1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
|
__all__ = ['newaxis', 'ndarray', 'flatiter', 'ufunc',
'arange', 'array', 'zeros', 'empty', 'broadcast', 'dtype',
'fromstring', 'fromfile', 'frombuffer','newbuffer',
'getbuffer', 'int_asbuffer', 'where', 'argwhere',
'concatenate', 'fastCopyAndTranspose', 'lexsort',
'set_numeric_ops', 'can_cast',
'asarray', 'asanyarray', 'ascontiguousarray', 'asfortranarray',
'isfortran', 'empty_like', 'zeros_like',
'correlate', 'convolve', 'inner', 'dot', 'outer', 'vdot',
'alterdot', 'restoredot', 'roll', 'rollaxis', 'cross', 'tensordot',
'array2string', 'get_printoptions', 'set_printoptions',
'array_repr', 'array_str', 'set_string_function',
'little_endian', 'require',
'fromiter', 'array_equal', 'array_equiv',
'indices', 'fromfunction',
'load', 'loads', 'isscalar', 'binary_repr', 'base_repr',
'ones', 'identity', 'allclose', 'compare_chararrays', 'putmask',
'seterr', 'geterr', 'setbufsize', 'getbufsize',
'seterrcall', 'geterrcall', 'errstate', 'flatnonzero',
'Inf', 'inf', 'infty', 'Infinity',
'nan', 'NaN', 'False_', 'True_', 'bitwise_not',
'CLIP', 'RAISE', 'WRAP', 'MAXDIMS', 'BUFSIZE', 'ALLOW_THREADS']
import sys
import multiarray
import umath
from umath import *
import numerictypes
from numerictypes import *
bitwise_not = invert
CLIP = multiarray.CLIP
WRAP = multiarray.WRAP
RAISE = multiarray.RAISE
MAXDIMS = multiarray.MAXDIMS
ALLOW_THREADS = multiarray.ALLOW_THREADS
BUFSIZE = multiarray.BUFSIZE
ndarray = multiarray.ndarray
flatiter = multiarray.flatiter
broadcast = multiarray.broadcast
dtype = multiarray.dtype
ufunc = type(sin)
# originally from Fernando Perez's IPython
def zeros_like(a):
"""Return an array of zeros of the shape and data-type of a.
If you don't explicitly need the array to be zeroed, you should instead
use empty_like(), which is a bit faster as it only allocates memory.
"""
if isinstance(a, ndarray):
res = ndarray.__new__(type(a), a.shape, a.dtype, order=a.flags.fnc)
res.fill(0)
return res
try:
wrap = a.__array_wrap__
except AttributeError:
wrap = None
a = asarray(a)
res = zeros(a.shape, a.dtype)
if wrap:
res = wrap(res)
return res
def empty_like(a):
"""Return an empty (uninitialized) array of the shape and data-type of a.
Note that this does NOT initialize the returned array. If you require
your array to be initialized, you should use zeros_like().
"""
if isinstance(a, ndarray):
res = ndarray.__new__(type(a), a.shape, a.dtype, order=a.flags.fnc)
return res
try:
wrap = a.__array_wrap__
except AttributeError:
wrap = None
a = asarray(a)
res = empty(a.shape, a.dtype)
if wrap:
res = wrap(res)
return res
# end Fernando's utilities
def extend_all(module):
adict = {}
for a in __all__:
adict[a] = 1
try:
mall = getattr(module, '__all__')
except AttributeError:
mall = [k for k in module.__dict__.keys() if not k.startswith('_')]
for a in mall:
if a not in adict:
__all__.append(a)
extend_all(umath)
extend_all(numerictypes)
newaxis = None
arange = multiarray.arange
array = multiarray.array
zeros = multiarray.zeros
empty = multiarray.empty
fromstring = multiarray.fromstring
fromiter = multiarray.fromiter
fromfile = multiarray.fromfile
frombuffer = multiarray.frombuffer
newbuffer = multiarray.newbuffer
getbuffer = multiarray.getbuffer
int_asbuffer = multiarray.int_asbuffer
where = multiarray.where
concatenate = multiarray.concatenate
fastCopyAndTranspose = multiarray._fastCopyAndTranspose
set_numeric_ops = multiarray.set_numeric_ops
can_cast = multiarray.can_cast
lexsort = multiarray.lexsort
compare_chararrays = multiarray.compare_chararrays
putmask = multiarray.putmask
def asarray(a, dtype=None, order=None):
"""Returns a as an array.
