1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
|
__all__ = ['atleast_1d','atleast_2d','atleast_3d','vstack','hstack',
'column_stack','row_stack', 'dstack','array_split','split','hsplit',
'vsplit','dsplit','apply_over_axes','expand_dims',
'apply_along_axis', 'kron', 'tile', 'get_array_wrap']
import numpy.core.numeric as _nx
from numpy.core.numeric import asarray, zeros, newaxis, outer, \
concatenate, isscalar, array, asanyarray
from numpy.core.fromnumeric import product, reshape
def apply_along_axis(func1d,axis,arr,*args):
""" Execute func1d(arr[i],*args) where func1d takes 1-D arrays
and arr is an N-d array. i varies so as to apply the function
along the given axis for each 1-d subarray in arr.
"""
arr = asarray(arr)
nd = arr.ndim
if axis < 0:
axis += nd
if (axis >= nd):
raise ValueError("axis must be less than arr.ndim; axis=%d, rank=%d."
% (axis,nd))
ind = [0]*(nd-1)
i = zeros(nd,'O')
indlist = range(nd)
indlist.remove(axis)
i[axis] = slice(None,None)
outshape = asarray(arr.shape).take(indlist)
i.put(indlist, ind)
res = func1d(arr[tuple(i.tolist())],*args)
# if res is a number, then we have a smaller output array
if isscalar(res):
outarr = zeros(outshape,asarray(res).dtype)
outarr[tuple(ind)] = res
Ntot = product(outshape)
k = 1
while k < Ntot:
# increment the index
ind[-1] += 1
n = -1
while (ind[n] >= outshape[n]) and (n > (1-nd)):
ind[n-1] += 1
ind[n] = 0
n -= 1
i.put(indlist,ind)
res = func1d(arr[tuple(i.tolist())],*args)
outarr[tuple(ind)] = res
k += 1
return outarr
else:
Ntot = product(outshape)
holdshape = outshape
outshape = list(arr.shape)
outshape[axis] = len(res)
outarr = zeros(outshape,asarray(res).dtype)
outarr[tuple(i.tolist())] = res
k = 1
while k < Ntot:
# increment the index
ind[-1] += 1
n = -1
while (ind[n] >= holdshape[n]) and (n > (1-nd)):
ind[n-1] += 1
ind[n] = 0
n -= 1
i.put(indlist, ind)
res = func1d(arr[tuple(i.tolist())],*args)
outarr[tuple(i.tolist())] = res
k += 1
return outarr
def apply_over_axes(func, a, axes):
"""Apply a function repeatedly over multiple axes, keeping the same shape
for the resulting array.
func is called as res = func(a, axis). The result is assumed
to be either the same shape as a or have one less dimension.
This call is repeated for each axis in the axes sequence.
"""
val = asarray(a)
N = a.ndim
if array(axes).ndim == 0:
axes = (axes,)
for axis in axes:
if axis < 0: axis = N + axis
args = (val, axis)
res = func(*args)
if res.ndim == val.ndim:
val = res
else:
res = expand_dims(res,axis)
if res.ndim == val.ndim:
val = res
else:
raise ValueError, "function is not returning"\
" an array of correct shape"
return val
def expand_dims(a, axis):
"""Expand the shape of a by including newaxis before given axis.
"""
a = asarray(a)
shape = a.shape
if axis < 0:
axis = axis + len(shape) + 1
return a.reshape(shape[:axis] + (1,) + shape[axis:])
def atleast_1d(*arys):
""" Force a sequence of arrays to each be at least 1D.
Description:
Force an array to be at least 1D. If an array is 0D, the
array is converted to a single row of values. Otherwise,
the array is unaltered.
Arguments:
*arys -- arrays to be converted to 1 or more dimensional array.
Returns:
input array converted to at least 1D array.
"""
res = []
for ary in arys:
res.append(array(ary,copy=False,subok=True,ndmin=1))
if len(res) == 1:
return res[0]
else:
return res
def atleast_2d(*arys):
""" Force a sequence of arrays to each be at least 2D.
