1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
|
__docformat__ = "restructuredtext en"
__all__ = ['logspace', 'linspace',
'select', 'piecewise', 'trim_zeros',
'copy', 'iterable',
'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'disp',
'unique', 'extract', 'place', 'nansum', 'nanmax', 'nanargmax',
'nanargmin', 'nanmin', 'vectorize', 'asarray_chkfinite', 'average',
'histogram', 'histogramdd', 'bincount', 'digitize', 'cov',
'corrcoef', 'msort', 'median', 'sinc', 'hamming', 'hanning',
'bartlett', 'blackman', 'kaiser', 'trapz', 'i0', 'add_newdoc',
'add_docstring', 'meshgrid', 'delete', 'insert', 'append',
'interp'
]
import warnings
import types
import numpy.core.numeric as _nx
from numpy.core.numeric import ones, zeros, arange, concatenate, array, \
asarray, asanyarray, empty, empty_like, ndarray, around
from numpy.core.numeric import ScalarType, dot, where, newaxis, intp, \
integer, isscalar
from numpy.core.umath import pi, multiply, add, arctan2, \
frompyfunc, isnan, cos, less_equal, sqrt, sin, mod, exp, log10
from numpy.core.fromnumeric import ravel, nonzero, choose, sort, mean
from numpy.core.numerictypes import typecodes, number
from numpy.lib.shape_base import atleast_1d, atleast_2d
from numpy.lib.twodim_base import diag
from _compiled_base import _insert, add_docstring
from _compiled_base import digitize, bincount, interp as compiled_interp
from arraysetops import setdiff1d
import numpy as np
#end Fernando's utilities
def linspace(start, stop, num=50, endpoint=True, retstep=False):
"""Return evenly spaced numbers.
Return num evenly spaced samples from start to stop. If
endpoint is True, the last sample is stop. If retstep is
True then return (seq, step_value), where step_value used.
Parameters
----------
start : {float}
The value the sequence starts at.
stop : {float}
The value the sequence stops at. If ``endpoint`` is false, then
this is not included in the sequence. Otherwise it is
guaranteed to be the last value.
num : {integer}
Number of samples to generate. Default is 50.
endpoint : {boolean}
If true, ``stop`` is the last sample. Otherwise, it is not
included. Default is true.
retstep : {boolean}
If true, return ``(samples, step)``, where ``step`` is the
spacing used in generating the samples.
Returns
-------
samples : {array}
``num`` equally spaced samples from the range [start, stop]
or [start, stop).
step : {float} (Only if ``retstep`` is true)
Size of spacing between samples.
See Also
--------
arange : Similiar to linspace, however, when used with
a float endpoint, that endpoint may or may not be included.
logspace
"""
num = int(num)
if num <= 0:
return array([], float)
if endpoint:
if num == 1:
return array([float(start)])
step = (stop-start)/float((num-1))
y = _nx.arange(0, num) * step + start
y[-1] = stop
else:
step = (stop-start)/float(num)
y = _nx.arange(0, num) * step + start
if retstep:
return y, step
else:
return y
def logspace(start,stop,num=50,endpoint=True,base=10.0):
"""Evenly spaced numbers on a logarithmic scale.
Computes int(num) evenly spaced exponents from base**start to
base**stop. If endpoint=True, then last number is base**stop
"""
y = linspace(start,stop,num=num,endpoint=endpoint)
return _nx.power(base,y)
def iterable(y):
try: iter(y)
except: return 0
return 1
def histogram(a, bins=10, range=None, normed=False, weights=None, new=False):
"""Compute the histogram from a set of data.
Parameters
----------
a : array
The data to histogram.
bins : int or sequence
If an int, then the number of equal-width bins in the given
range. If new=True, bins can also be the bin edges, allowing
for non-constant bin widths.
range : (float, float)
The lower and upper range of the bins. If not provided, range
is simply (a.min(), a.max()). Using new=False, lower than
range are ignored, and values higher than range are tallied in
the rightmost bin. Using new=True, both lower and upper
outliers are ignored.
normed : bool
If False, the result array will contain the number of samples
in each bin. If True, the result array is the value of the
probability *density* function at the bin normalized such that
the *integral* over the range is 1. Note that the sum of all
of the histogram values will not usually be 1; it is not a
probability *mass* function.
weights : array
An array of weights, the same shape as a. If normed is False,
the histogram is computed by summing the weights of the values
falling into each bin. If normed is True, the weights are
normalized, so that the integral of the density over the range
is 1. This option is only available with new=True.
new : bool
Compatibility argument to transition from the old version
(v1.1) to the new version (v1.2).
Returns
-------
hist : array
The values of the histogram. See `normed` and `weights` for a
description of the possible semantics.
bin_edges : float array
With new=False, return the left bin edges (length(hist)).
With new=True, return the bin edges (length(hist)+1).
See Also
--------
histogramdd
"""
# Old behavior
if new is False:
warnings.warn("""
The semantics of histogram will be modified in
release 1.2 to improve outlier handling. The new behavior can be
obtained using new=True. Note that the new version accepts/returns
the bin edges instead of the left bin edges.
Please read the docstring for more information.""", FutureWarning)
a = asarray(a).ravel()
if (range is not None):
mn, mx = range
if (mn > mx):
raise AttributeError, \
'max must be larger than min in range parameter.'
if not iterable(bins):
if range is None:
range = (a.min(), a.max())
else:
warnings.warn("""
Outliers handling will change in version 1.2.
Please read the docstring for details.""", FutureWarning)
mn, mx = [mi+0.0 for mi in range]
if mn == mx:
mn -= 0.5
mx += 0.5
bins = linspace(mn, mx, bins, endpoint=False)
else:
if normed:
raise ValueError, 'Use new=True to pass bin edges explicitly.'
warnings.warn("""
The semantic for bins will change in version 1.2.
The bins will become the bin edges, instead of the left bin edges.
""", FutureWarning)
bins = asarray(bins)
if (np.diff(bins) < 0).any():
raise AttributeError, 'bins must increase monotonically.'
if weights is not None:
raise ValueError, 'weights are only available with new=True.'
