1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
"""
Set operations for 1D numeric arrays based on sorting.
:Contains:
ediff1d,
unique1d,
intersect1d,
intersect1d_nu,
setxor1d,
setmember1d,
union1d,
setdiff1d
:Notes:
All functions work best with integer numerical arrays on input (e.g. indices).
For floating point arrays, innacurate results may appear due to usual round-off
and floating point comparison issues.
Except unique1d, union1d and intersect1d_nu, all functions expect inputs with
unique elements. Speed could be gained in some operations by an implementaion of
sort(), that can provide directly the permutation vectors, avoiding thus calls
to argsort().
Run _test_unique1d_speed() to compare performance of numpy.unique1d() and
numpy.unique() - it should be the same.
To do: Optionally return indices analogously to unique1d for all functions.
created: 01.11.2005
last revision: 07.01.2007
:Author: Robert Cimrman
"""
__all__ = ['ediff1d', 'unique1d', 'intersect1d', 'intersect1d_nu', 'setxor1d',
'setmember1d', 'union1d', 'setdiff1d']
import time
import numpy as nm
def ediff1d(ary, to_end=None, to_begin=None):
"""The differences between consecutive elements of an array, possibly with
prefixed and/or appended values.
Parameters
----------
ary : array
This array will be flattened before the difference is taken.
to_end : number, optional
If provided, this number will be tacked onto the end of the returned
differences.
to_begin : number, optional
If provided, this number will be taked onto the beginning of the
returned differences.
Returns
-------
ed : array
The differences. Loosely, this will be (ary[1:] - ary[:-1]).
"""
ary = nm.asarray(ary).flat
ed = ary[1:] - ary[:-1]
arrays = [ed]
if to_begin is not None:
arrays.insert(0, to_begin)
if to_end is not None:
arrays.append(to_end)
if len(arrays) != 1:
# We'll save ourselves a copy of a potentially large array in the common
# case where neither to_begin or to_end was given.
ed = nm.hstack(arrays)
return ed
def unique1d(ar1, return_index=False):
"""Find the unique elements of 1D array.
Most of the other array set operations operate on the unique arrays
generated by this function.
Parameters
----------
ar1 : array
This array will be flattened if it is not already 1D.
return_index : bool, optional
If True, also return the indices against ar1 that result in the unique
array.
Returns
-------
unique : array
The unique values.
unique_indices : int array, optional
The indices of the unique values. Only provided if return_index is True.
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions
for performing set operations on arrays.
"""
ar = nm.asarray(ar1).flatten()
if ar.size == 0:
if return_index: return nm.empty(0, nm.bool), ar
else: return ar
if return_index:
perm = ar.argsort()
aux = ar[perm]
flag = nm.concatenate( ([True], aux[1:] != aux[:-1]) )
return perm[flag], aux[flag]
else:
ar.sort()
flag = nm.concatenate( ([True], ar[1:] != ar[:-1]) )
return ar[flag]
def intersect1d(ar1, ar2):
"""Intersection of 1D arrays with unique elements.
Use unique1d() to generate arrays with only unique elements to use as inputs
to this function. Alternatively, use intersect1d_nu() which will find the
unique values for you.
Parameters
----------
ar1 : array
ar2 : array
Returns
-------
intersection : array
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
"""
aux = nm.concatenate((ar1,ar2))
aux.sort()
return aux[aux[1:] == aux[:-1]]
def intersect1d_nu(ar1, ar2):
"""Intersection of 1D arrays with any elements.
The input arrays do not have unique elements like intersect1d() requires.
Parameters
----------
ar1 : array
ar2 : array
Returns
-------
intersection : array
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
"""
# Might be faster than unique1d( intersect1d( ar1, ar2 ) )?
aux = nm.concatenate((unique1d(ar1), unique1d(ar2)))
aux.sort()
return aux[aux[1:] == aux[:-1]]
def setxor1d(ar1, ar2):
"""Set exclusive-or of 1D arrays with unique elements.
Use unique1d() to generate arrays with only unique elements to use as inputs
to this function.
Parameters
----------
ar1 : array
ar2 : array
Returns
-------
xor : array
The values that are only in one, but not both, of the input arrays.