Unlike array(), no copy is performed if a is already an array. Subclasses
are converted to base class ndarray.
"""
return array(a, dtype, copy=False, order=order)
def asanyarray(a, dtype=None, order=None):
"""Returns a as an array, but will pass subclasses through.
"""
return array(a, dtype, copy=False, order=order, subok=1)
def ascontiguousarray(a, dtype=None):
"""Return 'a' as an array contiguous in memory (C order).
"""
return array(a, dtype, copy=False, order='C', ndmin=1)
def asfortranarray(a, dtype=None):
"""Return 'a' as an array laid out in Fortran-order in memory.
"""
return array(a, dtype, copy=False, order='F', ndmin=1)
def require(a, dtype=None, requirements=None):
"""Return an ndarray of the provided type that satisfies requirements.
This function is useful to be sure that an array with the correct flags
is returned for passing to compiled code (perhaps through ctypes).
Parameters
----------
a : array-like
The object to be converted to a type-and-requirement satisfying array
dtype : data-type
The required data-type (None is the default data-type -- float64)
requirements : list of strings
The requirements list can be any of the
'ENSUREARRAY' ('E') - ensure that a base-class ndarray
'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array
'C_CONTIGUOUS' ('C') - ensure a C-contiguous array
'ALIGNED' ('A') - ensure a data-type aligned array
'WRITEABLE' ('W') - ensure a writeable array
'OWNDATA' ('O') - ensure an array that owns its own data
The returned array will be guaranteed to have the listed requirements
by making a copy if needed.
"""
if requirements is None:
requirements = []
else:
requirements = [x.upper() for x in requirements]
if not requirements:
return asanyarray(a, dtype=dtype)
if 'ENSUREARRAY' in requirements or 'E' in requirements:
subok = 0
else:
subok = 1
arr = array(a, dtype=dtype, copy=False, subok=subok)
copychar = 'A'
if 'FORTRAN' in requirements or \
'F_CONTIGUOUS' in requirements or \
'F' in requirements:
copychar = 'F'
elif 'CONTIGUOUS' in requirements or \
'C_CONTIGUOUS' in requirements or \
'C' in requirements:
copychar = 'C'
for prop in requirements:
if not arr.flags[prop]:
arr = arr.copy(copychar)
break
return arr
def isfortran(a):
"""Returns True if 'a' is arranged in Fortran-order in memory with a.ndim > 1
"""
return a.flags.fnc
def argwhere(a):
"""Return a 2-d array of shape N x a.ndim where each row
is a sequence of indices into a. This sequence must be
converted to a tuple in order to be used to index into a.
>>> from numpy import ones, argwhere
>>> argwhere(ones((2, 2)))
array([[0, 0],
[0, 1],
[1, 0],
[1, 1]])
"""
return asarray(a.nonzero()).T
def flatnonzero(a):
"""Return indicies that are not-zero in flattened version of a
Equivalent to a.ravel().nonzero()[0]
>>> from numpy import arange, flatnonzero
>>> arange(-2, 3)
array([-2, -1, 0, 1, 2])
>>> flatnonzero(arange(-2, 3))
array([0, 1, 3, 4])
"""
return a.ravel().nonzero()[0]
_mode_from_name_dict = {'v': 0,
's' : 1,
'f' : 2}
def _mode_from_name(mode):
if isinstance(mode, type("")):
return _mode_from_name_dict[mode.lower()[0]]
return mode
def correlate(a,v,mode='valid'):
"""Return the discrete, linear correlation of 1-D sequences a and v; mode
can be 'valid', 'same', or 'full' to specify the size of the resulting
sequence
"""
mode = _mode_from_name(mode)
return multiarray.correlate(a,v,mode)
def convolve(a,v,mode='full'):
"""Returns the discrete, linear convolution of 1-D sequences a and v; mode
can be 'valid', 'same', or 'full' to specify size of the resulting sequence.
