1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
|
from numpy.core import *
from numpy.random import rand, randint, randn
from numpy.testing import *
from numpy.core.multiarray import dot as dot_
import sys
class Vec:
def __init__(self,sequence=None):
if sequence is None:
sequence=[]
self.array=array(sequence)
def __add__(self,other):
out=Vec()
out.array=self.array+other.array
return out
def __sub__(self,other):
out=Vec()
out.array=self.array-other.array
return out
def __mul__(self,other): # with scalar
out=Vec(self.array.copy())
out.array*=other
return out
def __rmul__(self,other):
return self*other
def __abs__(self):
out=Vec()
out.array=abs(self.array)
return out
def __repr__(self):
return "Vec("+repr(self.array.tolist())+")"
__str__=__repr__
class TestDot(NumpyTestCase):
def setUp(self):
self.A = rand(10,8)
self.b1 = rand(8,1)
self.b2 = rand(8)
self.b3 = rand(1,8)
self.b4 = rand(10)
self.N = 14
def check_matmat(self):
A = self.A
c1 = dot(A.transpose(), A)
c2 = dot_(A.transpose(), A)
assert_almost_equal(c1, c2, decimal=self.N)
def check_matvec(self):
A, b1 = self.A, self.b1
c1 = dot(A, b1)
c2 = dot_(A, b1)
assert_almost_equal(c1, c2, decimal=self.N)
def check_matvec2(self):
A, b2 = self.A, self.b2
c1 = dot(A, b2)
c2 = dot_(A, b2)
assert_almost_equal(c1, c2, decimal=self.N)
def check_vecmat(self):
A, b4 = self.A, self.b4
c1 = dot(b4, A)
c2 = dot_(b4, A)
assert_almost_equal(c1, c2, decimal=self.N)
def check_vecmat2(self):
b3, A = self.b3, self.A
c1 = dot(b3, A.transpose())
c2 = dot_(b3, A.transpose())
assert_almost_equal(c1, c2, decimal=self.N)
def check_vecmat3(self):
A, b4 = self.A, self.b4
c1 = dot(A.transpose(),b4)
c2 = dot_(A.transpose(),b4)
assert_almost_equal(c1, c2, decimal=self.N)
def check_vecvecouter(self):
b1, b3 = self.b1, self.b3
c1 = dot(b1, b3)
c2 = dot_(b1, b3)
assert_almost_equal(c1, c2, decimal=self.N)
def check_vecvecinner(self):
b1, b3 = self.b1, self.b3
c1 = dot(b3, b1)
c2 = dot_(b3, b1)
assert_almost_equal(c1, c2, decimal=self.N)
def check_matscalar(self):
b1 = matrix(ones((3,3),dtype=complex))
assert_equal(b1*1.0, b1)
def check_columnvect(self):
b1 = ones((3,1))
b2 = [5.3]
c1 = dot(b1,b2)
c2 = dot_(b1,b2)
assert_almost_equal(c1, c2, decimal=self.N)
def check_columnvect(self):
b1 = ones((3,1)).transpose()
b2 = [6.2]
c1 = dot(b2,b1)
c2 = dot_(b2,b1)
assert_almost_equal(c1, c2, decimal=self.N)
def check_vecscalar(self):
b1 = rand(1,1)
b2 = rand(1,8)
c1 = dot(b1,b2)
c2 = dot_(b1,b2)
assert_almost_equal(c1, c2, decimal=self.N)
def check_vecscalar2(self):
b1 = rand(8,1)
b2 = rand(1,1)
c1 = dot(b1,b2)
c2 = dot_(b1,b2)
assert_almost_equal(c1, c2, decimal=self.N)
def check_all(self):
dims = [(),(1,),(1,1)]
for dim1 in dims:
for dim2 in dims:
arg1 = rand(*dim1)
arg2 = rand(*dim2)
c1 = dot(arg1, arg2)
c2 = dot_(arg1, arg2)
assert (c1.shape == c2.shape)
assert_almost_equal(c1, c2, decimal=self.N)
def check_vecobject(self):
U_non_cont = transpose([[1.,1.],[1.,2.]])