# best block size probably depends on processor cache size
block = 65536
n = sort(a[:block]).searchsorted(bins)
for i in xrange(block, a.size, block):
n += sort(a[i:i+block]).searchsorted(bins)
n = concatenate([n, [len(a)]])
n = n[1:]-n[:-1]
if normed:
db = bins[1] - bins[0]
return 1.0/(a.size*db) * n, bins
else:
return n, bins
# New behavior
elif new is True:
a = asarray(a)
if weights is not None:
weights = asarray(weights)
if np.any(weights.shape != a.shape):
raise ValueError, 'weights should have the same shape as a.'
weights = weights.ravel()
a = a.ravel()
if (range is not None):
mn, mx = range
if (mn > mx):
raise AttributeError, \
'max must be larger than min in range parameter.'
if not iterable(bins):
if range is None:
range = (a.min(), a.max())
mn, mx = [mi+0.0 for mi in range]
if mn == mx:
mn -= 0.5
mx += 0.5
bins = linspace(mn, mx, bins+1, endpoint=True)
else:
bins = asarray(bins)
if (np.diff(bins) < 0).any():
raise AttributeError, 'bins must increase monotonically.'
# Histogram is an integer or a float array depending on the weights.
if weights is None:
ntype = int
else:
ntype = weights.dtype
n = np.zeros(bins.shape, ntype)
block = 65536
if weights is None:
for i in arange(0, len(a), block):
sa = sort(a[i:i+block])
n += np.r_[sa.searchsorted(bins[:-1], 'left'), \
sa.searchsorted(bins[-1], 'right')]
else:
zero = array(0, dtype=ntype)
for i in arange(0, len(a), block):
tmp_a = a[i:i+block]
tmp_w = weights[i:i+block]
sorting_index = np.argsort(tmp_a)
sa = tmp_a[sorting_index]
sw = tmp_w[sorting_index]
cw = np.concatenate(([zero,], sw.cumsum()))
bin_index = np.r_[sa.searchsorted(bins[:-1], 'left'), \
sa.searchsorted(bins[-1], 'right')]
n += cw[bin_index]
n = np.diff(n)
if normed is False:
return n, bins
elif normed is True:
db = array(np.diff(bins), float)
return n/(n*db).sum(), bins
def histogramdd(sample, bins=10, range=None, normed=False, weights=None):
"""histogramdd(sample, bins=10, range=None, normed=False, weights=None)
Return the N-dimensional histogram of the sample.
Parameters
----------
sample : sequence or array
A sequence containing N arrays or an NxM array. Input data.
bins : sequence or scalar
A sequence of edge arrays, a sequence of bin counts, or a scalar
which is the bin count for all dimensions. Default is 10.
range : sequence
A sequence of lower and upper bin edges. Default is [min, max].
normed : boolean
If False, return the number of samples in each bin, if True,
returns the density.
weights : array
Array of weights. The weights are normed only if normed is True.
Should the sum of the weights not equal N, the total bin count will
not be equal to the number of samples.
Returns
-------
hist : array
Histogram array.
edges : list
List of arrays defining the lower bin edges.
See Also
--------
histogram
Examples
--------
>>> x = random.randn(100,3)
>>> hist3d, edges = histogramdd(x, bins = (5, 6, 7))
"""
try:
# Sample is an ND-array.
N, D = sample.shape
except (AttributeError, ValueError):
# Sample is a sequence of 1D arrays.
sample = atleast_2d(sample).T
N, D = sample.shape
nbin = empty(D, int)
edges = D*[None]
dedges = D*[None]
if weights is not None:
weights = asarray(weights)
try:
M = len(bins)
if M != D:
raise AttributeError, 'The dimension of bins must be equal ' \
'to the dimension of the sample x.'
except TypeError:
bins = D*[bins]
# Select range for each dimension
# Used only if number of bins is given.
if range is None:
smin = atleast_1d(array(sample.min(0), float))
smax = atleast_1d(array(sample.max(0), float))
else:
smin = zeros(D)
smax = zeros(D)
for i in arange(D):
smin[i], smax[i] = range[i]
# Make sure the bins have a finite width.
for i in arange(len(smin)):
if smin[i] == smax[i]:
smin[i] = smin[i] - .5
smax[i] = smax[i] + .5
# Create edge arrays
for i in arange(D):
if isscalar(bins[i]):
nbin[i] = bins[i] + 2 # +2 for outlier bins
edges[i] = linspace(smin[i], smax[i], nbin[i]-1)
else:
edges[i] = asarray(bins[i], float)
nbin[i] = len(edges[i])+1 # +1 for outlier bins
dedges[i] = diff(edges[i])
nbin = asarray(nbin)
# Compute the bin number each sample falls into.
Ncount = {}
for i in arange(D):
Ncount[i] = digitize(sample[:,i], edges[i])
# Using digitize, values that fall on an edge are put in the right bin.
# For the rightmost bin, we want values equal to the right
# edge to be counted in the last bin, and not as an outlier.
outliers = zeros(N, int)
for i in arange(D):
# Rounding precision
decimal = int(-log10(dedges[i].min())) +6
# Find which points are on the rightmost edge.
on_edge = where(around(sample[:,i], decimal) == around(edges[i][-1],
decimal))[0]
# Shift these points one bin to the left.
Ncount[i][on_edge] -= 1
# Flattened histogram matrix (1D)
hist = zeros(nbin.prod(), float)
# Compute the sample indices in the flattened histogram matrix.
ni = nbin.argsort()
shape = []
xy = zeros(N, int)
for i in arange(0, D-1):
xy += Ncount[ni[i]] * nbin[ni[i+1:]].prod()
xy += Ncount[ni[-1]]
# Compute the number of repetitions in xy and assign it to the
# flattened histmat.
if len(xy) == 0:
return zeros(nbin-2, int), edges
flatcount = bincount(xy, weights)
a = arange(len(flatcount))
hist[a] = flatcount
# Shape into a proper matrix
hist = hist.reshape(sort(nbin))
for i in arange(nbin.size):
j = ni.argsort()[i]
hist = hist.swapaxes(i,j)
ni[i],ni[j] = ni[j],ni[i]
# Remove outliers (indices 0 and -1 for each dimension).
core = D*[slice(1,-1)]
hist = hist[core]
# Normalize if normed is True
if normed:
s = hist.sum()
for i in arange(D):
shape = ones(D, int)
shape[i] = nbin[i]-2
hist = hist / dedges[i].reshape(shape)
hist /= s
if (hist.shape != nbin-2).any():
raise 'Internal Shape Error'
return hist, edges
def average(a, axis=None, weights=None, returned=False):
"""Return the weighted average of array a over the given axis.