"""
a,v = array(a,ndmin=1),array(v,ndmin=1)
if (len(v) > len(a)):
a, v = v, a
assert len(a) > 0, 'a cannot be empty'
assert len(v) > 0, 'v cannot be empty'
mode = _mode_from_name(mode)
return multiarray.correlate(a,asarray(v)[::-1],mode)
inner = multiarray.inner
dot = multiarray.dot
def outer(a,b):
"""Returns the outer product of two vectors.
result[i,j] = a[i]*b[j] when a and b are vectors.
Will accept any arguments that can be made into vectors.
"""
a = asarray(a)
b = asarray(b)
return a.ravel()[:,newaxis]*b.ravel()[newaxis,:]
def vdot(a, b):
"""Returns the dot product of 2 vectors (or anything that can be made into
a vector).
Note: this is not the same as `dot`, as it takes the conjugate of its first
argument if complex and always returns a scalar."""
return dot(asarray(a).ravel().conj(), asarray(b).ravel())
# try to import blas optimized dot if available
try:
# importing this changes the dot function for basic 4 types
# to blas-optimized versions.
from _dotblas import dot, vdot, inner, alterdot, restoredot
except ImportError:
def alterdot():
"Does Nothing"
pass
def restoredot():
"Does Nothing"
pass
def tensordot(a, b, axes=2):
"""tensordot returns the product for any (ndim >= 1) arrays.
r_{xxx, yyy} = \sum_k a_{xxx,k} b_{k,yyy} where
the axes to be summed over are given by the axes argument.
the first element of the sequence determines the axis or axes
in arr1 to sum over, and the second element in axes argument sequence
determines the axis or axes in arr2 to sum over.
When there is more than one axis to sum over, the corresponding
arguments to axes should be sequences of the same length with the first
axis to sum over given first in both sequences, the second axis second,
and so forth.
If the axes argument is an integer, N, then the last N dimensions of a
and first N dimensions of b are summed over.
"""
try:
iter(axes)
except:
axes_a = range(-axes,0)
axes_b = range(0,axes)
else:
axes_a, axes_b = axes
try:
na = len(axes_a)
axes_a = list(axes_a)
except TypeError:
axes_a = [axes_a]
na = 1
try:
nb = len(axes_b)
axes_b = list(axes_b)
except TypeError:
axes_b = [axes_b]
nb = 1
a, b = asarray(a), asarray(b)
as_ = a.shape
nda = len(a.shape)
bs = b.shape
ndb = len(b.shape)
equal = 1
if (na != nb): equal = 0
else:
for k in xrange(na):
if as_[axes_a[k]] != bs[axes_b[k]]:
equal = 0
break
if axes_a[k] < 0:
axes_a[k] += nda
if axes_b[k] < 0:
axes_b[k] += ndb
if not equal:
raise ValueError, "shape-mismatch for sum"
# Move the axes to sum over to the end of "a"
# and to the front of "b"
notin = [k for k in range(nda) if k not in axes_a]
newaxes_a = notin + axes_a
N2 = 1
for axis in axes_a:
N2 *= as_[axis]
newshape_a = (-1, N2)
olda = [as_[axis] for axis in notin]
notin = [k for k in range(ndb) if k not in axes_b]
newaxes_b = axes_b + notin
N2 = 1
for axis in axes_b:
N2 *= bs[axis]
newshape_b = (N2, -1)
oldb = [bs[axis] for axis in notin]
at = a.transpose(newaxes_a).reshape(newshape_a)
bt = b.transpose(newaxes_b).reshape(newshape_b)
res = dot(at, bt)
return res.reshape(olda + oldb)
def roll(a, shift, axis=None):
"""Roll the elements in the array by 'shift' positions along
the given axis.
