1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
|
"""Lite version of scipy.linalg.
Notes
-----
This module is a lite version of the linalg.py module in SciPy which
contains high-level Python interface to the LAPACK library. The lite
version only accesses the following LAPACK functions: dgesv, zgesv,
dgeev, zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf,
zgetrf, dpotrf, zpotrf, dgeqrf, zgeqrf, zungqr, dorgqr.
"""
__all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv',
'inv', 'cholesky',
'eigvals',
'eigvalsh', 'pinv',
'det', 'svd',
'eig', 'eigh','lstsq', 'norm',
'qr',
'cond',
'LinAlgError'
]
from numpy.core import array, asarray, zeros, empty, transpose, \
intc, single, double, csingle, cdouble, inexact, complexfloating, \
newaxis, ravel, all, Inf, dot, add, multiply, identity, sqrt, \
maximum, flatnonzero, diagonal, arange, fastCopyAndTranspose, sum, \
isfinite, size
from numpy.lib import triu
from numpy.linalg import lapack_lite
from numpy.core.defmatrix import matrix_power, matrix
fortran_int = intc
# Error object
class LinAlgError(Exception):
pass
def _makearray(a):
new = asarray(a)
wrap = getattr(a, "__array_wrap__", new.__array_wrap__)
return new, wrap
def isComplexType(t):
return issubclass(t, complexfloating)
_real_types_map = {single : single,
double : double,
csingle : single,
cdouble : double}
_complex_types_map = {single : csingle,
double : cdouble,
csingle : csingle,
cdouble : cdouble}
def _realType(t, default=double):
return _real_types_map.get(t, default)
def _complexType(t, default=cdouble):
return _complex_types_map.get(t, default)
def _linalgRealType(t):
"""Cast the type t to either double or cdouble."""
return double
_complex_types_map = {single : csingle,
double : cdouble,
csingle : csingle,
cdouble : cdouble}
def _commonType(*arrays):
# in lite version, use higher precision (always double or cdouble)
result_type = single
is_complex = False
for a in arrays:
if issubclass(a.dtype.type, inexact):
if isComplexType(a.dtype.type):
is_complex = True
rt = _realType(a.dtype.type, default=None)
if rt is None:
# unsupported inexact scalar
raise TypeError("array type %s is unsupported in linalg" %
(a.dtype.name,))
else:
rt = double
if rt is double:
result_type = double
if is_complex:
t = cdouble
result_type = _complex_types_map[result_type]
else:
t = double
return t, result_type
def _castCopyAndTranspose(type, *arrays):
if len(arrays) == 1:
return transpose(arrays[0]).astype(type)
else:
return [transpose(a).astype(type) for a in arrays]
# _fastCopyAndTranpose is an optimized version of _castCopyAndTranspose.
# It assumes the input is 2D (as all the calls in here are).
_fastCT = fastCopyAndTranspose
def _fastCopyAndTranspose(type, *arrays):
cast_arrays = ()
for a in arrays:
if a.dtype.type is type:
cast_arrays = cast_arrays + (_fastCT(a),)
else:
cast_arrays = cast_arrays + (_fastCT(a.astype(type)),)
if len(cast_arrays) == 1:
return cast_arrays[0]
else:
return cast_arrays
def _assertRank2(*arrays):
for a in arrays:
if len(a.shape) != 2:
raise LinAlgError, '%d-dimensional array given. Array must be \
two-dimensional' % len(a.shape)
def _assertSquareness(*arrays):
for a in arrays:
if max(a.shape) != min(a.shape):
raise LinAlgError, 'Array must be square'
def _assertFinite(*arrays):
for a in arrays:
if not (isfinite(a).all()):
raise LinAlgError, "Array must not contain infs or NaNs"
def _assertNonEmpty(*arrays):
for a in arrays:
if size(a) == 0:
raise LinAlgError("Arrays cannot be empty")
# Linear equations
def tensorsolve(a, b, axes=None):
"""Solve the tensor equation a x = b for x
It is assumed that all indices of x are summed over in the product,
together with the rightmost indices of a, similarly as in
tensordot(a, x, axes=len(b.shape)).
Parameters
----------
a : array-like, shape b.shape+Q
Coefficient tensor. Shape Q of the rightmost indices of a must
be such that a is 'square', ie., prod(Q) == prod(b.shape).
b : array-like, any shape
Right-hand tensor.
axes : tuple of integers
Axes in a to reorder to the right, before inversion.