U_cont = ascontiguousarray(U_non_cont)
x = array([Vec([1.,0.]),Vec([0.,1.])])
zeros = array([Vec([0.,0.]),Vec([0.,0.])])
zeros_test = dot(U_cont,x) - dot(U_non_cont,x)
assert_equal(zeros[0].array, zeros_test[0].array)
assert_equal(zeros[1].array, zeros_test[1].array)
class TestBoolScalar(NumpyTestCase):
def test_logical(self):
f = False_
t = True_
s = "xyz"
self.failUnless((t and s) is s)
self.failUnless((f and s) is f)
def test_bitwise_or(self):
f = False_
t = True_
self.failUnless((t | t) is t)
self.failUnless((f | t) is t)
self.failUnless((t | f) is t)
self.failUnless((f | f) is f)
def test_bitwise_and(self):
f = False_
t = True_
self.failUnless((t & t) is t)
self.failUnless((f & t) is f)
self.failUnless((t & f) is f)
self.failUnless((f & f) is f)
def test_bitwise_xor(self):
f = False_
t = True_
self.failUnless((t ^ t) is f)
self.failUnless((f ^ t) is t)
self.failUnless((t ^ f) is t)
self.failUnless((f ^ f) is f)
class TestSeterr(NumpyTestCase):
def test_set(self):
err = seterr()
old = seterr(divide='warn')
self.failUnless(err == old)
new = seterr()
self.failUnless(new['divide'] == 'warn')
seterr(over='raise')
self.failUnless(geterr()['over'] == 'raise')
self.failUnless(new['divide'] == 'warn')
seterr(**old)
self.failUnless(geterr() == old)
def test_divideerr(self):
seterr(divide='raise')
try:
array([1.]) / array([0.])
except FloatingPointError:
pass
else:
self.fail()
seterr(divide='ignore')
array([1.]) / array([0.])
class TestFromiter(NumpyTestCase):
def makegen(self):
for x in xrange(24):
yield x**2
def test_types(self):
ai32 = fromiter(self.makegen(), int32)
ai64 = fromiter(self.makegen(), int64)
af = fromiter(self.makegen(), float)
self.failUnless(ai32.dtype == dtype(int32))
self.failUnless(ai64.dtype == dtype(int64))
self.failUnless(af.dtype == dtype(float))
def test_lengths(self):
expected = array(list(self.makegen()))
a = fromiter(self.makegen(), int)
a20 = fromiter(self.makegen(), int, 20)
self.failUnless(len(a) == len(expected))
self.failUnless(len(a20) == 20)
try:
fromiter(self.makegen(), int, len(expected) + 10)
except ValueError:
pass
else:
self.fail()
def test_values(self):
expected = array(list(self.makegen()))
a = fromiter(self.makegen(), int)
a20 = fromiter(self.makegen(), int, 20)
self.failUnless(alltrue(a == expected,axis=0))
self.failUnless(alltrue(a20 == expected[:20],axis=0))
class TestIndex(NumpyTestCase):
def test_boolean(self):
a = rand(3,5,8)
V = rand(5,8)
g1 = randint(0,5,size=15)
g2 = randint(0,8,size=15)
V[g1,g2] = -V[g1,g2]
assert (array([a[0][V>0],a[1][V>0],a[2][V>0]]) == a[:,V>0]).all()
class TestBinaryRepr(NumpyTestCase):
def test_zero(self):
assert_equal(binary_repr(0),'0')
def test_large(self):
assert_equal(binary_repr(10736848),'101000111101010011010000')
def test_negative(self):
assert_equal(binary_repr(-1), '-1')
assert_equal(binary_repr(-1, width=8), '11111111')
def assert_array_strict_equal(x, y):
assert_array_equal(x, y)
# Check flags
assert x.flags == y.flags
# check endianness
assert x.dtype.isnative == y.dtype.isnative
class TestClip(NumpyTestCase):
def setUp(self):
self.nr = 5
self.nc = 3
def fastclip(self, a, m, M, out=None):
if out is None:
return a.clip(m,M)
else:
return a.clip(m,M,out)
def clip(self, a, m, M, out=None):
# use slow-clip
selector = less(a, m)+2*greater(a, M)