Parameters
----------
a : array_like
Data to be averaged.
axis : {None, integer}, optional
Axis along which to average a. If None, averaging is done over the
entire array irrespective of its shape.
weights : {None, array_like}, optional
The importance each datum has in the computation of the
average. The weights array can either be 1D, in which case its length
must be the size of a along the given axis, or of the same shape as a.
If weights=None, all data are assumed to have weight equal to one.
returned :{False, boolean}, optional
If True, the tuple (average, sum_of_weights) is returned,
otherwise only the average is returmed. Note that if weights=None, then
the sum of the weights is also the number of elements averaged over.
Returns
-------
average, [sum_of_weights] : {array_type, double}
Return the average along the specified axis. When returned is True,
return a tuple with the average as the first element and the sum
of the weights as the second element. The return type is Float if a is
of integer type, otherwise it is of the same type as a.
sum_of_weights is has the same type as the average.
Examples
--------
>>> average(range(1,11), weights=range(10,0,-1))
4.0
Raises
------
ZeroDivisionError
When all weights along axis are zero. See numpy.ma.average for a
version robust to this type of error.
TypeError
When the length of 1D weights is not the same as the shape of a
along axis.
"""
if not isinstance(a, np.matrix) :
a = np.asarray(a)
if weights is None :
avg = a.mean(axis)
scl = avg.dtype.type(a.size/avg.size)
else :
a = a + 0.0
wgt = np.array(weights, dtype=a.dtype, copy=0)
# Sanity checks
if a.shape != wgt.shape :
if axis is None :
raise TypeError, "Axis must be specified when shapes of a and weights differ."
if wgt.ndim != 1 :
raise TypeError, "1D weights expected when shapes of a and weights differ."
if wgt.shape[0] != a.shape[axis] :
raise ValueError, "Length of weights not compatible with specified axis."
# setup wgt to broadcast along axis
wgt = np.array(wgt, copy=0, ndmin=a.ndim).swapaxes(-1,axis)
scl = wgt.sum(axis=axis)
if (scl == 0.0).any():
raise ZeroDivisionError, "Weights sum to zero, can't be normalized"
avg = np.multiply(a,wgt).sum(axis)/scl
if returned:
scl = np.multiply(avg,0) + scl
return avg, scl
else:
return avg
def asarray_chkfinite(a):
"""Like asarray, but check that no NaNs or Infs are present.
"""
a = asarray(a)
if (a.dtype.char in typecodes['AllFloat']) \
and (_nx.isnan(a).any() or _nx.isinf(a).any()):
raise ValueError, "array must not contain infs or NaNs"
return a
def piecewise(x, condlist, funclist, *args, **kw):
"""Return a piecewise-defined function.
x is the domain
condlist is a list of boolean arrays or a single boolean array
The length of the condition list must be n2 or n2-1 where n2
is the length of the function list. If len(condlist)==n2-1, then
an 'otherwise' condition is formed by |'ing all the conditions
and inverting.
funclist is a list of functions to call of length (n2).
Each function should return an array output for an array input
Each function can take (the same set) of extra arguments and
keyword arguments which are passed in after the function list.
A constant may be used in funclist for a function that returns a
constant (e.g. val and lambda x: val are equivalent in a funclist).
The output is the same shape and type as x and is found by
calling the functions on the appropriate portions of x.
Note: This is similar to choose or select, except
the the functions are only evaluated on elements of x
that satisfy the corresponding condition.
The result is
|--
| f1(x) for condition1
y = --| f2(x) for condition2
| ...
| fn(x) for conditionn
|--
"""
x = asanyarray(x)
n2 = len(funclist)
if not isinstance(condlist, type([])):
condlist = [condlist]
n = len(condlist)
if n == n2-1: # compute the "otherwise" condition.
totlist = condlist[0]
for k in range(1, n):
totlist |= condlist[k]
condlist.append(~totlist)
n += 1
if (n != n2):
raise ValueError, "function list and condition list must be the same"
y = empty(x.shape, x.dtype)
for k in range(n):
item = funclist[k]
if not callable(item):
y[condlist[k]] = item
else:
y[condlist[k]] = item(x[condlist[k]], *args, **kw)
return y
def select(condlist, choicelist, default=0):
"""Return an array composed of different elements in choicelist,
depending on the list of conditions.
:Parameters:
condlist : list of N boolean arrays of length M
The conditions C_0 through C_(N-1) which determine
from which vector the output elements are taken.
choicelist : list of N arrays of length M
Th vectors V_0 through V_(N-1), from which the output
elements are chosen.
:Returns:
output : 1-dimensional array of length M
The output at position m is the m-th element of the first
vector V_n for which C_n[m] is non-zero. Note that the
output depends on the order of conditions, since the
first satisfied condition is used.
Equivalent to:
output = []
for m in range(M):
output += [V[m] for V,C in zip(values,cond) if C[m]]
or [default]
"""
n = len(condlist)
n2 = len(choicelist)
if n2 != n:
raise ValueError, "list of cases must be same length as list of conditions"
choicelist = [default] + choicelist
S = 0
pfac = 1
for k in range(1, n+1):
S += k * pfac * asarray(condlist[k-1])
if k < n:
pfac *= (1-asarray(condlist[k-1]))
# handle special case of a 1-element condition but
# a multi-element choice
if type(S) in ScalarType or max(asarray(S).shape)==1:
pfac = asarray(1)
for k in range(n2+1):
pfac = pfac + asarray(choicelist[k])
if type(S) in ScalarType:
S = S*ones(asarray(pfac).shape, type(S))
else:
S = S*ones(asarray(pfac).shape, S.dtype)
return choose(S, tuple(choicelist))
def _asarray1d(arr, copy=False):
"""Ensure 1D array for one array.
"""
if copy:
return asarray(arr).flatten()
else:
return asarray(arr).ravel()
def copy(a):
"""Return an array copy of the given object.
"""
return array(a, copy=True)
# Basic operations
def gradient(f, *varargs):
"""Calculate the gradient of an N-dimensional scalar function.