If None (default), no reordering is done.
Returns
-------
x : array, shape Q
Examples
--------
>>> from numpy import *
>>> a = eye(2*3*4)
>>> a.shape = (2*3,4, 2,3,4)
>>> b = random.randn(2*3,4)
>>> x = linalg.tensorsolve(a, b)
>>> x.shape
(2, 3, 4)
>>> allclose(tensordot(a, x, axes=3), b)
True
"""
a = asarray(a)
b = asarray(b)
an = a.ndim
if axes is not None:
allaxes = range(0, an)
for k in axes:
allaxes.remove(k)
allaxes.insert(an, k)
a = a.transpose(allaxes)
oldshape = a.shape[-(an-b.ndim):]
prod = 1
for k in oldshape:
prod *= k
a = a.reshape(-1, prod)
b = b.ravel()
res = wrap(solve(a, b))
res.shape = oldshape
return res
def solve(a, b):
"""Solve the equation a x = b
Parameters
----------
a : array-like, shape (M, M)
b : array-like, shape (M,)
Returns
-------
x : array, shape (M,)
Raises LinAlgError if a is singular or not square
"""
a, _ = _makearray(a)
b, wrap = _makearray(b)
one_eq = len(b.shape) == 1
if one_eq:
b = b[:, newaxis]
_assertRank2(a, b)
_assertSquareness(a)
n_eq = a.shape[0]
n_rhs = b.shape[1]
if n_eq != b.shape[0]:
raise LinAlgError, 'Incompatible dimensions'
t, result_t = _commonType(a, b)
# lapack_routine = _findLapackRoutine('gesv', t)
if isComplexType(t):
lapack_routine = lapack_lite.zgesv
else:
lapack_routine = lapack_lite.dgesv
a, b = _fastCopyAndTranspose(t, a, b)
pivots = zeros(n_eq, fortran_int)
results = lapack_routine(n_eq, n_rhs, a, n_eq, pivots, b, n_eq, 0)
if results['info'] > 0:
raise LinAlgError, 'Singular matrix'
if one_eq:
return wrap(b.ravel().astype(result_t))
else:
return wrap(b.transpose().astype(result_t))
def tensorinv(a, ind=2):
"""Find the 'inverse' of a N-d array
The result is an inverse corresponding to the operation
tensordot(a, b, ind), ie.,
x == tensordot(tensordot(tensorinv(a), a, ind), x, ind)
== tensordot(tensordot(a, tensorinv(a), ind), x, ind)
for all x (up to floating-point accuracy).
Parameters
----------
a : array-like
Tensor to 'invert'. Its shape must 'square', ie.,
prod(a.shape[:ind]) == prod(a.shape[ind:])
ind : integer > 0
How many of the first indices are involved in the inverse sum.
Returns
-------
b : array, shape a.shape[:ind]+a.shape[ind:]
Raises LinAlgError if a is singular or not square
Examples
--------
>>> from numpy import *
>>> a = eye(4*6)
>>> a.shape = (4,6,8,3)
>>> ainv = linalg.tensorinv(a, ind=2)
>>> ainv.shape
(8, 3, 4, 6)
>>> b = random.randn(4,6)
>>> allclose(tensordot(ainv, b), linalg.tensorsolve(a, b))
True
>>> a = eye(4*6)
>>> a.shape = (24,8,3)
>>> ainv = linalg.tensorinv(a, ind=1)
>>> ainv.shape
(8, 3, 24)
>>> b = random.randn(24)
>>> allclose(tensordot(ainv, b, 1), linalg.tensorsolve(a, b))
True
"""
a = asarray(a)
oldshape = a.shape
prod = 1
if ind > 0:
invshape = oldshape[ind:] + oldshape[:ind]
for k in oldshape[ind:]:
prod *= k
else:
raise ValueError, "Invalid ind argument."
a = a.reshape(prod, -1)
ia = inv(a)
return ia.reshape(*invshape)
# Matrix inversion
def inv(a):
"""Compute the inverse of a matrix.
Parameters
----------
a : array-like, shape (M, M)
Matrix to be inverted
Returns
-------
ainv : array-like, shape (M, M)
Inverse of the matrix a
Raises LinAlgError if a is singular or not square
Examples
--------
>>> from numpy import array, inv, dot
>>> a = array([[1., 2.], [3., 4.]])
