1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
__all__ = ['unravel_index',
'mgrid',
'ogrid',
'r_', 'c_', 's_',
'index_exp', 'ix_',
'ndenumerate','ndindex']
import sys
import numpy.core.numeric as _nx
from numpy.core.numeric import asarray, ScalarType, array, dtype
from numpy.core.numerictypes import find_common_type
import math
import function_base
import numpy.core.defmatrix as matrix
makemat = matrix.matrix
# contributed by Stefan van der Walt
def unravel_index(x,dims):
"""Convert a flat index into an index tuple for an array of given shape.
e.g. for a 2x2 array, unravel_index(2,(2,2)) returns (1,0).
Example usage:
p = x.argmax()
idx = unravel_index(p,x.shape)
x[idx] == x.max()
Note: x.flat[p] == x.max()
Thus, it may be easier to use flattened indexing than to re-map
the index to a tuple.
"""
if x > _nx.prod(dims)-1 or x < 0:
raise ValueError("Invalid index, must be 0 <= x <= number of elements.")
idx = _nx.empty_like(dims)
# Take dimensions
# [a,b,c,d]
# Reverse and drop first element
# [d,c,b]
# Prepend [1]
# [1,d,c,b]
# Calculate cumulative product
# [1,d,dc,dcb]
# Reverse
# [dcb,dc,d,1]
dim_prod = _nx.cumprod([1] + list(dims)[:0:-1])[::-1]
# Indices become [x/dcb % a, x/dc % b, x/d % c, x/1 % d]
return tuple(x/dim_prod % dims)
def ix_(*args):
""" Construct an open mesh from multiple sequences.
This function takes n 1-d sequences and returns n outputs with n
dimensions each such that the shape is 1 in all but one dimension and
the dimension with the non-unit shape value cycles through all n
dimensions.
Using ix_() one can quickly construct index arrays that will index
the cross product.
a[ix_([1,3,7],[2,5,8])] returns the array
a[1,2] a[1,5] a[1,8]
a[3,2] a[3,5] a[3,8]
a[7,2] a[7,5] a[7,8]
"""
out = []
nd = len(args)
baseshape = [1]*nd
for k in range(nd):
new = _nx.asarray(args[k])
if (new.ndim != 1):
raise ValueError, "Cross index must be 1 dimensional"
if issubclass(new.dtype.type, _nx.bool_):
new = new.nonzero()[0]
baseshape[k] = len(new)
new = new.reshape(tuple(baseshape))
out.append(new)
baseshape[k] = 1
return tuple(out)
class nd_grid(object):
"""
Construct a multi-dimensional "meshgrid".
grid = nd_grid() creates an instance which will return a mesh-grid
when indexed. The dimension and number of the output arrays are equal
to the number of indexing dimensions. If the step length is not a
complex number, then the stop is not inclusive.
However, if the step length is a **complex number** (e.g. 5j), then the
integer part of it's magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value **is inclusive**.