return selector.choose((a, m, M), out=out)
# Handy functions
def _generate_data(self, n, m):
return randn(n, m)
def _generate_data_complex(self, n, m):
return randn(n, m) + 1.j *rand(n, m)
def _generate_flt_data(self, n, m):
return (randn(n, m)).astype(float32)
def _neg_byteorder(self, a):
import sys
a = asarray(a)
if sys.byteorder == 'little':
a = a.astype(a.dtype.newbyteorder('>'))
else:
a = a.astype(a.dtype.newbyteorder('<'))
return a
def _generate_non_native_data(self, n, m):
data = randn(n, m)
data = self._neg_byteorder(data)
assert not data.dtype.isnative
return data
def _generate_int_data(self, n, m):
return (10 * rand(n, m)).astype(int64)
def _generate_int32_data(self, n, m):
return (10 * rand(n, m)).astype(int32)
# Now the real test cases
def test_simple_double(self):
"""Test native double input with scalar min/max."""
a = self._generate_data(self.nr, self.nc)
m = 0.1
M = 0.6
ac = self.fastclip(a, m, M)
act = self.clip(a, m, M)
assert_array_strict_equal(ac, act)
def test_simple_int(self):
"""Test native int input with scalar min/max."""
a = self._generate_int_data(self.nr, self.nc)
a = a.astype(int)
m = -2
M = 4
ac = self.fastclip(a, m, M)
act = self.clip(a, m, M)
assert_array_strict_equal(ac, act)
def test_array_double(self):
"""Test native double input with array min/max."""
a = self._generate_data(self.nr, self.nc)
m = zeros(a.shape)
M = m + 0.5
ac = self.fastclip(a, m, M)
act = self.clip(a, m, M)
assert_array_strict_equal(ac, act)
def test_simple_nonnative(self):
"""Test non native double input with scalar min/max.
Test native double input with non native double scalar min/max."""
a = self._generate_non_native_data(self.nr, self.nc)
m = -0.5
M = 0.6
ac = self.fastclip(a, m, M)
act = self.clip(a, m, M)
assert_array_equal(ac, act)
"Test native double input with non native double scalar min/max."
a = self._generate_data(self.nr, self.nc)
m = -0.5
M = self._neg_byteorder(0.6)
assert not M.dtype.isnative
ac = self.fastclip(a, m, M)
act = self.clip(a, m, M)
assert_array_equal(ac, act)
def test_simple_complex(self):
"""Test native complex input with native double scalar min/max.
Test native input with complex double scalar min/max.
"""
a = 3 * self._generate_data_complex(self.nr, self.nc)
m = -0.5
M = 1.
ac = self.fastclip(a, m, M)
act = self.clip(a, m, M)
assert_array_strict_equal(ac, act)
"Test native input with complex double scalar min/max."
a = 3 * self._generate_data(self.nr, self.nc)
m = -0.5 + 1.j
M = 1. + 2.j
ac = self.fastclip(a, m, M)
act = self.clip(a, m, M)
assert_array_strict_equal(ac, act)
def test_clip_non_contig(self):
"""Test clip for non contiguous native input and native scalar min/max."""
a = self._generate_data(self.nr * 2, self.nc * 3)
a = a[::2, ::3]
assert not a.flags['F_CONTIGUOUS']
assert not a.flags['C_CONTIGUOUS']
ac = self.fastclip(a, -1.6, 1.7)
act = self.clip(a, -1.6, 1.7)
assert_array_strict_equal(ac, act)
def test_simple_out(self):
"""Test native double input with scalar min/max."""
a = self._generate_data(self.nr, self.nc)
m = -0.5
M = 0.6
ac = zeros(a.shape)
act = zeros(a.shape)
self.fastclip(a, m, M, ac)
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
def test_simple_int32_inout(self):
"""Test native int32 input with double min/max and int32 out."""