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
"""
aux = nm.concatenate((ar1, ar2))
if aux.size == 0:
return aux
aux.sort()
# flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
flag = nm.concatenate( ([True], aux[1:] != aux[:-1], [True] ) )
# flag2 = ediff1d( flag ) == 0
flag2 = flag[1:] == flag[:-1]
return aux[flag2]
def setmember1d(ar1, ar2):
"""Return a boolean array of shape of ar1 containing True where the elements
of ar1 are in ar2 and False otherwise.
Use unique1d() to generate arrays with only unique elements to use as inputs
to this function.
Parameters
----------
ar1 : array
ar2 : array
Returns
-------
mask : bool array
The values ar1[mask] are in ar2.
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
"""
ar1 = nm.asarray( ar1 )
ar2 = nm.asarray( ar2 )
ar = nm.concatenate( (ar1, ar2 ) )
b1 = nm.zeros( ar1.shape, dtype = nm.int8 )
b2 = nm.ones( ar2.shape, dtype = nm.int8 )
tt = nm.concatenate( (b1, b2) )
# We need this to be a stable sort, so always use 'mergesort' here. The
# values from the first array should always come before the values from the
# second array.
perm = ar.argsort(kind='mergesort')
aux = ar[perm]
aux2 = tt[perm]
# flag = ediff1d( aux, 1 ) == 0
flag = nm.concatenate( (aux[1:] == aux[:-1], [False] ) )
ii = nm.where( flag * aux2 )[0]
aux = perm[ii+1]
perm[ii+1] = perm[ii]
perm[ii] = aux
indx = perm.argsort(kind='mergesort')[:len( ar1 )]
return flag[indx]
def union1d(ar1, ar2):
"""
Union of 1D arrays with unique elements.
Use unique1d() to generate arrays with only unique elements to use as inputs
to this function.
Parameters
----------
ar1 : array
ar2 : array
Returns
-------
union : array
See also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
"""
return unique1d( nm.concatenate( (ar1, ar2) ) )
def setdiff1d(ar1, ar2):
"""Set difference of 1D arrays with unique elements.
Use unique1d() to generate arrays with only unique elements to use as inputs
to this function.
Parameters
----------
ar1 : array
ar2 : array
Returns
-------
difference : array
The values in ar1 that are not in ar2.
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
"""
aux = setmember1d(ar1,ar2)
if aux.size == 0:
return aux
else:
return nm.asarray(ar1)[aux == 0]
def _test_unique1d_speed( plot_results = False ):
# exponents = nm.linspace( 2, 7, 9 )
exponents = nm.linspace( 2, 7, 9 )
ratios = []
nItems = []
dt1s = []
dt2s = []
for ii in exponents:
nItem = 10 ** ii
print 'using %d items:' % nItem
a = nm.fix( nItem / 10 * nm.random.random( nItem ) )
print 'unique:'
tt = time.clock()
b = nm.unique( a )
dt1 = time.clock() - tt
print dt1
print 'unique1d:'
tt = time.clock()
c = unique1d( a )
dt2 = time.clock() - tt
print dt2
if dt1 < 1e-8:
ratio = 'ND'
else:
ratio = dt2 / dt1
print 'ratio:', ratio
print 'nUnique: %d == %d\n' % (len( b ), len( c ))
nItems.append( nItem )
ratios.append( ratio )
dt1s.append( dt1 )
dt2s.append( dt2 )
assert nm.alltrue( b == c )
print nItems
print dt1s
print dt2s
print ratios
if plot_results:
import pylab
def plotMe( fig, fun, nItems, dt1s, dt2s ):
pylab.figure( fig )
fun( nItems, dt1s, 'g-o', linewidth = 2, markersize = 8 )
fun( nItems, dt2s, 'b-x', linewidth = 2, markersize = 8 )
pylab.legend( ('unique', 'unique1d' ) )
pylab.xlabel( 'nItem' )
pylab.ylabel( 'time [s]' )
plotMe( 1, pylab.loglog, nItems, dt1s, dt2s )
plotMe( 2, pylab.plot, nItems, dt1s, dt2s )
pylab.show()
if (__name__ == '__main__'):
_test_unique1d_speed( plot_results = True )
|