Description:
Force an array to each be at least 2D. If the array
is 0D or 1D, the array is converted to a single
row of values. Otherwise, the array is unaltered.
Arguments:
arys -- arrays to be converted to 2 or more dimensional array.
Returns:
input array converted to at least 2D array.
"""
res = []
for ary in arys:
res.append(array(ary,copy=False,subok=True,ndmin=2))
if len(res) == 1:
return res[0]
else:
return res
def atleast_3d(*arys):
""" Force a sequence of arrays to each be at least 3D.
Description:
Force an array each be at least 3D. If the array is 0D or 1D,
the array is converted to a single 1xNx1 array of values where
N is the orginal length of the array. If the array is 2D, the
array is converted to a single MxNx1 array of values where MxN
is the orginal shape of the array. Otherwise, the array is
unaltered.
Arguments:
arys -- arrays to be converted to 3 or more dimensional array.
Returns:
input array converted to at least 3D array.
"""
res = []
for ary in arys:
ary = asarray(ary)
if len(ary.shape) == 0:
result = ary.reshape(1,1,1)
elif len(ary.shape) == 1:
result = ary[newaxis,:,newaxis]
elif len(ary.shape) == 2:
result = ary[:,:,newaxis]
else:
result = ary
res.append(result)
if len(res) == 1:
return res[0]
else:
return res
def vstack(tup):
""" Stack arrays in sequence vertically (row wise)
Description:
Take a sequence of arrays and stack them vertically
to make a single array. All arrays in the sequence
must have the same shape along all but the first axis.
vstack will rebuild arrays divided by vsplit.
Arguments:
tup -- sequence of arrays. All arrays must have the same
shape.
Examples:
>>> import numpy
>>> a = array((1,2,3))
>>> b = array((2,3,4))
>>> numpy.vstack((a,b))
array([[1, 2, 3],
[2, 3, 4]])
>>> a = array([[1],[2],[3]])
>>> b = array([[2],[3],[4]])
>>> numpy.vstack((a,b))
array([[1],
[2],
[3],
[2],
[3],
[4]])
"""
return _nx.concatenate(map(atleast_2d,tup),0)
def hstack(tup):
""" Stack arrays in sequence horizontally (column wise)
Description:
Take a sequence of arrays and stack them horizontally
to make a single array. All arrays in the sequence
must have the same shape along all but the second axis.
hstack will rebuild arrays divided by hsplit.
Arguments:
tup -- sequence of arrays. All arrays must have the same
shape.
Examples:
>>> import numpy
>>> a = array((1,2,3))
>>> b = array((2,3,4))
>>> numpy.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> a = array([[1],[2],[3]])
>>> b = array([[2],[3],[4]])
>>> numpy.hstack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])
"""
return _nx.concatenate(map(atleast_1d,tup),1)
row_stack = vstack
def column_stack(tup):
""" Stack 1D arrays as columns into a 2D array
Description:
Take a sequence of 1D arrays and stack them as columns
to make a single 2D array. All arrays in the sequence
must have the same first dimension. 2D arrays are
stacked as-is, just like with hstack. 1D arrays are turned
into 2D columns first.
Arguments:
tup -- sequence of 1D or 2D arrays. All arrays must have the same
first dimension.
Examples:
>>> import numpy
>>> a = array((1,2,3))
>>> b = array((2,3,4))
>>> numpy.column_stack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])
"""
arrays = []
for v in tup:
arr = array(v,copy=False,subok=True)
if arr.ndim < 2:
arr = array(arr,copy=False,subok=True,ndmin=2).T
arrays.append(arr)
return _nx.concatenate(arrays,1)
def dstack(tup):
""" Stack arrays in sequence depth wise (along third dimension)
Description:
Take a sequence of arrays and stack them along the third axis.
All arrays in the sequence must have the same shape along all
but the third axis. This is a simple way to stack 2D arrays
(images) into a single 3D array for processing.
dstack will rebuild arrays divided by dsplit.