If instantiated with an argument of sparse=True, the mesh-grid is
open (or not fleshed out) so that only one-dimension of each returned
argument is greater than 1
Examples
--------
>>> mgrid = nd_grid()
>>> mgrid[0:5,0:5]
array([[[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]],
<BLANKLINE>
[[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]]])
>>> mgrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1. ])
>>> ogrid = nd_grid(sparse=True)
>>> ogrid[0:5,0:5]
[array([[0],
[1],
[2],
[3],
[4]]), array([[0, 1, 2, 3, 4]])]
"""
def __init__(self, sparse=False):
self.sparse = sparse
def __getitem__(self,key):
try:
size = []
typ = int
for k in range(len(key)):
step = key[k].step
start = key[k].start
if start is None: start=0
if step is None: step=1
if isinstance(step, complex):
size.append(int(abs(step)))
typ = float
else:
size.append(math.ceil((key[k].stop - start)/(step*1.0)))
if isinstance(step, float) or \
isinstance(start, float) or \
isinstance(key[k].stop, float):
typ = float
if self.sparse:
nn = map(lambda x,t: _nx.arange(x, dtype=t), size, \
(typ,)*len(size))
else:
nn = _nx.indices(size, typ)
for k in range(len(size)):
step = key[k].step
start = key[k].start
if start is None: start=0
if step is None: step=1
if isinstance(step, complex):
step = int(abs(step))
if step != 1:
step = (key[k].stop - start)/float(step-1)
nn[k] = (nn[k]*step+start)
if self.sparse:
slobj = [_nx.newaxis]*len(size)
for k in range(len(size)):
slobj[k] = slice(None,None)
nn[k] = nn[k][slobj]
slobj[k] = _nx.newaxis
return nn
except (IndexError, TypeError):
step = key.step
stop = key.stop
start = key.start
if start is None: start = 0
if isinstance(step, complex):
step = abs(step)
length = int(step)
if step != 1:
step = (key.stop-start)/float(step-1)
stop = key.stop+step
return _nx.arange(0, length,1, float)*step + start
else:
return _nx.arange(start, stop, step)
def __getslice__(self,i,j):
return _nx.arange(i,j)
def __len__(self):
return 0
mgrid = nd_grid(sparse=False)
ogrid = nd_grid(sparse=True)
class AxisConcatenator(object):
"""Translates slice objects to concatenation along an axis.
"""
def _retval(self, res):
if self.matrix:
oldndim = res.ndim
res = makemat(res)
if oldndim == 1 and self.col:
res = res.T
self.axis = self._axis
self.matrix = self._matrix
self.col = 0
return res
def __init__(self, axis=0, matrix=False, ndmin=1, trans1d=-1):
self._axis = axis
self._matrix = matrix
self.axis = axis
self.matrix = matrix
self.col = 0
self.trans1d = trans1d
self.ndmin = ndmin
def __getitem__(self,key):
trans1d = self.trans1d
ndmin = self.ndmin
if isinstance(key, str):
frame = sys._getframe().f_back
mymat = matrix.bmat(key,frame.f_globals,frame.f_locals)
return mymat
if type(key) is not tuple:
key = (key,)
objs = []
scalars = []
arraytypes = []
scalartypes = []
for k in range(len(key)):
scalar = False
if type(key[k]) is slice:
step = key[k].step
start = key[k].start
stop = key[k].stop
if start is None: start = 0
if step is None:
step = 1
if isinstance(step, complex):
size = int(abs(step))
newobj = function_base.linspace(start, stop, num=size)
else:
newobj = _nx.arange(start, stop, step)
if ndmin > 1:
newobj = array(newobj,copy=False,ndmin=ndmin)
if trans1d != -1:
newobj = newobj.swapaxes(-1,trans1d)
elif isinstance(key[k],str):
if k != 0:
raise ValueError, "special directives must be the"\
"first entry."
key0 = key[0]
if key0 in 'rc':
self.matrix = True
self.col = (key0 == 'c')
continue
if ',' in key0:
vec = key0.split(',')
try:
self.axis, ndmin = \
[int(x) for x in vec[:2]]
if len(vec) == 3:
trans1d = int(vec[2])
continue
except:
raise ValueError, "unknown special directive"
try:
self.axis = int(key[k])
continue
except (ValueError, TypeError):
raise ValueError, "unknown special directive"
elif type(key[k]) in ScalarType:
newobj = array(key[k],ndmin=ndmin)
scalars.append(k)
scalar = True
scalartypes.append(newobj.dtype)
else:
newobj = key[k]
if ndmin > 1:
tempobj = array(newobj, copy=False, subok=True)
newobj = array(newobj, copy=False, subok=True,
ndmin=ndmin)
if trans1d != -1 and tempobj.ndim < ndmin:
k2 = ndmin-tempobj.ndim
if (trans1d < 0):
trans1d += k2 + 1
defaxes = range(ndmin)
k1 = trans1d
axes = defaxes[:k1] + defaxes[k2:] + \
defaxes[k1:k2]
newobj = newobj.transpose(axes)
del tempobj
objs.append(newobj)
if not scalar and isinstance(newobj, _nx.ndarray):
arraytypes.append(newobj.dtype)
# Esure that scalars won't up-cast unless warranted
final_dtype = find_common_type(arraytypes, scalartypes)
if final_dtype is not None:
for k in scalars:
objs[k] = objs[k].astype(final_dtype)
res = _nx.concatenate(tuple(objs),axis=self.axis)
return self._retval(res)
def __getslice__(self,i,j):
res = _nx.arange(i,j)
return self._retval(res)
def __len__(self):
return 0
# separate classes are used here instead of just making r_ = concatentor(0),
# etc. because otherwise we couldn't get the doc string to come out right
# in help(r_)
class RClass(AxisConcatenator):
"""Translates slice objects to concatenation along the first axis.