a = self._generate_int32_data(self.nr, self.nc)
m = float64(0)
M = float64(2)
ac = zeros(a.shape, dtype = int32)
act = ac.copy()
self.fastclip(a, m, M, ac)
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
def test_simple_int64_out(self):
"""Test native int32 input with int32 scalar min/max and int64 out."""
a = self._generate_int32_data(self.nr, self.nc)
m = int32(-1)
M = int32(1)
ac = zeros(a.shape, dtype = int64)
act = ac.copy()
self.fastclip(a, m, M, ac)
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
def test_simple_int64_inout(self):
"""Test native in32 input with double array min/max and int32 out."""
a = self._generate_int32_data(self.nr, self.nc)
m = zeros(a.shape, float64)
M = float64(1)
ac = zeros(a.shape, dtype = int32)
act = ac.copy()
self.fastclip(a, m, M, ac)
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
def test_simple_int32_out(self):
"""Test native double input with scalar min/max and int out."""
a = self._generate_data(self.nr, self.nc)
m = -1.0
M = 2.0
ac = zeros(a.shape, dtype = int32)
act = ac.copy()
self.fastclip(a, m, M, ac)
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
def test_simple_inplace_01(self):
"""Test native double input with array min/max in-place."""
a = self._generate_data(self.nr, self.nc)
ac = a.copy()
m = zeros(a.shape)
M = 1.0
self.fastclip(a, m, M, a)
self.clip(a, m, M, ac)
assert_array_strict_equal(a, ac)
def test_simple_inplace_02(self):
"""Test native double input with scalar min/max in-place."""
a = self._generate_data(self.nr, self.nc)
ac = a.copy()
m = -0.5
M = 0.6
self.fastclip(a, m, M, a)
self.clip(a, m, M, ac)
assert_array_strict_equal(a, ac)
def test_noncontig_inplace(self):
"""Test non contiguous double input with double scalar min/max in-place."""
a = self._generate_data(self.nr * 2, self.nc * 3)
a = a[::2, ::3]
assert not a.flags['F_CONTIGUOUS']
assert not a.flags['C_CONTIGUOUS']
ac = a.copy()
m = -0.5
M = 0.6
self.fastclip(a, m, M, a)
self.clip(a, m, M, ac)
assert_array_equal(a, ac)
def test_type_cast_01(self):
"Test native double input with scalar min/max."
a = self._generate_data(self.nr, self.nc)
m = -0.5
M = 0.6
ac = self.fastclip(a, m, M)
act = self.clip(a, m, M)
assert_array_strict_equal(ac, act)
def test_type_cast_02(self):
"Test native int32 input with int32 scalar min/max."
a = self._generate_int_data(self.nr, self.nc)
a = a.astype(int32)
m = -2
M = 4
ac = self.fastclip(a, m, M)
act = self.clip(a, m, M)
assert_array_strict_equal(ac, act)
def test_type_cast_03(self):
"Test native int32 input with float64 scalar min/max."
a = self._generate_int32_data(self.nr, self.nc)
m = -2
M = 4
ac = self.fastclip(a, float64(m), float64(M))
act = self.clip(a, float64(m), float64(M))
assert_array_strict_equal(ac, act)
def test_type_cast_04(self):
"Test native int32 input with float32 scalar min/max."
a = self._generate_int32_data(self.nr, self.nc)
m = float32(-2)
M = float32(4)
act = self.fastclip(a,m,M)
ac = self.clip(a,m,M)
assert_array_strict_equal(ac, act)
def test_type_cast_04(self):
"Test native int32 with double arrays min/max."
a = self._generate_int_data(self.nr, self.nc)
m = -0.5
M = 1.
ac = self.fastclip(a, m * zeros(a.shape), M)
act = self.clip(a, m * zeros(a.shape), M)
assert_array_strict_equal(ac, act)
def test_type_cast_05(self):
"Test native with NON native scalar min/max."
