0)
array([ 2., 3.])
>>> mean(a,1)
array([ 1.5, 3.5])
"""
try:
mean = a.mean
except AttributeError:
return _wrapit(a, 'mean', axis, dtype, out)
return mean(axis, dtype, out)
def std(a, axis=None, dtype=None, out=None, ddof=0):
"""Compute the standard deviation along the specified axis.
Returns the standard deviation of the array elements, a measure of the
spread of a distribution. The standard deviation is computed for the
flattened array by default, otherwise over the specified axis.
Parameters
----------
a : {array_like}
Array containing numbers whose standard deviation is desired. If a
is not an array, a conversion is attempted.
axis : {None, integer}, optional
Axis along which the standard deviation is computed. The default is
to compute the standard deviation of the flattened array.
dtype : {None, dtype}, optional
Type to use in computing the standard deviation. For arrays of
integer type the default is float32, for arrays of float types it is
the same as the array type.
out : {None, array}, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.
ddof : {0, integer}
Means Delta Degrees of Freedom. The divisor used in calculations
is N-ddof.
Returns
-------
standard_deviation : {array, scalar}, see dtype parameter above.
If out=None, returns a new array containing the standard deviation,
otherwise a reference to the output array is returned.
See Also
--------
var : Variance
mean : Average
Notes
-----
The standard deviation is the square root of the average of the squared
deviations from the mean, i.e. var = sqrt(mean(abs(x - x.mean())**2)).
The computed standard deviation is computed by dividing by the number of
elements, N-ddof. The option ddof defaults to zero, that is, a
biased estimate. Note that for complex numbers std takes the absolute
value before squaring, so that the result is always real and nonnegative.
Examples
--------
>>> a = array([[1,2],[3,4]])
>>> std(a)
1.1180339887498949
>>> std(a,0)
array([ 1., 1.])
>>> std(a,1)
array([ 0.5, 0.5])
"""
try:
std = a.std
except AttributeError:
return _wrapit(a, 'std', axis, dtype, out, ddof)
return std(axis, dtype, out, ddof)
def var(a, axis=None, dtype=None, out=None, ddof=0):
"""Compute the variance along the specified axis.
Returns the variance of the array elements, a measure of the spread of a
distribution. The variance is computed for the flattened array by default,
otherwise over the specified axis.
Parameters
----------
a : {array_like}
Array containing numbers whose variance is desired. If a is not an
array, a conversion is attempted.
axis : {None, integer}, optional
Axis along which the variance is computed. The default is to compute
the variance of the flattened array.
dtype : {None, dtype}, optional
Type to use in computing the variance. For arrays of integer type
the default is float32, for arrays of float types it is the same as
the array type.
out : {None, array}, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if
necessary.
ddof : {0, integer},
Means Delta Degrees of Freedom. The divisor used in calculation is
N - ddof.
Returns
-------
variance : {array, scalar}, see dtype parameter above
If out=None, returns a new array containing the variance, otherwise
a reference to the output array is returned.
See Also
--------
std : Standard deviation
mean : Average
Notes
-----
The variance is the average of the squared deviations from the mean,
i.e. var = mean(abs(x - x.mean())**2). The computed variance is biased,
i.e., the mean is computed by dividing by the number of elements, N,
rather than by N-1. Note that for complex numbers the absolute value is
taken before squaring, so that the result is always real and nonnegative.
Examples
--------
>>> a = array([[1,2],[3,4]])
>>> var(a)
1.25
>>> var(a,0)
array([ 1., 1.])
>>> var(a,1)
array([ 0.25, 0.25])
"""
try:
var = a.var
except AttributeError:
return _wrapit(a, 'var', axis, dtype, out, ddof)
return var(axis, dtype, out, ddof)
|