Uses central differences on the interior and first differences on boundaries
to give the same shape.
Inputs:
f -- An N-dimensional array giving samples of a scalar function
varargs -- 0, 1, or N scalars giving the sample distances in each direction
Outputs:
N arrays of the same shape as f giving the derivative of f with respect
to each dimension.
"""
N = len(f.shape) # number of dimensions
n = len(varargs)
if n == 0:
dx = [1.0]*N
elif n == 1:
dx = [varargs[0]]*N
elif n == N:
dx = list(varargs)
else:
raise SyntaxError, "invalid number of arguments"
# use central differences on interior and first differences on endpoints
outvals = []
# create slice objects --- initially all are [:, :, ..., :]
slice1 = [slice(None)]*N
slice2 = [slice(None)]*N
slice3 = [slice(None)]*N
otype = f.dtype.char
if otype not in ['f', 'd', 'F', 'D']:
otype = 'd'
for axis in range(N):
# select out appropriate parts for this dimension
out = zeros(f.shape, f.dtype.char)
slice1[axis] = slice(1, -1)
slice2[axis] = slice(2, None)
slice3[axis] = slice(None, -2)
# 1D equivalent -- out[1:-1] = (f[2:] - f[:-2])/2.0
out[slice1] = (f[slice2] - f[slice3])/2.0
slice1[axis] = 0
slice2[axis] = 1
slice3[axis] = 0
# 1D equivalent -- out[0] = (f[1] - f[0])
out[slice1] = (f[slice2] - f[slice3])
slice1[axis] = -1
slice2[axis] = -1
slice3[axis] = -2
# 1D equivalent -- out[-1] = (f[-1] - f[-2])
out[slice1] = (f[slice2] - f[slice3])
# divide by step size
outvals.append(out / dx[axis])
# reset the slice object in this dimension to ":"
slice1[axis] = slice(None)
slice2[axis] = slice(None)
slice3[axis] = slice(None)
if N == 1:
return outvals[0]
else:
return outvals
def diff(a, n=1, axis=-1):
"""Calculate the nth order discrete difference along given axis.
"""
if n == 0:
return a
if n < 0:
raise ValueError, 'order must be non-negative but got ' + repr(n)
a = asanyarray(a)
nd = len(a.shape)
slice1 = [slice(None)]*nd
slice2 = [slice(None)]*nd
slice1[axis] = slice(1, None)
slice2[axis] = slice(None, -1)
slice1 = tuple(slice1)
slice2 = tuple(slice2)
if n > 1:
return diff(a[slice1]-a[slice2], n-1, axis=axis)
else:
return a[slice1]-a[slice2]
try:
add_docstring(digitize,
r"""digitize(x,bins)
Return the index of the bin to which each value of x belongs.
Each index i returned is such that bins[i-1] <= x < bins[i] if
bins is monotonically increasing, or bins [i-1] > x >= bins[i] if
bins is monotonically decreasing.
Beyond the bounds of the bins 0 or len(bins) is returned as appropriate.
""")
except RuntimeError:
pass
try:
add_docstring(bincount,
r"""bincount(x,weights=None)
Return the number of occurrences of each value in x.
x must be a list of non-negative integers. The output, b[i],
represents the number of times that i is found in x. If weights
is specified, every occurrence of i at a position p contributes
weights[p] instead of 1.
See also: histogram, digitize, unique.
""")
except RuntimeError:
pass
try:
add_docstring(add_docstring,
r"""docstring(obj, docstring)
Add a docstring to a built-in obj if possible.
If the obj already has a docstring raise a RuntimeError
If this routine does not know how to add a docstring to the object
raise a TypeError
""")
except RuntimeError:
pass
def interp(x, xp, fp, left=None, right=None):
"""Return the value of a piecewise-linear function at each value in x.
The piecewise-linear function, f, is defined by the known data-points
fp=f(xp). The xp points must be sorted in increasing order but this is
not checked.
For values of x < xp[0] return the value given by left. If left is None,
then return fp[0].
For values of x > xp[-1] return the value given by right. If right is
None, then return fp[-1].
"""
if isinstance(x, (float, int, number)):
return compiled_interp([x], xp, fp, left, right).item()
else:
return compiled_interp(x, xp, fp, left, right)
def angle(z, deg=0):
"""
Return the angle of the complex argument z.
Examples
--------
>>> numpy.angle(1+1j) # in radians
0.78539816339744828
>>> numpy.angle(1+1j,deg=True) # in degrees
45.0
"""
if deg:
fact = 180/pi
else:
fact = 1.0
z = asarray(z)
if (issubclass(z.dtype.type, _nx.complexfloating)):
zimag = z.imag
zreal = z.real
else:
zimag = 0
zreal = z
return arctan2(zimag, zreal) * fact
def unwrap(p, discont=pi, axis=-1):
"""Unwrap radian phase p by changing absolute jumps greater than
'discont' to their 2*pi complement along the given axis.
"""
p = asarray(p)
nd = len(p.shape)
dd = diff(p, axis=axis)
slice1 = [slice(None, None)]*nd # full slices
slice1[axis] = slice(1, None)
ddmod = mod(dd+pi, 2*pi)-pi
_nx.putmask(ddmod, (ddmod==-pi) & (dd > 0), pi)
ph_correct = ddmod - dd;
_nx.putmask(ph_correct, abs(dd)<discont, 0)
up = array(p, copy=True, dtype='d')
up[slice1] = p[slice1] + ph_correct.cumsum(axis)
return up
def sort_complex(a):
""" Sort 'a' as a complex array using the real part first and then
the imaginary part if the real part is equal (the default sort order
for complex arrays). This function is a wrapper ensuring a complex
return type.
"""
b = array(a,copy=True)
b.sort()
if not issubclass(b.dtype.type, _nx.complexfloating):
if b.dtype.char in 'bhBH':
return b.astype('F')
elif b.dtype.char == 'g':
return b.astype('G')
else:
return b.astype('D')
else:
return b
def trim_zeros(filt, trim='fb'):
""" Trim the leading and trailing zeros from a 1D array.
