File: type_check.py

package info (click to toggle)
python-numpy 1%3A1.1.0-3%2Blenny1
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 9,548 kB
  • ctags: 14,321
  • sloc: ansic: 73,119; python: 59,655; cpp: 822; makefile: 179; fortran: 121; f90: 42
file content (233 lines) | stat: -rw-r--r-- 7,213 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
## Automatically adapted for numpy Sep 19, 2005 by convertcode.py

__all__ = ['iscomplexobj','isrealobj','imag','iscomplex',
           'isreal','nan_to_num','real','real_if_close',
           'typename','asfarray','mintypecode','asscalar',
           'common_type']

import numpy.core.numeric as _nx
from numpy.core.numeric import asarray, asanyarray, array, isnan, \
                obj2sctype, zeros
from ufunclike import isneginf, isposinf

_typecodes_by_elsize = 'GDFgdfQqLlIiHhBb?'

def mintypecode(typechars,typeset='GDFgdf',default='d'):
    """ Return a minimum data type character from typeset that
    handles all typechars given

    The returned type character must be the smallest size such that
    an array of the returned type can handle the data from an array of
    type t for each t in typechars (or if typechars is an array,
    then its dtype.char).

    If the typechars does not intersect with the typeset, then default
    is returned.

    If t in typechars is not a string then t=asarray(t).dtype.char is
    applied.
    """
    typecodes = [(type(t) is type('') and t) or asarray(t).dtype.char\
                 for t in typechars]
    intersection = [t for t in typecodes if t in typeset]
    if not intersection:
        return default
    if 'F' in intersection and 'd' in intersection:
        return 'D'
    l = []
    for t in intersection:
        i = _typecodes_by_elsize.index(t)
        l.append((i,t))
    l.sort()
    return l[0][1]

def asfarray(a, dtype=_nx.float_):
    """asfarray(a,dtype=None) returns a as a float array."""
    dtype = _nx.obj2sctype(dtype)
    if not issubclass(dtype, _nx.inexact):
        dtype = _nx.float_
    return asarray(a,dtype=dtype)

def real(val):
    """Return the real part of val.

    Useful if val maybe a scalar or an array.
    """
    return asanyarray(val).real

def imag(val):
    """Return the imaginary part of val.

    Useful if val maybe a scalar or an array.
    """
    return asanyarray(val).imag

def iscomplex(x):
    """Return a boolean array where elements are True if that element
    is complex (has non-zero imaginary part).

    For scalars, return a boolean.
    """
    ax = asanyarray(x)
    if issubclass(ax.dtype.type, _nx.complexfloating):
        return ax.imag != 0
    res = zeros(ax.shape, bool)
    return +res  # convet to array-scalar if needed

def isreal(x):
    """Return a boolean array where elements are True if that element
    is real (has zero imaginary part)

    For scalars, return a boolean.
    """
    return imag(x) == 0

def iscomplexobj(x):
    """Return True if x is a complex type or an array of complex numbers.

    Unlike iscomplex(x), complex(3.0) is considered a complex object.
    """
    return issubclass( asarray(x).dtype.type, _nx.complexfloating)

def isrealobj(x):
    """Return True if x is not a complex type.

    Unlike isreal(x), complex(3.0) is considered a complex object.
    """
    return not issubclass( asarray(x).dtype.type, _nx.complexfloating)

#-----------------------------------------------------------------------------

def _getmaxmin(t):
    import getlimits
    f = getlimits.finfo(t)
    return f.max, f.min

def nan_to_num(x):
    """
    Returns a copy of replacing NaN's with 0 and Infs with large numbers

    The following mappings are applied:
        NaN -> 0
        Inf -> limits.double_max
       -Inf -> limits.double_min
    """
    try:
        t = x.dtype.type
    except AttributeError:
        t = obj2sctype(type(x))
    if issubclass(t, _nx.complexfloating):
        return nan_to_num(x.real) + 1j * nan_to_num(x.imag)
    else:
        try:
            y = x.copy()
        except AttributeError:
            y = array(x)
    if not issubclass(t, _nx.integer):
        if not y.shape:
            y = array([x])
            scalar = True
        else:
            scalar = False
        are_inf = isposinf(y)
        are_neg_inf = isneginf(y)
        are_nan = isnan(y)
        maxf, minf = _getmaxmin(y.dtype.type)
        y[are_nan] = 0
        y[are_inf] = maxf
        y[are_neg_inf] = minf
        if scalar:
            y = y[0]
    return y

#-----------------------------------------------------------------------------

def real_if_close(a,tol=100):
    """If a is a complex array, return it as a real array if the imaginary
    part is close enough to zero.

    "Close enough" is defined as tol*(machine epsilon of a's element type).
    """
    a = asanyarray(a)
    if not issubclass(a.dtype.type, _nx.complexfloating):
        return a
    if tol > 1:
        import getlimits
        f = getlimits.finfo(a.dtype.type)
        tol = f.eps * tol
    if _nx.allclose(a.imag, 0, atol=tol):
        a = a.real
    return a


def asscalar(a):
    """Convert an array of size 1 to its scalar equivalent.
    """
    return a.item()

#-----------------------------------------------------------------------------

_namefromtype = {'S1' : 'character',
                 '?' : 'bool',
                 'b' : 'signed char',
                 'B' : 'unsigned char',
                 'h' : 'short',
                 'H' : 'unsigned short',
                 'i' : 'integer',
                 'I' : 'unsigned integer',
                 'l' : 'long integer',
                 'L' : 'unsigned long integer',
                 'q' : 'long long integer',
                 'Q' : 'unsigned long long integer',
                 'f' : 'single precision',
                 'd' : 'double precision',
                 'g' : 'long precision',
                 'F' : 'complex single precision',
                 'D' : 'complex double precision',
                 'G' : 'complex long double precision',
                 'S' : 'string',
                 'U' : 'unicode',
                 'V' : 'void',
                 'O' : 'object'
                 }

def typename(char):
    """Return an english description for the given data type character.
    """
    return _namefromtype[char]

#-----------------------------------------------------------------------------

#determine the "minimum common type" for a group of arrays.
array_type = [[_nx.single, _nx.double, _nx.longdouble],
              [_nx.csingle, _nx.cdouble, _nx.clongdouble]]
array_precision = {_nx.single : 0,
                   _nx.double : 1,
                   _nx.longdouble : 2,
                   _nx.csingle : 0,
                   _nx.cdouble : 1,
                   _nx.clongdouble : 2}
def common_type(*arrays):
    """Given a sequence of arrays as arguments, return the best inexact
    scalar type which is "most" common amongst them.

    The return type will always be a inexact scalar type, even if all
    the arrays are integer arrays.
    """
    is_complex = False
    precision = 0
    for a in arrays:
        t = a.dtype.type
        if iscomplexobj(a):
            is_complex = True
        if issubclass(t, _nx.integer):
            p = 1
        else:
            p = array_precision.get(t, None)
            if p is None:
                raise TypeError("can't get common type for non-numeric array")
        precision = max(precision, p)
    if is_complex:
        return array_type[1][precision]
    else:
        return array_type[0][precision]