>>> from numpy import roll
>>> arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> roll(arange(10), 2)
array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])
"""
a = asanyarray(a)
if axis is None:
n = a.size
reshape=1
else:
n = a.shape[axis]
reshape=0
shift %= n
indexes = concatenate((arange(n-shift,n),arange(n-shift)))
res = a.take(indexes, axis)
if reshape:
return res.reshape(a.shape)
else:
return res
def rollaxis(a, axis, start=0):
"""Return transposed array so that axis is rolled before start.
>>> from numpy import ones, rollaxis
>>> a = ones((3,4,5,6))
>>> rollaxis(a, 3, 1).shape
(3, 6, 4, 5)
>>> rollaxis(a, 2, 0).shape
(5, 3, 4, 6)
>>> rollaxis(a, 1, 4).shape
(3, 5, 6, 4)
"""
n = a.ndim
if axis < 0:
axis += n
if start < 0:
start += n
msg = 'rollaxis: %s (%d) must be >=0 and < %d'
if not (0 <= axis < n):
raise ValueError, msg % ('axis', axis, n)
if not (0 <= start < n+1):
raise ValueError, msg % ('start', start, n+1)
if (axis < start): # it's been removed
start -= 1
if axis==start:
return a
axes = range(0,n)
axes.remove(axis)
axes.insert(start, axis)
return a.transpose(axes)
# fix hack in scipy which imports this function
def _move_axis_to_0(a, axis):
return rollaxis(a, axis, 0)
def cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None):
"""Return the cross product of two (arrays of) vectors.
The cross product is performed over the last axis of a and b by default,
and can handle axes with dimensions 2 and 3. For a dimension of 2,
the z-component of the equivalent three-dimensional cross product is
returned.
"""
if axis is not None:
axisa,axisb,axisc=(axis,)*3
a = asarray(a).swapaxes(axisa, 0)
b = asarray(b).swapaxes(axisb, 0)
msg = "incompatible dimensions for cross product\n"\
"(dimension must be 2 or 3)"
if (a.shape[0] not in [2,3]) or (b.shape[0] not in [2,3]):
raise ValueError(msg)
if a.shape[0] == 2:
if (b.shape[0] == 2):
cp = a[0]*b[1] - a[1]*b[0]
if cp.ndim == 0:
return cp
else:
return cp.swapaxes(0, axisc)
else:
x = a[1]*b[2]
y = -a[0]*b[2]
z = a[0]*b[1] - a[1]*b[0]
elif a.shape[0] == 3:
if (b.shape[0] == 3):
x = a[1]*b[2] - a[2]*b[1]
y = a[2]*b[0] - a[0]*b[2]
z = a[0]*b[1] - a[1]*b[0]
else:
x = -a[2]*b[1]
y = a[2]*b[0]
z = a[0]*b[1] - a[1]*b[0]
cp = array([x,y,z])
if cp.ndim == 1:
return cp
else:
return cp.swapaxes(0,axisc)
#Use numarray's printing function
from arrayprint import array2string, get_printoptions, set_printoptions
_typelessdata = [int_, float_, complex_]
if issubclass(intc, int):
_typelessdata.append(intc)
if issubclass(longlong, int):
_typelessdata.append(longlong)
def array_repr(arr, max_line_width=None, precision=None, suppress_small=None):
if arr.size > 0 or arr.shape==(0,):
lst = array2string(arr, max_line_width, precision, suppress_small,
', ', "array(")
else: # show zero-length shape unless it is (0,)
lst = "[], shape=%s" % (repr(arr.shape),)
typeless = arr.dtype.type in _typelessdata
if arr.__class__ is not ndarray:
cName= arr.__class__.__name__
else:
cName = "array"
if typeless and arr.size:
return cName + "(%s)" % lst
else:
typename=arr.dtype.name
lf = ''
if issubclass(arr.dtype.type, flexible):
if arr.dtype.names:
typename = "%s" % str(arr.dtype)
else:
typename = "'%s'" % str(arr.dtype)
lf = '\n'+' '*len("array(")
return cName + "(%s, %sdtype=%s)" % (lst, lf, typename)
def array_str(a, max_line_width=None, precision=None, suppress_small=None):
return array2string(a, max_line_width, precision, suppress_small, ' ', "", str)
set_string_function = multiarray.set_string_function
set_string_function(array_str, 0)
set_string_function(array_repr, 1)
little_endian = (sys.byteorder == 'little')
def indices(dimensions, dtype=int):
"""Returns an array representing a grid of indices with row-only, and
column-only variation.