For example:
>>> r_[array([1,2,3]), 0, 0, array([4,5,6])]
array([1, 2, 3, 0, 0, 4, 5, 6])
"""
def __init__(self):
AxisConcatenator.__init__(self, 0)
r_ = RClass()
class CClass(AxisConcatenator):
"""Translates slice objects to concatenation along the second axis.
For example:
>>> c_[array([[1,2,3]]), 0, 0, array([[4,5,6]])]
array([1, 2, 3, 0, 0, 4, 5, 6])
"""
def __init__(self):
AxisConcatenator.__init__(self, -1, ndmin=2, trans1d=0)
c_ = CClass()
class ndenumerate(object):
"""
A simple nd index iterator over an array.
Example:
>>> a = array([[1,2],[3,4]])
>>> for index, x in ndenumerate(a):
... print index, x
(0, 0) 1
(0, 1) 2
(1, 0) 3
(1, 1) 4
"""
def __init__(self, arr):
self.iter = asarray(arr).flat
def next(self):
return self.iter.coords, self.iter.next()
def __iter__(self):
return self
class ndindex(object):
"""Pass in a sequence of integers corresponding
to the number of dimensions in the counter. This iterator
will then return an N-dimensional counter.
Example:
>>> for index in ndindex(3,2,1):
... print index
(0, 0, 0)
(0, 1, 0)
(1, 0, 0)
(1, 1, 0)
(2, 0, 0)
(2, 1, 0)
"""
def __init__(self, *args):
if len(args) == 1 and isinstance(args[0], tuple):
args = args[0]
self.nd = len(args)
self.ind = [0]*self.nd
self.index = 0
self.maxvals = args
tot = 1
for k in range(self.nd):
tot *= args[k]
self.total = tot
def _incrementone(self, axis):
if (axis < 0): # base case
return
if (self.ind[axis] < self.maxvals[axis]-1):
self.ind[axis] += 1
else:
self.ind[axis] = 0
self._incrementone(axis-1)
def ndincr(self):
self._incrementone(self.nd-1)
def next(self):
if (self.index >= self.total):
raise StopIteration
val = tuple(self.ind)
self.index += 1
self.ndincr()
return val
def __iter__(self):
return self
# You can do all this with slice() plus a few special objects,
# but there's a lot to remember. This version is simpler because
# it uses the standard array indexing syntax.
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# last revision: 1999-7-23
#
# Cosmetic changes by T. Oliphant 2001
#
#
class IndexExpression(object):
"""
A nicer way to build up index tuples for arrays.
For any index combination, including slicing and axis insertion,
'a[indices]' is the same as 'a[index_exp[indices]]' for any
array 'a'. However, 'index_exp[indices]' can be used anywhere
in Python code and returns a tuple of slice objects that can be
used in the construction of complex index expressions.
"""
maxint = sys.maxint
def __init__(self, maketuple):
self.maketuple = maketuple
def __getitem__(self, item):
if self.maketuple and type(item) != type(()):
return (item,)
else:
return item
def __len__(self):
return self.maxint
def __getslice__(self, start, stop):
if stop == self.maxint:
stop = None
return self[start:stop:None]
index_exp = IndexExpression(maketuple=True)
s_ = IndexExpression(maketuple=False)
# End contribution from Konrad.
|