Examples
--------
>>> import numpy
>>> a = array((0, 0, 0, 1, 2, 3, 2, 1, 0))
>>> numpy.trim_zeros(a)
array([1, 2, 3, 2, 1])
"""
first = 0
trim = trim.upper()
if 'F' in trim:
for i in filt:
if i != 0.: break
else: first = first + 1
last = len(filt)
if 'B' in trim:
for i in filt[::-1]:
if i != 0.: break
else: last = last - 1
return filt[first:last]
import sys
if sys.hexversion < 0x2040000:
from sets import Set as set
def unique(x):
"""
Return sorted unique items from an array or sequence.
Examples
--------
>>> numpy.unique([5,2,4,0,4,4,2,2,1])
array([0, 1, 2, 4, 5])
"""
try:
tmp = x.flatten()
if tmp.size == 0:
return tmp
tmp.sort()
idx = concatenate(([True],tmp[1:]!=tmp[:-1]))
return tmp[idx]
except AttributeError:
items = list(set(x))
items.sort()
return asarray(items)
def extract(condition, arr):
"""Return the elements of ravel(arr) where ravel(condition) is True
(in 1D).
Equivalent to compress(ravel(condition), ravel(arr)).
"""
return _nx.take(ravel(arr), nonzero(ravel(condition))[0])
def place(arr, mask, vals):
"""Similar to putmask arr[mask] = vals but the 1D array vals has the
same number of elements as the non-zero values of mask. Inverse of
extract.
"""
return _insert(arr, mask, vals)
def nansum(a, axis=None):
"""Sum the array over the given axis, treating NaNs as 0.
"""
y = array(a,subok=True)
if not issubclass(y.dtype.type, _nx.integer):
y[isnan(a)] = 0
return y.sum(axis)
def nanmin(a, axis=None):
"""Find the minimium over the given axis, ignoring NaNs.
"""
y = array(a,subok=True)
if not issubclass(y.dtype.type, _nx.integer):
y[isnan(a)] = _nx.inf
return y.min(axis)
def nanargmin(a, axis=None):
"""Find the indices of the minimium over the given axis ignoring NaNs.
"""
y = array(a, subok=True)
if not issubclass(y.dtype.type, _nx.integer):
y[isnan(a)] = _nx.inf
return y.argmin(axis)
def nanmax(a, axis=None):
"""Find the maximum over the given axis ignoring NaNs.
"""
y = array(a, subok=True)
if not issubclass(y.dtype.type, _nx.integer):
y[isnan(a)] = -_nx.inf
return y.max(axis)
def nanargmax(a, axis=None):
"""Find the maximum over the given axis ignoring NaNs.
"""
y = array(a,subok=True)
if not issubclass(y.dtype.type, _nx.integer):
y[isnan(a)] = -_nx.inf
return y.argmax(axis)
def disp(mesg, device=None, linefeed=True):
"""Display a message to the given device (default is sys.stdout)
with or without a linefeed.
"""
if device is None:
import sys
device = sys.stdout
if linefeed:
device.write('%s\n' % mesg)
else:
device.write('%s' % mesg)
device.flush()
return
# return number of input arguments and
# number of default arguments
import re
def _get_nargs(obj):
if not callable(obj):
raise TypeError, "Object is not callable."
if hasattr(obj,'func_code'):
fcode = obj.func_code
nargs = fcode.co_argcount
if obj.func_defaults is not None:
ndefaults = len(obj.func_defaults)
else:
ndefaults = 0
if isinstance(obj, types.MethodType):
nargs -= 1
return nargs, ndefaults
terr = re.compile(r'.*? takes exactly (?P<exargs>\d+) argument(s|) \((?P<gargs>\d+) given\)')
try:
obj()
return 0, 0
except TypeError, msg:
m = terr.match(str(msg))
if m:
nargs = int(m.group('exargs'))
ndefaults = int(m.group('gargs'))
if isinstance(obj, types.MethodType):
nargs -= 1
return nargs, ndefaults
raise ValueError, 'failed to determine the number of arguments for %s' % (obj)
class vectorize(object):
"""
vectorize(somefunction, otypes=None, doc=None)
Generalized function class.
Define a vectorized function which takes nested sequence
of objects or numpy arrays as inputs and returns a
numpy array as output, evaluating the function over successive
tuples of the input arrays like the python map function except it uses
the broadcasting rules of numpy.
Data-type of output of vectorized is determined by calling the function
with the first element of the input. This can be avoided by specifying
the otypes argument as either a string of typecode characters or a list
of data-types specifiers. There should be one data-type specifier for
each output.
Parameters
----------
f : callable
A Python function or method.
Examples
--------
>>> def myfunc(a, b):
... if a > b:
... return a-b
... else:
... return a+b
>>> vfunc = vectorize(myfunc)
>>> vfunc([1, 2, 3, 4], 2)
array([3, 4, 1, 2])
"""
def __init__(self, pyfunc, otypes='', doc=None):
self.thefunc = pyfunc
self.ufunc = None
nin, ndefault = _get_nargs(pyfunc)
if nin == 0 and ndefault == 0:
self.nin = None
self.nin_wo_defaults = None
else:
self.nin = nin
self.nin_wo_defaults = nin - ndefault
self.nout = None
if doc is None:
self.__doc__ = pyfunc.__doc__
else:
self.__doc__ = doc
if isinstance(otypes, types.StringType):
self.otypes = otypes
for char in self.otypes:
if char not in typecodes['All']:
raise ValueError, "invalid otype specified"
elif iterable(otypes):
self.otypes = ''.join([_nx.dtype(x).char for x in otypes])
else:
raise ValueError, "output types must be a string of typecode characters or a list of data-types"
self.lastcallargs = 0
def __call__(self, *args):
# get number of outputs and output types by calling
# the function on the first entries of args
nargs = len(args)
if self.nin:
if (nargs > self.nin) or (nargs < self.nin_wo_defaults):
raise ValueError, "mismatch between python function inputs"\
" and received arguments"
# we need a new ufunc if this is being called with more arguments.
if (self.lastcallargs != nargs):
self.lastcallargs = nargs
self.ufunc = None
self.nout = None
if self.nout is None or self.otypes == '':
newargs = []
for arg in args:
newargs.append(asarray(arg).flat[0])
theout = self.thefunc(*newargs)
if isinstance(theout, types.TupleType):
self.nout = len(theout)
else:
self.nout = 1
theout = (theout,)
if self.otypes == '':
otypes = []
for k in range(self.nout):
otypes.append(asarray(theout[k]).dtype.char)
self.otypes = ''.join(otypes)
# Create ufunc if not already created
if (self.ufunc is None):
self.ufunc = frompyfunc(self.thefunc, nargs, self.nout)
# Convert to object arrays first
newargs = [array(arg,copy=False,subok=True,dtype=object) for arg in args]
if self.nout == 1:
_res = array(self.ufunc(*newargs),copy=False,
subok=True,dtype=self.otypes[0])
else:
_res = tuple([array(x,copy=False,subok=True,dtype=c) \
for x, c in zip(self.ufunc(*newargs), self.otypes)])
return _res
def cov(m, y=None, rowvar=1, bias=0):
"""Estimate the covariance matrix.
