1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
"""
Wrapper functions to more user-friendly calling of certain math functions
whose output data-type is different than the input data-type in certain
domains of the input.
For example, for functions like log() with branch cuts, the versions in this
module provide the mathematically valid answers in the complex plane:
>>> import math
>>> from numpy.lib import scimath
>>> scimath.log(-math.exp(1)) == (1+1j*math.pi)
True
Similarly, sqrt(), other base logarithms, power() and trig functions are
correctly handled. See their respective docstrings for specific examples.
"""
__all__ = ['sqrt', 'log', 'log2', 'logn','log10', 'power', 'arccos',
'arcsin', 'arctanh']
import numpy.core.numeric as nx
import numpy.core.numerictypes as nt
from numpy.core.numeric import asarray, any
from numpy.lib.type_check import isreal
_ln2 = nx.log(2.0)
def _tocomplex(arr):
"""Convert its input `arr` to a complex array.
The input is returned as a complex array of the smallest type that will fit
the original data: types like single, byte, short, etc. become csingle,
while others become cdouble.
A copy of the input is always made.
Parameters
----------
arr : array
Returns
-------
array
An array with the same input data as the input but in complex form.
Examples
--------
>>> import numpy as np
First, consider an input of type short:
>>> a = np.array([1,2,3],np.short)
>>> ac = _tocomplex(a); ac
array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
>>> ac.dtype
dtype('complex64')
If the input is of type double, the output is correspondingly of the
complex double type as well:
>>> b = np.array([1,2,3],np.double)
>>> bc = _tocomplex(b); bc
array([ 1.+0.j, 2.+0.j, 3.+0.j])
>>> bc.dtype
dtype('complex128')
Note that even if the input was complex to begin with, a copy is still
made, since the astype() method always copies:
>>> c = np.array([1,2,3],np.csingle)
>>> cc = _tocomplex(c); cc
array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
>>> c *= 2; c
array([ 2.+0.j, 4.+0.j, 6.+0.j], dtype=complex64)
>>> cc
array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
"""
if issubclass(arr.dtype.type, (nt.single, nt.byte, nt.short, nt.ubyte,
nt.ushort,nt.csingle)):
return arr.astype(nt.csingle)
else:
return arr.astype(nt.cdouble)
def _fix_real_lt_zero(x):
"""Convert `x` to complex if it has real, negative components.
Otherwise, output is just the array version of the input (via asarray).
Parameters
----------
x : array_like
Returns
-------
array
Examples
--------
>>> _fix_real_lt_zero([1,2])
array([1, 2])
>>> _fix_real_lt_zero([-1,2])
array([-1.+0.j, 2.+0.j])
"""
x = asarray(x)
if any(isreal(x) & (x<0)):
x = _tocomplex(x)
return x
def _fix_int_lt_zero(x):
"""Convert `x` to double if it has real, negative components.
Otherwise, output is just the array version of the input (via asarray).
Parameters
----------
x : array_like
Returns
-------
array
Examples
--------
>>> _fix_int_lt_zero([1,2])
array([1, 2])
>>> _fix_int_lt_zero([-1,2])
array([-1., 2.])
"""
x = asarray(x)
if any(isreal(x) & (x < 0)):
x = x * 1.0
return x
def _fix_real_abs_gt_1(x):
"""Convert `x` to complex if it has real components x_i with abs(x_i)>1.
Otherwise, output is just the array version of the input (via asarray).
Parameters
----------
x : array_like
Returns
-------
array
Examples
--------
>>> _fix_real_abs_gt_1([0,1])
array([0, 1])
>>> _fix_real_abs_gt_1([0,2])
array([ 0.+0.j, 2.+0.j])
"""
x = asarray(x)
if any(isreal(x) & (abs(x)>1)):
x = _tocomplex(x)
return x
def sqrt(x):
"""Return the square root of x.
Parameters
----------
x : array_like
Returns
-------
array_like output.
Examples
--------
For real, non-negative inputs this works just like numpy.sqrt():
>>> sqrt(1)
1.0
>>> sqrt([1,4])
array([ 1., 2.])
But it automatically handles negative inputs:
>>> sqrt(-1)
(0.0+1.0j)
>>> sqrt([-1,4])
array([ 0.+1.j, 2.+0.j])
"""
x = _fix_real_lt_zero(x)
return nx.sqrt(x)
def log(x):
"""Return the natural logarithm of x.
If x contains negative inputs, the answer is computed and returned in the
complex domain.