Arguments:
tup -- sequence of arrays. All arrays must have the same
shape.
Examples:
>>> import numpy
>>> a = array((1,2,3))
>>> b = array((2,3,4))
>>> numpy.dstack((a,b))
array([[[1, 2],
[2, 3],
[3, 4]]])
>>> a = array([[1],[2],[3]])
>>> b = array([[2],[3],[4]])
>>> numpy.dstack((a,b))
array([[[1, 2]],
<BLANKLINE>
[[2, 3]],
<BLANKLINE>
[[3, 4]]])
"""
return _nx.concatenate(map(atleast_3d,tup),2)
def _replace_zero_by_x_arrays(sub_arys):
for i in range(len(sub_arys)):
if len(_nx.shape(sub_arys[i])) == 0:
sub_arys[i] = _nx.array([])
elif _nx.sometrue(_nx.equal(_nx.shape(sub_arys[i]),0)):
sub_arys[i] = _nx.array([])
return sub_arys
def array_split(ary,indices_or_sections,axis = 0):
""" Divide an array into a list of sub-arrays.
Description:
Divide ary into a list of sub-arrays along the
specified axis. If indices_or_sections is an integer,
ary is divided into that many equally sized arrays.
If it is impossible to make an equal split, each of the
leading arrays in the list have one additional member. If
indices_or_sections is a list of sorted integers, its
entries define the indexes where ary is split.
Arguments:
ary -- N-D array.
Array to be divided into sub-arrays.
indices_or_sections -- integer or 1D array.
If integer, defines the number of (close to) equal sized
sub-arrays. If it is a 1D array of sorted indices, it
defines the indexes at which ary is divided. Any empty
list results in a single sub-array equal to the original
array.
axis -- integer. default=0.
Specifies the axis along which to split ary.
Caveats:
Currently, the default for axis is 0. This
means a 2D array is divided into multiple groups
of rows. This seems like the appropriate default,
"""
try:
Ntotal = ary.shape[axis]
except AttributeError:
Ntotal = len(ary)
try: # handle scalar case.
Nsections = len(indices_or_sections) + 1
div_points = [0] + list(indices_or_sections) + [Ntotal]
except TypeError: #indices_or_sections is a scalar, not an array.
Nsections = int(indices_or_sections)
if Nsections <= 0:
raise ValueError, 'number sections must be larger than 0.'
Neach_section,extras = divmod(Ntotal,Nsections)
section_sizes = [0] + \
extras * [Neach_section+1] + \
(Nsections-extras) * [Neach_section]
div_points = _nx.array(section_sizes).cumsum()
sub_arys = []
sary = _nx.swapaxes(ary,axis,0)
for i in range(Nsections):
st = div_points[i]; end = div_points[i+1]
sub_arys.append(_nx.swapaxes(sary[st:end],axis,0))
# there is a wierd issue with array slicing that allows
# 0x10 arrays and other such things. The following cluge is needed
# to get around this issue.
sub_arys = _replace_zero_by_x_arrays(sub_arys)
# end cluge.
return sub_arys
def split(ary,indices_or_sections,axis=0):
""" Divide an array into a list of sub-arrays.
Description:
Divide ary into a list of sub-arrays along the
specified axis. If indices_or_sections is an integer,
ary is divided into that many equally sized arrays.
If it is impossible to make an equal split, an error is
raised. This is the only way this function differs from
the array_split() function. If indices_or_sections is a
list of sorted integers, its entries define the indexes
where ary is split.
Arguments:
ary -- N-D array.
Array to be divided into sub-arrays.
indices_or_sections -- integer or 1D array.
If integer, defines the number of (close to) equal sized
sub-arrays. If it is a 1D array of sorted indices, it
defines the indexes at which ary is divided. Any empty
list results in a single sub-array equal to the original
array.
axis -- integer. default=0.
Specifies the axis along which to split ary.