a = self._generate_data(self.nr, self.nc)
m = 0.5
m_s = self._neg_byteorder(m)
M = 1.
act = self.clip(a, m_s, M)
ac = self.fastclip(a, m_s, M)
assert_array_strict_equal(ac, act)
def test_type_cast_06(self):
"Test NON native with native array min/max."
a = self._generate_data(self.nr, self.nc)
m = -0.5 * ones(a.shape)
M = 1.
a_s = self._neg_byteorder(a)
assert not a_s.dtype.isnative
act = a_s.clip(m, M)
ac = self.fastclip(a_s, m, M)
assert_array_strict_equal(ac, act)
def test_type_cast_07(self):
"Test NON native with native scalar min/max."
a = self._generate_data(self.nr, self.nc)
m = -0.5
M = 1.
a_s = self._neg_byteorder(a)
assert not a_s.dtype.isnative
ac = self.fastclip(a_s, m , M)
act = a_s.clip(m, M)
assert_array_strict_equal(ac, act)
def test_type_cast_08(self):
"Test native with NON native array min/max."
a = self._generate_data(self.nr, self.nc)
m = -0.5 * ones(a.shape)
M = 1.
m_s = self._neg_byteorder(m)
assert not m_s.dtype.isnative
ac = self.fastclip(a, m_s , M)
act = self.clip(a, m_s, M)
assert_array_strict_equal(ac, act)
def test_type_cast_09(self):
"""Test native int32 with float min/max and float out for output argument."""
a = self._generate_int_data(self.nr, self.nc)
b = zeros(a.shape, dtype = float32)
m = float32(-0.5)
M = float32(1)
act = self.clip(a, m, M, out = b)
ac = self.fastclip(a, m , M, out = b)
assert_array_strict_equal(ac, act)
def test_type_cast_10(self):
"Test non native with native scalar, min/max, out non native"
a = self._generate_non_native_data(self.nr, self.nc)
b = a.copy()
b = b.astype(b.dtype.newbyteorder('>'))
bt = b.copy()
m = -0.5
M = 1.
self.fastclip(a, m , M, out = b)
self.clip(a, m, M, out = bt)
assert_array_strict_equal(b, bt)
def test_type_cast_11(self):
"Test native int32 input and min/max and float out"
a = self._generate_int_data(self.nr, self.nc)
b = zeros(a.shape, dtype = float32)
m = int32(0)
M = int32(1)
act = self.clip(a, m, M, out = b)
ac = self.fastclip(a, m , M, out = b)
assert_array_strict_equal(ac, act)
def test_clip_with_out_simple(self):
"Test native double input with scalar min/max"
a = self._generate_data(self.nr, self.nc)
m = -0.5
M = 0.6
ac = zeros(a.shape)
act = zeros(a.shape)
self.fastclip(a, m, M, ac)
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
def test_clip_with_out_simple2(self):
"Test native int32 input with double min/max and int32 out"
a = self._generate_int32_data(self.nr, self.nc)
m = float64(0)
M = float64(2)
ac = zeros(a.shape, dtype = int32)
act = ac.copy()
self.fastclip(a, m, M, ac)
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
def test_clip_with_out_simple_int32(self):
"Test native int32 input with int32 scalar min/max and int64 out"
a = self._generate_int32_data(self.nr, self.nc)
m = int32(-1)
M = int32(1)
ac = zeros(a.shape, dtype = int64)
act = ac.copy()
self.fastclip(a, m, M, ac)
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
def test_clip_with_out_array_int32(self):
"Test native int32 input with double array min/max and int32 out"
a = self._generate_int32_data(self.nr, self.nc)
m = zeros(a.shape, float64)
M = float64(1)
ac = zeros(a.shape, dtype = int32)
act = ac.copy()
self.fastclip(a, m, M, ac)
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
def test_clip_with_out_array_outint32(self):
"Test native double input with scalar min/max and int out"
a = self._generate_data(self.nr, self.nc)
m = -1.0
M = 2.0
ac = zeros(a.shape, dtype = int32)
act = ac.copy()
self.fastclip(a, m, M, ac)
self.clip(a, m, M, act)
assert_array_strict_equal(ac, act)
def test_clip_inplace_array(self):
"Test native double input with array min/max"
a = self._generate_data(self.nr, self.nc)
ac = a.copy()
m = zeros(a.shape)
M = 1.0
self.fastclip(a, m, M, a)
self.clip(a, m, M, ac)
assert_array_strict_equal(a, ac)
def test_clip_inplace_simple(self):
"Test native double input with scalar min/max"
a = self._generate_data(self.nr, self.nc)
ac = a.copy()
m = -0.5
M = 0.6
self.fastclip(a, m, M, a)
self.clip(a, m, M, ac)
assert_array_strict_equal(a, ac)
def test_clip_func_takes_out(self):
""" Ensure that the clip() function takes an out= argument.