If m is a vector, return the variance. For matrices return the
covariance matrix.
If y is given it is treated as an additional (set of)
variable(s).
Normalization is by (N-1) where N is the number of observations
(unbiased estimate). If bias is 1 then normalization is by N.
If rowvar is non-zero (default), then each row is a variable with
observations in the columns, otherwise each column
is a variable and the observations are in the rows.
"""
X = array(m, ndmin=2, dtype=float)
if X.shape[0] == 1:
rowvar = 1
if rowvar:
axis = 0
tup = (slice(None),newaxis)
else:
axis = 1
tup = (newaxis, slice(None))
if y is not None:
y = array(y, copy=False, ndmin=2, dtype=float)
X = concatenate((X,y),axis)
X -= X.mean(axis=1-axis)[tup]
if rowvar:
N = X.shape[1]
else:
N = X.shape[0]
if bias:
fact = N*1.0
else:
fact = N-1.0
if not rowvar:
return (dot(X.T, X.conj()) / fact).squeeze()
else:
return (dot(X, X.T.conj()) / fact).squeeze()
def corrcoef(x, y=None, rowvar=1, bias=0):
"""The correlation coefficients
"""
c = cov(x, y, rowvar, bias)
try:
d = diag(c)
except ValueError: # scalar covariance
return 1
return c/sqrt(multiply.outer(d,d))
def blackman(M):
"""blackman(M) returns the M-point Blackman window.
"""
if M < 1:
return array([])
if M == 1:
return ones(1, float)
n = arange(0,M)
return 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1))
def bartlett(M):
"""
Return the Bartlett window.
The Bartlett window is very similar to a triangular window, except
that the end points are at zero. It is often used in signal
processing for tapering a signal, without generating too much
ripple in the frequency domain.
Parameters
----------
M : int
Number of points in the output window. If zero or less, an
empty array is returned.
Returns
-------
out : array
The triangular window, normalized to one (the value one
appears only if the number of samples is odd), with the first
and last samples equal to zero.
See Also
--------
blackman, hamming, hanning, kaiser
Notes
-----
The Bartlett window is defined as
.. math:: w(n) = \\frac{2}{M-1} \left(
\\frac{M-1}{2} - \\left|n - \\frac{M-1}{2}\\right|
\\right)
Most references to the Bartlett window come from the signal
processing literature, where it is used as one of many windowing
functions for smoothing values. Note that convolution with this
window produces linear interpolation. It is also known as an
apodization (which means"removing the foot", i.e. smoothing
discontinuities at the beginning and end of the sampled signal) or
tapering function.
References
----------
.. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra",
Biometrika 37, 1-16, 1950.
.. [2] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal
Processing", Prentice-Hall, 1999, pp. 468-471.
.. [3] Wikipedia, "Window function",
http://en.wikipedia.org/wiki/Window_function
.. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
"Numerical Recipes", Cambridge University Press, 1986, page 429.
Examples
--------
>>> from numpy import bartlett
>>> bartlett(12)
array([ 0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273,
0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636,
0.18181818, 0. ])
Plot the window and its frequency response:
>>> from numpy import clip, log10, array, bartlett
>>> from scipy.fftpack import fft
>>> from matplotlib import pyplot as plt
>>> window = bartlett(51)
>>> plt.plot(window)
>>> plt.title("Bartlett window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")
>>> plt.show()
>>> A = fft(window, 2048) / 25.5
>>> mag = abs(fftshift(A))
>>> freq = linspace(-0.5,0.5,len(A))
>>> response = 20*log10(mag)
>>> response = clip(response,-100,100)
>>> plt.plot(freq, response)
>>> plt.title("Frequency response of Bartlett window")
>>> plt.ylabel("Magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")
>>> plt.axis('tight'); plt.show()
"""
if M < 1:
return array([])
if M == 1:
return ones(1, float)
n = arange(0,M)
return where(less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1))
def hanning(M):
"""hanning(M) returns the M-point Hanning window.
"""
if M < 1:
return array([])
if M == 1:
return ones(1, float)
n = arange(0,M)
return 0.5-0.5*cos(2.0*pi*n/(M-1))
def hamming(M):
"""hamming(M) returns the M-point Hamming window.