Caveats:
Currently, the default for axis is 0. This
means a 2D array is divided into multiple groups
of rows. This seems like the appropriate default
"""
try: len(indices_or_sections)
except TypeError:
sections = indices_or_sections
N = ary.shape[axis]
if N % sections:
raise ValueError, 'array split does not result in an equal division'
res = array_split(ary,indices_or_sections,axis)
return res
def hsplit(ary,indices_or_sections):
""" Split ary into multiple columns of sub-arrays
Description:
Split a single array into multiple sub arrays. The array is
divided into groups of columns. If indices_or_sections is
an integer, ary is divided into that many equally sized sub arrays.
If it is impossible to make the sub-arrays equally sized, the
operation throws a ValueError exception. See array_split and
split for other options on indices_or_sections.
Arguments:
ary -- N-D array.
Array to be divided into sub-arrays.
indices_or_sections -- integer or 1D array.
If integer, defines the number of (close to) equal sized
sub-arrays. If it is a 1D array of sorted indices, it
defines the indexes at which ary is divided. Any empty
list results in a single sub-array equal to the original
array.
Returns:
sequence of sub-arrays. The returned arrays have the same
number of dimensions as the input array.
Related:
hstack, split, array_split, vsplit, dsplit.
Examples:
>>> import numpy
>>> a= array((1,2,3,4))
>>> numpy.hsplit(a,2)
[array([1, 2]), array([3, 4])]
>>> a = array([[1,2,3,4],[1,2,3,4]])
>>> hsplit(a,2)
[array([[1, 2],
[1, 2]]), array([[3, 4],
[3, 4]])]
"""
if len(_nx.shape(ary)) == 0:
raise ValueError, 'hsplit only works on arrays of 1 or more dimensions'
if len(ary.shape) > 1:
return split(ary,indices_or_sections,1)
else:
return split(ary,indices_or_sections,0)
def vsplit(ary,indices_or_sections):
""" Split ary into multiple rows of sub-arrays
Description:
Split a single array into multiple sub arrays. The array is
divided into groups of rows. If indices_or_sections is
an integer, ary is divided into that many equally sized sub arrays.
If it is impossible to make the sub-arrays equally sized, the
operation throws a ValueError exception. See array_split and
split for other options on indices_or_sections.
Arguments:
ary -- N-D array.
Array to be divided into sub-arrays.
indices_or_sections -- integer or 1D array.
If integer, defines the number of (close to) equal sized
sub-arrays. If it is a 1D array of sorted indices, it
defines the indexes at which ary is divided. Any empty
list results in a single sub-array equal to the original
array.
Returns:
sequence of sub-arrays. The returned arrays have the same
number of dimensions as the input array.
Caveats:
How should we handle 1D arrays here? I am currently raising
an error when I encounter them. Any better approach?
Should we reduce the returned array to their minium dimensions
by getting rid of any dimensions that are 1?
Related:
vstack, split, array_split, hsplit, dsplit.
Examples:
import numpy
>>> a = array([[1,2,3,4],
... [1,2,3,4]])
>>> numpy.vsplit(a,2)
[array([[1, 2, 3, 4]]), array([[1, 2, 3, 4]])]
"""
if len(_nx.shape(ary)) < 2:
raise ValueError, 'vsplit only works on arrays of 2 or more dimensions'
return split(ary,indices_or_sections,0)
def dsplit(ary,indices_or_sections):
""" Split ary into multiple sub-arrays along the 3rd axis (depth)
Description:
Split a single array into multiple sub arrays. The array is
divided into groups along the 3rd axis. If indices_or_sections is
an integer, ary is divided into that many equally sized sub arrays.
If it is impossible to make the sub-arrays equally sized, the
operation throws a ValueError exception. See array_split and
split for other options on indices_or_sections.
Arguments:
ary -- N-D array.
Array to be divided into sub-arrays.
indices_or_sections -- integer or 1D array.
If integer, defines the number of (close to) equal sized
sub-arrays. If it is a 1D array of sorted indices, it
defines the indexes at which ary is divided. Any empty
list results in a single sub-array equal to the original
array.