"""
a = self._generate_data(self.nr, self.nc)
ac = a.copy()
m = -0.5
M = 0.6
a2 = clip(a, m, M, out=a)
self.clip(a, m, M, ac)
assert_array_strict_equal(a2, ac)
self.assert_(a2 is a)
class test_allclose_inf(ParametricTestCase):
rtol = 1e-5
atol = 1e-8
def tst_allclose(self,x,y):
assert allclose(x,y), "%s and %s not close" % (x,y)
def tst_not_allclose(self,x,y):
assert not allclose(x,y), "%s and %s shouldn't be close" % (x,y)
def testip_allclose(self):
"""Parametric test factory."""
arr = array([100,1000])
aran = arange(125).reshape((5,5,5))
atol = self.atol
rtol = self.rtol
data = [([1,0], [1,0]),
([atol], [0]),
([1], [1+rtol+atol]),
(arr, arr + arr*rtol),
(arr, arr + arr*rtol + atol*2),
(aran, aran + aran*rtol),]
for (x,y) in data:
yield (self.tst_allclose,x,y)
def testip_not_allclose(self):
"""Parametric test factory."""
aran = arange(125).reshape((5,5,5))
atol = self.atol
rtol = self.rtol
data = [([inf,0], [1,inf]),
([inf,0], [1,0]),
([inf,inf], [1,inf]),
([inf,inf], [1,0]),
([-inf, 0], [inf, 0]),
([nan,0], [nan,0]),
([atol*2], [0]),
([1], [1+rtol+atol*2]),
(aran, aran + aran*atol + atol*2),
(array([inf,1]), array([0,inf]))]
for (x,y) in data:
yield (self.tst_not_allclose,x,y)
def test_no_parameter_modification(self):
x = array([inf,1])
y = array([0,inf])
allclose(x,y)
assert_array_equal(x,array([inf,1]))
assert_array_equal(y,array([0,inf]))
class TestStdVar(NumpyTestCase):
def setUp(self):
self.A = array([1,-1,1,-1])
self.real_var = 1
def test_basic(self):
assert_almost_equal(var(self.A),self.real_var)
assert_almost_equal(std(self.A)**2,self.real_var)
def test_ddof1(self):
assert_almost_equal(var(self.A,ddof=1),self.real_var*len(self.A)/float(len(self.A)-1))
assert_almost_equal(std(self.A,ddof=1)**2,self.real_var*len(self.A)/float(len(self.A)-1))
def test_ddof2(self):
assert_almost_equal(var(self.A,ddof=2),self.real_var*len(self.A)/float(len(self.A)-2))
assert_almost_equal(std(self.A,ddof=2)**2,self.real_var*len(self.A)/float(len(self.A)-2))
class TestStdVarComplex(NumpyTestCase):
def test_basic(self):
A = array([1,1.j,-1,-1.j])
real_var = 1
assert_almost_equal(var(A),real_var)
assert_almost_equal(std(A)**2,real_var)
import sys
if sys.version_info[:2] >= (2, 5):
set_local_path()
from test_errstate import *
restore_path()
if __name__ == '__main__':
NumpyTest().run()
|