1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
from numpy.testing import *
set_package_path()
import numpy.core;reload(numpy.core)
from numpy.core import *
import numpy as np
restore_path()
class TestCtor(NumpyTestCase):
def check_basic(self):
A = array([[1,2],[3,4]])
mA = matrix(A)
assert all(mA.A == A)
B = bmat("A,A;A,A")
C = bmat([[A,A], [A,A]])
D = array([[1,2,1,2],
[3,4,3,4],
[1,2,1,2],
[3,4,3,4]])
assert all(B.A == D)
assert all(C.A == D)
vec = arange(5)
mvec = matrix(vec)
assert mvec.shape == (1,5)
class TestProperties(NumpyTestCase):
def check_sum(self):
"""Test whether matrix.sum(axis=1) preserves orientation.
Fails in NumPy <= 0.9.6.2127.
"""
M = matrix([[1,2,0,0],
[3,4,0,0],
[1,2,1,2],
[3,4,3,4]])
sum0 = matrix([8,12,4,6])
sum1 = matrix([3,7,6,14]).T
sumall = 30
assert_array_equal(sum0, M.sum(axis=0))
assert_array_equal(sum1, M.sum(axis=1))
assert sumall == M.sum()
def check_basic(self):
import numpy.linalg as linalg
A = array([[1., 2.],
[3., 4.]])
mA = matrix(A)
assert allclose(linalg.inv(A), mA.I)
assert all(array(transpose(A) == mA.T))
assert all(array(transpose(A) == mA.H))
assert all(A == mA.A)
B = A + 2j*A
mB = matrix(B)
assert allclose(linalg.inv(B), mB.I)
assert all(array(transpose(B) == mB.T))
assert all(array(conjugate(transpose(B)) == mB.H))
def check_comparisons(self):
A = arange(100).reshape(10,10)
mA = matrix(A)
mB = matrix(A) + 0.1
assert all(mB == A+0.1)
assert all(mB == matrix(A+0.1))
assert not any(mB == matrix(A-0.1))
assert all(mA < mB)
assert all(mA <= mB)
assert all(mA <= mA)
assert not any(mA < mA)
assert not any(mB < mA)
assert all(mB >= mA)
assert all(mB >= mB)
assert not any(mB > mB)
assert all(mA == mA)
assert not any(mA == mB)
assert all(mB != mA)
assert not all(abs(mA) > 0)
assert all(abs(mB > 0))
def check_asmatrix(self):
A = arange(100).reshape(10,10)
mA = asmatrix(A)
A[0,0] = -10
assert A[0,0] == mA[0,0]
def check_noaxis(self):
A = matrix([[1,0],[0,1]])
assert A.sum() == matrix(2)
assert A.mean() == matrix(0.5)
class TestCasting(NumpyTestCase):
def check_basic(self):
A = arange(100).reshape(10,10)
mA = matrix(A)
mB = mA.copy()
O = ones((10,10), float64) * 0.1
mB = mB + O
assert mB.dtype.type == float64
assert all(mA != mB)
assert all(mB == mA+0.1)
mC = mA.copy()
O = ones((10,10), complex128)
mC = mC * O
assert mC.dtype.type == complex128
assert all(mA != mB)
class TestAlgebra(NumpyTestCase):
def check_basic(self):
import numpy.linalg as linalg
A = array([[1., 2.],
[3., 4.]])