"""
if M < 1:
return array([])
if M == 1:
return ones(1,float)
n = arange(0,M)
return 0.54-0.46*cos(2.0*pi*n/(M-1))
## Code from cephes for i0
_i0A = [
-4.41534164647933937950E-18,
3.33079451882223809783E-17,
-2.43127984654795469359E-16,
1.71539128555513303061E-15,
-1.16853328779934516808E-14,
7.67618549860493561688E-14,
-4.85644678311192946090E-13,
2.95505266312963983461E-12,
-1.72682629144155570723E-11,
9.67580903537323691224E-11,
-5.18979560163526290666E-10,
2.65982372468238665035E-9,
-1.30002500998624804212E-8,
6.04699502254191894932E-8,
-2.67079385394061173391E-7,
1.11738753912010371815E-6,
-4.41673835845875056359E-6,
1.64484480707288970893E-5,
-5.75419501008210370398E-5,
1.88502885095841655729E-4,
-5.76375574538582365885E-4,
1.63947561694133579842E-3,
-4.32430999505057594430E-3,
1.05464603945949983183E-2,
-2.37374148058994688156E-2,
4.93052842396707084878E-2,
-9.49010970480476444210E-2,
1.71620901522208775349E-1,
-3.04682672343198398683E-1,
6.76795274409476084995E-1]
_i0B = [
-7.23318048787475395456E-18,
-4.83050448594418207126E-18,
4.46562142029675999901E-17,
3.46122286769746109310E-17,
-2.82762398051658348494E-16,
-3.42548561967721913462E-16,
1.77256013305652638360E-15,
3.81168066935262242075E-15,
-9.55484669882830764870E-15,
-4.15056934728722208663E-14,
1.54008621752140982691E-14,
3.85277838274214270114E-13,
7.18012445138366623367E-13,
-1.79417853150680611778E-12,
-1.32158118404477131188E-11,
-3.14991652796324136454E-11,
1.18891471078464383424E-11,
4.94060238822496958910E-10,
3.39623202570838634515E-9,
2.26666899049817806459E-8,
2.04891858946906374183E-7,
2.89137052083475648297E-6,
6.88975834691682398426E-5,
3.36911647825569408990E-3,
8.04490411014108831608E-1]
def _chbevl(x, vals):
b0 = vals[0]
b1 = 0.0
for i in xrange(1,len(vals)):
b2 = b1
b1 = b0
b0 = x*b1 - b2 + vals[i]
return 0.5*(b0 - b2)
def _i0_1(x):
return exp(x) * _chbevl(x/2.0-2, _i0A)
def _i0_2(x):
return exp(x) * _chbevl(32.0/x - 2.0, _i0B) / sqrt(x)
def i0(x):
x = atleast_1d(x).copy()
y = empty_like(x)
ind = (x<0)
x[ind] = -x[ind]
ind = (x<=8.0)
y[ind] = _i0_1(x[ind])
ind2 = ~ind
y[ind2] = _i0_2(x[ind2])
return y.squeeze()
## End of cephes code for i0
def kaiser(M,beta):
"""kaiser(M, beta) returns a Kaiser window of length M with shape parameter
beta.
"""
from numpy.dual import i0
n = arange(0,M)
alpha = (M-1)/2.0
return i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/i0(beta)
def sinc(x):
"""sinc(x) returns sin(pi*x)/(pi*x) at all points of array x.
"""
y = pi* where(x == 0, 1.0e-20, x)
return sin(y)/y
def msort(a):
b = array(a,subok=True,copy=True)
b.sort(0)
return b
def median(a, axis=0, out=None, overwrite_input=False):
"""Compute the median along the specified axis.
Returns the median of the array elements. The median is taken
over the first axis of the array by default, otherwise over
the specified axis.
Parameters
----------
a : array-like
Input array or object that can be converted to an array
axis : {int, None}, optional
Axis along which the medians are computed. The default is to
compute the median along the first dimension. axis=None
returns the median of the flattened array
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.
overwrite_input : {False, True}, optional
If True, then allow use of memory of input array (a) for
calculations. The input array will be modified by the call to
median. This will save memory when you do not need to preserve
the contents of the input array. Treat the input as undefined,
but it will probably be fully or partially sorted. Default is
False. Note that, if overwrite_input is true, and the input
is not already an ndarray, an error will be raised.
Returns
-------
median : ndarray.
A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.
Return datatype is float64 for ints and floats smaller than
float64, or the input datatype otherwise.
See Also
-------
mean
Notes
-----
Given a vector V length N, the median of V is the middle value of
a sorted copy of V (Vs) - i.e. Vs[(N-1)/2], when N is odd. It is
the mean of the two middle values of Vs, when N is even.
Examples
--------
>>> import numpy as np
>>> from numpy import median
>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],
[ 3, 2, 1]])
>>> median(a)
array([ 6.5, 4.5, 2.5])
>>> median(a, axis=None)
3.5
>>> median(a, axis=1)
array([ 7., 2.])
>>> m = median(a)
>>> out = np.zeros_like(m)
>>> median(a, out=m)
array([ 6.5, 4.5, 2.5])
>>> m
array([ 6.5, 4.5, 2.5])
>>> b = a.copy()
>>> median(b, axis=1, overwrite_input=True)
array([ 7., 2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> median(b, axis=None, overwrite_input=True)
3.5
>>> assert not np.all(a==b)
"""
if overwrite_input:
if axis is None:
sorted = a.ravel()
sorted.sort()
else:
a.sort(axis=axis)
sorted = a
else:
sorted = sort(a, axis=axis)
if axis is None:
axis = 0
indexer = [slice(None)] * sorted.ndim
index = int(sorted.shape[axis]/2)
if sorted.shape[axis] % 2 == 1:
# index with slice to allow mean (below) to work
indexer[axis] = slice(index, index+1)
else:
indexer[axis] = slice(index-1, index+1)
# Use mean in odd and even case to coerce data type
# and check, use out array.
return mean(sorted[indexer], axis=axis, out=out)
def trapz(y, x=None, dx=1.0, axis=-1):
"""Integrate y(x) using samples along the given axis and the composite
trapezoidal rule. If x is None, spacing given by dx is assumed.
"""
y = asarray(y)
if x is None:
d = dx
else:
d = diff(x,axis=axis)
nd = len(y.shape)
slice1 = [slice(None)]*nd
slice2 = [slice(None)]*nd
slice1[axis] = slice(1,None)
slice2[axis] = slice(None,-1)
return add.reduce(d * (y[slice1]+y[slice2])/2.0,axis)
#always succeed
def add_newdoc(place, obj, doc):
"""Adds documentation to obj which is in module place.
If doc is a string add it to obj as a docstring
If doc is a tuple, then the first element is interpreted as
an attribute of obj and the second as the docstring
(method, docstring)
If doc is a list, then each element of the list should be a
sequence of length two --> [(method1, docstring1),
(method2, docstring2), ...]
This routine never raises an error.