Returns:
sequence of sub-arrays. The returned arrays have the same
number of dimensions as the input array.
Caveats:
See vsplit caveats.
Related:
dstack, split, array_split, hsplit, vsplit.
Examples:
>>> a = array([[[1,2,3,4],[1,2,3,4]]])
>>> dsplit(a,2)
[array([[[1, 2],
[1, 2]]]), array([[[3, 4],
[3, 4]]])]
"""
if len(_nx.shape(ary)) < 3:
raise ValueError, 'vsplit only works on arrays of 3 or more dimensions'
return split(ary,indices_or_sections,2)
def get_array_wrap(*args):
"""Find the wrapper for the array with the highest priority.
In case of ties, leftmost wins. If no wrapper is found, return None
"""
wrappers = [(getattr(x, '__array_priority__', 0), -i,
x.__array_wrap__) for i, x in enumerate(args)
if hasattr(x, '__array_wrap__')]
wrappers.sort()
if wrappers:
return wrappers[-1][-1]
return None
def kron(a,b):
"""kronecker product of a and b
Kronecker product of two arrays is block array
[[ a[ 0 ,0]*b, a[ 0 ,1]*b, ... , a[ 0 ,n-1]*b ],
[ ... ... ],
[ a[m-1,0]*b, a[m-1,1]*b, ... , a[m-1,n-1]*b ]]
"""
wrapper = get_array_wrap(a, b)
b = asanyarray(b)
a = array(a,copy=False,subok=True,ndmin=b.ndim)
ndb, nda = b.ndim, a.ndim
if (nda == 0 or ndb == 0):
return _nx.multiply(a,b)
as_ = a.shape
bs = b.shape
if not a.flags.contiguous:
a = reshape(a, as_)
if not b.flags.contiguous:
b = reshape(b, bs)
nd = ndb
if (ndb != nda):
if (ndb > nda):
as_ = (1,)*(ndb-nda) + as_
else:
bs = (1,)*(nda-ndb) + bs
nd = nda
result = outer(a,b).reshape(as_+bs)
axis = nd-1
for _ in xrange(nd):
result = concatenate(result, axis=axis)
if wrapper is not None:
result = wrapper(result)
return result
def tile(A, reps):
"""Repeat an array the number of times given in the integer tuple, reps.
If reps has length d, the result will have dimension of max(d, A.ndim).
If reps is scalar it is treated as a 1-tuple.
If A.ndim < d, A is promoted to be d-dimensional by prepending new axes.
So a shape (3,) array is promoted to (1,3) for 2-D replication,
or shape (1,1,3) for 3-D replication.
If this is not the desired behavior, promote A to d-dimensions manually
before calling this function.
If d < A.ndim, tup is promoted to A.ndim by pre-pending 1's to it. Thus
for an A.shape of (2,3,4,5), a tup of (2,2) is treated as (1,1,2,2)
Examples:
>>> a = array([0,1,2])
>>> tile(a,2)
array([0, 1, 2, 0, 1, 2])
>>> tile(a,(1,2))
array([[0, 1, 2, 0, 1, 2]])
>>> tile(a,(2,2))
array([[0, 1, 2, 0, 1, 2],
[0, 1, 2, 0, 1, 2]])
>>> tile(a,(2,1,2))
array([[[0, 1, 2, 0, 1, 2]],
<BLANKLINE>
[[0, 1, 2, 0, 1, 2]]])
See Also:
repeat
"""
try:
tup = tuple(reps)
except TypeError:
tup = (reps,)
d = len(tup)
c = _nx.array(A,copy=False,subok=True,ndmin=d)
shape = list(c.shape)
n = max(c.size,1)
if (d < c.ndim):
tup = (1,)*(c.ndim-d) + tup
for i, nrep in enumerate(tup):
if nrep!=1:
c = c.reshape(-1,n).repeat(nrep,0)
dim_in = shape[i]
dim_out = dim_in*nrep
shape[i] = dim_out
n /= max(dim_in,1)
return c.reshape(shape)
|