mA = matrix(A)
B = identity(2)
for i in xrange(6):
assert allclose((mA ** i).A, B)
B = dot(B, A)
Ainv = linalg.inv(A)
B = identity(2)
for i in xrange(6):
assert allclose((mA ** -i).A, B)
B = dot(B, Ainv)
assert allclose((mA * mA).A, dot(A, A))
assert allclose((mA + mA).A, (A + A))
assert allclose((3*mA).A, (3*A))
class TestMatrixReturn(NumpyTestCase):
def check_instance_methods(self):
a = matrix([1.0], dtype='f8')
methodargs = {
'astype' : ('intc',),
'clip' : (0.0, 1.0),
'compress' : ([1],),
'repeat' : (1,),
'reshape' : (1,),
'swapaxes' : (0,0)
}
excluded_methods = [
'argmin', 'choose', 'dump', 'dumps', 'fill', 'getfield',
'getA', 'getA1', 'item', 'nonzero', 'put', 'putmask', 'resize',
'searchsorted', 'setflags', 'setfield', 'sort', 'take',
'tofile', 'tolist', 'tostring', 'all', 'any', 'sum',
'argmax', 'argmin', 'min', 'max', 'mean', 'var', 'ptp',
'prod', 'std', 'ctypes', 'itemset'
]
for attrib in dir(a):
if attrib.startswith('_') or attrib in excluded_methods:
continue
f = eval('a.%s' % attrib)
if callable(f):
# reset contents of a
a.astype('f8')
a.fill(1.0)
if attrib in methodargs:
args = methodargs[attrib]
else:
args = ()
b = f(*args)
assert type(b) is matrix, "%s" % attrib
assert type(a.real) is matrix
assert type(a.imag) is matrix
c,d = matrix([0.0]).nonzero()
assert type(c) is matrix
assert type(d) is matrix
class TestIndexing(NumpyTestCase):
def check_basic(self):
x = asmatrix(zeros((3,2),float))
y = zeros((3,1),float)
y[:,0] = [0.8,0.2,0.3]
x[:,1] = y>0.5
assert_equal(x, [[0,1],[0,0],[0,0]])
class TestNewScalarIndexing(NumpyTestCase):
def setUp(self):
self.a = matrix([[1, 2],[3,4]])
def check_dimesions(self):
a = self.a
x = a[0]
assert_equal(x.ndim, 2)
def check_array_from_matrix_list(self):
a = self.a
x = array([a, a])
assert_equal(x.shape, [2,2,2])
def check_array_to_list(self):
a = self.a
assert_equal(a.tolist(),[[1, 2], [3, 4]])
def check_fancy_indexing(self):
a = self.a
x = a[1, [0,1,0]]
assert isinstance(x, matrix)
assert_equal(x, matrix([[3, 4, 3]]))
x = a[[1,0]]
assert isinstance(x, matrix)
assert_equal(x, matrix([[3, 4], [1, 2]]))
x = a[[[1],[0]],[[1,0],[0,1]]]
assert isinstance(x, matrix)
assert_equal(x, matrix([[4, 3], [1, 2]]))
## def check_vector_element(self):
## x = matrix([[1,2,3],[4,5,6]])
## assert_equal(x[0][0],1)
## assert_equal(x[0].shape,(1,3))
## assert_equal(x[:,0].shape,(2,1))
## x = matrix(0)
## assert_equal(x[0,0],0)
## assert_equal(x[0],0)
## assert_equal(x[:,0].shape,x.shape)
def check_scalar_indexing(self):
x = asmatrix(zeros((3,2),float))
assert_equal(x[0,0],x[0][0])
def check_row_column_indexing(self):
x = asmatrix(np.eye(2))
assert_array_equal(x[0,:],[[1,0]])
assert_array_equal(x[1,:],[[0,1]])
assert_array_equal(x[:,0],[[1],[0]])
assert_array_equal(x[:,1],[[0],[1]])
def check_boolean_indexing(self):
A = arange(6)
A.shape = (3,2)
x = asmatrix(A)
assert_array_equal(x[:,array([True,False])],x[:,0])
assert_array_equal(x[array([True,False,False]),:],x[0,:])
def check_list_indexing(self):
A = arange(6)
A.shape = (3,2)
x = asmatrix(A)
assert_array_equal(x[:,[1,0]],x[:,::-1])
assert_array_equal(x[[2,1,0],:],x[::-1,:])
if __name__ == "__main__":
NumpyTest().run()
|