"""
dimensions = tuple(dimensions)
N = len(dimensions)
if N == 0:
return array([],dtype=dtype)
res = empty((N,)+dimensions, dtype=dtype)
for i, dim in enumerate(dimensions):
tmp = arange(dim,dtype=dtype)
tmp.shape = (1,)*i + (dim,)+(1,)*(N-i-1)
newdim = dimensions[:i] + (1,)+ dimensions[i+1:]
val = zeros(newdim, dtype)
add(tmp, val, res[i])
return res
def fromfunction(function, shape, **kwargs):
"""Returns an array constructed by calling a function on a tuple of number
grids.
The function should accept as many arguments as the length of shape and
work on array inputs. The shape argument is a sequence of numbers
indicating the length of the desired output for each axis.
The function can also accept keyword arguments (except dtype), which will
be passed through fromfunction to the function itself. The dtype argument
(default float) determines the data-type of the index grid passed to the
function.
"""
dtype = kwargs.pop('dtype', float)
args = indices(shape, dtype=dtype)
return function(*args,**kwargs)
def isscalar(num):
"""Returns True if the type of num is a scalar type.
"""
if isinstance(num, generic):
return True
else:
return type(num) in ScalarType
_lkup = {
'0':'0000',
'1':'0001',
'2':'0010',
'3':'0011',
'4':'0100',
'5':'0101',
'6':'0110',
'7':'0111',
'8':'1000',
'9':'1001',
'a':'1010',
'b':'1011',
'c':'1100',
'd':'1101',
'e':'1110',
'f':'1111',
'A':'1010',
'B':'1011',
'C':'1100',
'D':'1101',
'E':'1110',
'F':'1111',
'L':''}
def binary_repr(num, width=None):
"""Return the binary representation of the input number as a string.
This is equivalent to using base_repr with base 2, but about 25x
faster.
For negative numbers, if width is not given, a - sign is added to the
front. If width is given, the two's complement of the number is
returned, with respect to that width.
"""
sign = ''
if num < 0:
if width is None:
sign = '-'
num = -num
else:
# replace num with its 2-complement
num = 2**width + num
elif num == 0:
return '0'*(width or 1)
ostr = hex(num)
bin = ''.join([_lkup[ch] for ch in ostr[2:]])
bin = bin.lstrip('0')
if width is not None:
bin = bin.zfill(width)
return sign + bin
def base_repr (number, base=2, padding=0):
"""Return the representation of a number in the given base.
Base can't be larger than 36.
"""
if number < 0:
raise ValueError("negative numbers not handled in base_repr")
if base > 36:
raise ValueError("bases greater than 36 not handled in base_repr")
chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
import math
lnb = math.log(base)
res = padding*chars[0]
if number == 0:
return res + chars[0]
exponent = int (math.log (number)/lnb)
while(exponent >= 0):
term = long(base)**exponent
lead_digit = int(number / term)
res += chars[lead_digit]
number -= term*lead_digit
exponent -= 1
return res
from cPickle import load, loads
_cload = load
_file = file
def load(file):
"""Wrapper around cPickle.load which accepts either a file-like object or
a filename.
"""
if isinstance(file, type("")):
file = _file(file,"rb")
return _cload(file)
# These are all essentially abbreviations
# These might wind up in a special abbreviations module
def _maketup(descr, val):
dt = dtype(descr)
# Place val in all scalar tuples:
fields = dt.fields
if fields is None:
return val
else:
res = [_maketup(fields[name][0],val) for name in dt.names]
return tuple(res)
def ones(shape, dtype=None, order='C'):
"""Returns an array of the given dimensions which is initialized to all
ones.