"""
try:
new = {}
exec 'from %s import %s' % (place, obj) in new
if isinstance(doc, str):
add_docstring(new[obj], doc.strip())
elif isinstance(doc, tuple):
add_docstring(getattr(new[obj], doc[0]), doc[1].strip())
elif isinstance(doc, list):
for val in doc:
add_docstring(getattr(new[obj], val[0]), val[1].strip())
except:
pass
# From matplotlib
def meshgrid(x,y):
"""
For vectors x, y with lengths Nx=len(x) and Ny=len(y), return X, Y
where X and Y are (Ny, Nx) shaped arrays with the elements of x
and y repeated to fill the matrix
EG,
[X, Y] = meshgrid([1,2,3], [4,5,6,7])
X =
1 2 3
1 2 3
1 2 3
1 2 3
Y =
4 4 4
5 5 5
6 6 6
7 7 7
"""
x = asarray(x)
y = asarray(y)
numRows, numCols = len(y), len(x) # yes, reversed
x = x.reshape(1,numCols)
X = x.repeat(numRows, axis=0)
y = y.reshape(numRows,1)
Y = y.repeat(numCols, axis=1)
return X, Y
def delete(arr, obj, axis=None):
"""Return a new array with sub-arrays along an axis deleted.
Return a new array with the sub-arrays (i.e. rows or columns)
deleted along the given axis as specified by obj
obj may be a slice_object (s_[3:5:2]) or an integer
or an array of integers indicated which sub-arrays to
remove.
If axis is None, then ravel the array first.
Examples
--------
>>> arr = [[3,4,5],
... [1,2,3],
... [6,7,8]]
>>> delete(arr, 1, 1)
array([[3, 5],
[1, 3],
[6, 8]])
>>> delete(arr, 1, 0)
array([[3, 4, 5],
[6, 7, 8]])
"""
wrap = None
if type(arr) is not ndarray:
try:
wrap = arr.__array_wrap__
except AttributeError:
pass
arr = asarray(arr)
ndim = arr.ndim
if axis is None:
if ndim != 1:
arr = arr.ravel()
ndim = arr.ndim;
axis = ndim-1;
if ndim == 0:
if wrap:
return wrap(arr)
else:
return arr.copy()
slobj = [slice(None)]*ndim
N = arr.shape[axis]
newshape = list(arr.shape)
if isinstance(obj, (int, long, integer)):
if (obj < 0): obj += N
if (obj < 0 or obj >=N):
raise ValueError, "invalid entry"
newshape[axis]-=1;
new = empty(newshape, arr.dtype, arr.flags.fnc)
slobj[axis] = slice(None, obj)
new[slobj] = arr[slobj]
slobj[axis] = slice(obj,None)
slobj2 = [slice(None)]*ndim
slobj2[axis] = slice(obj+1,None)
new[slobj] = arr[slobj2]
elif isinstance(obj, slice):
start, stop, step = obj.indices(N)
numtodel = len(xrange(start, stop, step))
if numtodel <= 0:
if wrap:
return wrap(new)
else:
return arr.copy()
newshape[axis] -= numtodel
new = empty(newshape, arr.dtype, arr.flags.fnc)
# copy initial chunk
if start == 0:
pass
else:
slobj[axis] = slice(None, start)
new[slobj] = arr[slobj]
# copy end chunck
if stop == N:
pass
else:
slobj[axis] = slice(stop-numtodel,None)
slobj2 = [slice(None)]*ndim
slobj2[axis] = slice(stop, None)
new[slobj] = arr[slobj2]
# copy middle pieces
if step == 1:
pass
else: # use array indexing.
obj = arange(start, stop, step, dtype=intp)
all = arange(start, stop, dtype=intp)
obj = setdiff1d(all, obj)
slobj[axis] = slice(start, stop-numtodel)
slobj2 = [slice(None)]*ndim
slobj2[axis] = obj
new[slobj] = arr[slobj2]
else: # default behavior
obj = array(obj, dtype=intp, copy=0, ndmin=1)
all = arange(N, dtype=intp)
obj = setdiff1d(all, obj)
slobj[axis] = obj
new = arr[slobj]
if wrap:
return wrap(new)
else:
return new
def insert(arr, obj, values, axis=None):
"""Return a new array with values inserted along the given axis
before the given indices
If axis is None, then ravel the array first.
The obj argument can be an integer, a slice, or a sequence of
integers.
Examples
--------
>>> a = array([[1,2,3],
... [4,5,6],
... [7,8,9]])
>>> insert(a, [1,2], [[4],[5]], axis=0)
array([[1, 2, 3],
[4, 4, 4],
[4, 5, 6],
[5, 5, 5],
[7, 8, 9]])
"""
wrap = None
if type(arr) is not ndarray:
try:
wrap = arr.__array_wrap__
except AttributeError:
pass
arr = asarray(arr)
ndim = arr.ndim
if axis is None:
if ndim != 1:
arr = arr.ravel()
ndim = arr.ndim
axis = ndim-1
if (ndim == 0):
arr = arr.copy()
arr[...] = values
if wrap:
return wrap(arr)
else:
return arr
slobj = [slice(None)]*ndim
N = arr.shape[axis]
newshape = list(arr.shape)
if isinstance(obj, (int, long, integer)):
if (obj < 0): obj += N
if obj < 0 or obj > N:
raise ValueError, "index (%d) out of range (0<=index<=%d) "\
"in dimension %d" % (obj, N, axis)
newshape[axis] += 1;
new = empty(newshape, arr.dtype, arr.flags.fnc)
slobj[axis] = slice(None, obj)
new[slobj] = arr[slobj]
slobj[axis] = obj
new[slobj] = values
slobj[axis] = slice(obj+1,None)
slobj2 = [slice(None)]*ndim
slobj2[axis] = slice(obj,None)
new[slobj] = arr[slobj2]
if wrap:
return wrap(new)
return new
elif isinstance(obj, slice):
# turn it into a range object
obj = arange(*obj.indices(N),**{'dtype':intp})
# get two sets of indices
# one is the indices which will hold the new stuff
# two is the indices where arr will be copied over
obj = asarray(obj, dtype=intp)
numnew = len(obj)
index1 = obj + arange(numnew)
index2 = setdiff1d(arange(numnew+N),index1)
newshape[axis] += numnew
new = empty(newshape, arr.dtype, arr.flags.fnc)
slobj2 = [slice(None)]*ndim
slobj[axis] = index1
slobj2[axis] = index2
new[slobj] = values
new[slobj2] = arr
if wrap:
return wrap(new)
return new
def append(arr, values, axis=None):
"""Append to the end of an array along axis (ravel first if None)
"""
arr = asanyarray(arr)
if axis is None:
if arr.ndim != 1:
arr = arr.ravel()
values = ravel(values)
axis = arr.ndim-1
return concatenate((arr, values), axis=axis)
|