Parameters
----------
x : array_like
Returns
-------
array_like
Examples
--------
>>> import math
>>> log(math.exp(1))
1.0
Negative arguments are correctly handled (recall that for negative
arguments, the identity exp(log(z))==z does not hold anymore):
>>> log(-math.exp(1)) == (1+1j*math.pi)
True
"""
x = _fix_real_lt_zero(x)
return nx.log(x)
def log10(x):
"""Return the base 10 logarithm of x.
If x contains negative inputs, the answer is computed and returned in the
complex domain.
Parameters
----------
x : array_like
Returns
-------
array_like
Examples
--------
(We set the printing precision so the example can be auto-tested)
>>> import numpy as np; np.set_printoptions(precision=4)
>>> log10([10**1,10**2])
array([ 1., 2.])
>>> log10([-10**1,-10**2,10**2])
array([ 1.+1.3644j, 2.+1.3644j, 2.+0.j ])
"""
x = _fix_real_lt_zero(x)
return nx.log10(x)
def logn(n, x):
"""Take log base n of x.
If x contains negative inputs, the answer is computed and returned in the
complex domain.
Parameters
----------
x : array_like
Returns
-------
array_like
Examples
--------
(We set the printing precision so the example can be auto-tested)
>>> import numpy as np; np.set_printoptions(precision=4)
>>> logn(2,[4,8])
array([ 2., 3.])
>>> logn(2,[-4,-8,8])
array([ 2.+4.5324j, 3.+4.5324j, 3.+0.j ])
"""
x = _fix_real_lt_zero(x)
n = _fix_real_lt_zero(n)
return nx.log(x)/nx.log(n)
def log2(x):
""" Take log base 2 of x.
If x contains negative inputs, the answer is computed and returned in the
complex domain.
Parameters
----------
x : array_like
Returns
-------
array_like
Examples
--------
(We set the printing precision so the example can be auto-tested)
>>> import numpy as np; np.set_printoptions(precision=4)
>>> log2([4,8])
array([ 2., 3.])
>>> log2([-4,-8,8])
array([ 2.+4.5324j, 3.+4.5324j, 3.+0.j ])
"""
x = _fix_real_lt_zero(x)
return nx.log(x)/_ln2
def power(x, p):
"""Return x**p.
If x contains negative values, it is converted to the complex domain.
If p contains negative values, it is converted to floating point.
Parameters
----------
x : array_like
p : array_like of integers
Returns
-------
array_like
Examples
--------
(We set the printing precision so the example can be auto-tested)
>>> import numpy as np; np.set_printoptions(precision=4)
>>> power([2,4],2)
array([ 4, 16])
>>> power([2,4],-2)
array([ 0.25 , 0.0625])
>>> power([-2,4],2)
array([ 4.+0.j, 16.+0.j])
"""
x = _fix_real_lt_zero(x)
p = _fix_int_lt_zero(p)
return nx.power(x, p)
def arccos(x):
"""Compute the inverse cosine of x.
For real x with abs(x)<=1, this returns the principal value.
If abs(x)>1, the complex arccos() is computed.
Parameters
----------
x : array_like
Returns
-------
array_like
Examples
--------
>>> import numpy as np; np.set_printoptions(precision=4)
>>> arccos(1)
0.0
>>> arccos([1,2])
array([ 0.-0.j , 0.+1.317j])
"""
x = _fix_real_abs_gt_1(x)
return nx.arccos(x)
def arcsin(x):
"""Compute the inverse sine of x.
For real x with abs(x)<=1, this returns the principal value.
If abs(x)>1, the complex arcsin() is computed.
Parameters
----------
x : array_like
Returns
-------
array_like
Examples
--------
(We set the printing precision so the example can be auto-tested)
>>> import numpy as np; np.set_printoptions(precision=4)
>>> arcsin(0)
0.0
>>> arcsin([0,1])
array([ 0. , 1.5708])
"""
x = _fix_real_abs_gt_1(x)
return nx.arcsin(x)
def arctanh(x):
"""Compute the inverse hyperbolic tangent of x.
For real x with abs(x)<=1, this returns the principal value.
If abs(x)>1, the complex arctanh() is computed.
Parameters
----------
x : array_like
Returns
-------
array_like
Examples
--------
(We set the printing precision so the example can be auto-tested)
>>> import numpy as np; np.set_printoptions(precision=4)
>>> arctanh(0)
0.0
>>> arctanh([0,2])
array([ 0.0000+0.j , 0.5493-1.5708j])
"""
x = _fix_real_abs_gt_1(x)
return nx.arctanh(x)
|