"""
a = empty(shape, dtype, order)
try:
a.fill(1)
# Above is faster now after addition of fast loops.
#a = zeros(shape, dtype, order)
#a+=1
except TypeError:
obj = _maketup(dtype, 1)
a.fill(obj)
return a
def identity(n, dtype=None):
"""Returns the identity 2-d array of shape n x n.
identity(n)[i,j] == 1 for all i == j
== 0 for all i != j
"""
a = array([1]+n*[0],dtype=dtype)
b = empty((n,n),dtype=dtype)
# Note that this assignment depends on the convention that since the a
# array is shorter than the flattened b array, then the a array will
# be repeated until it is the appropriate size. Given a's construction,
# this nicely sets the diagonal to all ones.
b.flat = a
return b
def allclose(a, b, rtol=1.e-5, atol=1.e-8):
"""Returns True if all components of a and b are equal subject to given
tolerances.
The relative error rtol must be positive and << 1.0
The absolute error atol usually comes into play for those elements of b that
are very small or zero; it says how small a must be also.
"""
x = array(a, copy=False)
y = array(b, copy=False)
xinf = isinf(x)
if not all(xinf == isinf(y)):
return False
if not any(xinf):
return all(less_equal(absolute(x-y), atol + rtol * absolute(y)))
if not all(x[xinf] == y[xinf]):
return False
x = x[~xinf]
y = y[~xinf]
return all(less_equal(absolute(x-y), atol + rtol * absolute(y)))
def array_equal(a1, a2):
"""Returns True if a1 and a2 have identical shapes
and all elements equal and False otherwise.
"""
try:
a1, a2 = asarray(a1), asarray(a2)
except:
return 0
if a1.shape != a2.shape:
return 0
return logical_and.reduce(equal(a1,a2).ravel())
def array_equiv(a1, a2):
"""Returns True if a1 and a2 are shape consistent
(mutually broadcastable) and have all elements equal and False
otherwise.
"""
try:
a1, a2 = asarray(a1), asarray(a2)
except:
return 0
try:
return logical_and.reduce(equal(a1,a2).ravel())
except ValueError:
return 0
_errdict = {"ignore":ERR_IGNORE,
"warn":ERR_WARN,
"raise":ERR_RAISE,
"call":ERR_CALL,
"print":ERR_PRINT,
"log":ERR_LOG}
_errdict_rev = {}
for key in _errdict.keys():
_errdict_rev[_errdict[key]] = key
del key
def seterr(all=None, divide=None, over=None, under=None, invalid=None):
"""Set how floating-point errors are handled.
Valid values for each type of error are the strings
"ignore", "warn", "raise", and "call". Returns the old settings.
If 'all' is specified, values that are not otherwise specified
will be set to 'all', otherwise they will retain their old
values.
Note that operations on integer scalar types (such as int16) are
handled like floating point, and are affected by these settings.
Example:
>>> seterr(over='raise') # doctest: +SKIP
{'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore', 'under': 'ignore'}
>>> seterr(all='warn', over='raise') # doctest: +SKIP
{'over': 'raise', 'divide': 'ignore', 'invalid': 'ignore', 'under': 'ignore'}
>>> int16(32000) * int16(3) # doctest: +SKIP
Traceback (most recent call last):
File "<stdin>", line 1, in ?
FloatingPointError: overflow encountered in short_scalars
>>> seterr(all='ignore') # doctest: +SKIP
{'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore', 'under': 'ignore'}
"""
pyvals = umath.geterrobj()
old = geterr()
if divide is None: divide = all or old['divide']
if over is None: over = all or old['over']
if under is None: under = all or old['under']
if invalid is None: invalid = all or old['invalid']
maskvalue = ((_errdict[divide] << SHIFT_DIVIDEBYZERO) +
(_errdict[over] << SHIFT_OVERFLOW ) +
(_errdict[under] << SHIFT_UNDERFLOW) +
(_errdict[invalid] << SHIFT_INVALID))
pyvals[1] = maskvalue
umath.seterrobj(pyvals)
return old
def geterr():
"""Get the current way of handling floating-point errors.
Returns a dictionary with entries "divide", "over", "under", and
"invalid", whose values are from the strings
"ignore", "print", "log", "warn", "raise", and "call".
"""
maskvalue = umath.geterrobj()[1]
mask = 7
res = {}
val = (maskvalue >> SHIFT_DIVIDEBYZERO) & mask
res['divide'] = _errdict_rev[val]
val = (maskvalue >> SHIFT_OVERFLOW) & mask
res['over'] = _errdict_rev[val]
val = (maskvalue >> SHIFT_UNDERFLOW) & mask
res['under'] = _errdict_rev[val]
val = (maskvalue >> SHIFT_INVALID) & mask
res['invalid'] = _errdict_rev[val]
return res
def setbufsize(size):
"""Set the size of the buffer used in ufuncs.
"""
if size > 10e6:
raise ValueError, "Buffer size, %s, is too big." % size
if size < 5:
raise ValueError, "Buffer size, %s, is too small." %size
if size % 16 != 0:
raise ValueError, "Buffer size, %s, is not a multiple of 16." %size
pyvals = umath.geterrobj()
old = getbufsize()
pyvals[0] = size
umath.seterrobj(pyvals)
return old
def getbufsize():
"""Return the size of the buffer used in ufuncs.
"""
return umath.geterrobj()[0]
def seterrcall(func):
"""Set the callback function used when a floating-point error handler
is set to 'call' or the object with a write method for use when
the floating-point error handler is set to 'log'
'func' should be a function that takes two arguments. The first is
type of error ("divide", "over", "under", or "invalid"), and the second
is the status flag (= divide + 2*over + 4*under + 8*invalid).
Returns the old handler.
"""
if func is not None and not callable(func):
if not hasattr(func, 'write') or not callable(func.write):
raise ValueError, "Only callable can be used as callback"
pyvals = umath.geterrobj()
old = geterrcall()
pyvals[2] = func
umath.seterrobj(pyvals)
return old
def geterrcall():
"""Return the current callback function used on floating-point errors.
"""
return umath.geterrobj()[2]
class _unspecified(object):
pass
_Unspecified = _unspecified()
class errstate(object):
"""with errstate(**state): --> operations in following block use given state.
# Set error handling to known state.
>>> _ = seterr(invalid='raise', divide='raise', over='raise', under='ignore')
|>> a = -arange(3)
|>> with errstate(invalid='ignore'):
... print sqrt(a)
[ 0. -1.#IND -1.#IND]
|>> print sqrt(a.astype(complex))
[ 0. +0.00000000e+00j 0. +1.00000000e+00j 0. +1.41421356e+00j]
|>> print sqrt(a)
Traceback (most recent call last):
...
FloatingPointError: invalid encountered in sqrt
|>> with errstate(divide='ignore'):
... print a/0
[0 0 0]
|>> print a/0
Traceback (most recent call last):
...
FloatingPointError: divide by zero encountered in divide
"""
# Note that we don't want to run the above doctests because they will fail
# without a from __future__ import with_statement
def __init__(self, **kwargs):
self.call = kwargs.pop('call',_Unspecified)
self.kwargs = kwargs
def __enter__(self):
self.oldstate = seterr(**self.kwargs)
if self.call is not _Unspecified:
self.oldcall = seterrcall(self.call)
def __exit__(self, *exc_info):
seterr(**self.oldstate)
if self.call is not _Unspecified:
seterrcall(self.oldcall)
def _setdef():
defval = [UFUNC_BUFSIZE_DEFAULT, ERR_DEFAULT2, None]
umath.seterrobj(defval)
# set the default values
_setdef()
Inf = inf = infty = Infinity = PINF
nan = NaN = NAN
False_ = bool_(False)
True_ = bool_(True)
import fromnumeric
from fromnumeric import *
extend_all(fromnumeric)
|