>>> inv(a)
array([[-2. , 1. ],
[ 1.5, -0.5]])
>>> dot(a, inv(a))
array([[ 1., 0.],
[ 0., 1.]])
"""
a, wrap = _makearray(a)
return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))
# Cholesky decomposition
def cholesky(a):
"""
Compute the Cholesky decomposition of a matrix.
Returns the Cholesky decomposition, :math:`A = L L^*` of a Hermitian
positive-definite matrix :math:`A`.
Parameters
----------
a : array-like, shape (M, M)
Matrix to be decomposed
Returns
-------
L : array-like, shape (M, M)
Lower-triangular Cholesky factor of A
Raises LinAlgError if decomposition fails
Examples
--------
>>> A = np.array([[1,-2j],[2j,5]])
>>> L = np.linalg.cholesky(A)
>>> L
array([[ 1.+0.j, 0.+0.j],
[ 0.+2.j, 1.+0.j]])
>>> dot(L, L.T.conj())
array([[ 1.+0.j, 0.-2.j],
[ 0.+2.j, 5.+0.j]])
"""
a, wrap = _makearray(a)
_assertRank2(a)
_assertSquareness(a)
t, result_t = _commonType(a)
a = _fastCopyAndTranspose(t, a)
m = a.shape[0]
n = a.shape[1]
if isComplexType(t):
lapack_routine = lapack_lite.zpotrf
else:
lapack_routine = lapack_lite.dpotrf
results = lapack_routine('L', n, a, m, 0)
if results['info'] > 0:
raise LinAlgError, 'Matrix is not positive definite - \
Cholesky decomposition cannot be computed'
s = triu(a, k=0).transpose()
if (s.dtype != result_t):
s = s.astype(result_t)
return wrap(s)
# QR decompostion
def qr(a, mode='full'):
"""Compute QR decomposition of a matrix.
Calculate the decomposition :math:`A = Q R` where Q is orthonormal
and R upper triangular.
Parameters
----------
a : array-like, shape (M, N)
Matrix to be decomposed
mode : {'full', 'r', 'economic'}
Determines what information is to be returned. 'full' is the default.
Economic mode is slightly faster if only R is needed.
Returns
-------
mode = 'full'
Q : double or complex array, shape (M, K)
R : double or complex array, shape (K, N)
Size K = min(M, N)
mode = 'r'
R : double or complex array, shape (K, N)
mode = 'economic'
A2 : double or complex array, shape (M, N)
The diagonal and the upper triangle of A2 contains R,
while the rest of the matrix is undefined.
If a is a matrix, so are all the return values.
Raises LinAlgError if decomposition fails
Notes
-----
This is an interface to the LAPACK routines dgeqrf, zgeqrf,
dorgqr, and zungqr.
Examples
--------
>>> from numpy import *
>>> a = random.randn(9, 6)
>>> q, r = linalg.qr(a)
>>> allclose(a, dot(q, r))
True
>>> r2 = linalg.qr(a, mode='r')
>>> r3 = linalg.qr(a, mode='economic')
>>> allclose(r, r2)
True
>>> allclose(r, triu(r3[:6,:6], k=0))
True
"""
a, wrap = _makearray(a)
_assertRank2(a)
m, n = a.shape
t, result_t = _commonType(a)
a = _fastCopyAndTranspose(t, a)
mn = min(m, n)
tau = zeros((mn,), t)
if isComplexType(t):
lapack_routine = lapack_lite.zgeqrf
routine_name = 'zgeqrf'
else:
lapack_routine = lapack_lite.dgeqrf
routine_name = 'dgeqrf'
# calculate optimal size of work data 'work'
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine(m, n, a, m, tau, work, -1, 0)
if results['info'] != 0:
raise LinAlgError, '%s returns %d' % (routine_name, results['info'])
# do qr decomposition
lwork = int(abs(work[0]))
work = zeros((lwork,), t)
results = lapack_routine(m, n, a, m, tau, work, lwork, 0)
if results['info'] != 0:
raise LinAlgError, '%s returns %d' % (routine_name, results['info'])
# economic mode. Isn't actually economic.
if mode[0] == 'e':
if t != result_t :
a = a.astype(result_t)
return a.T
# generate r
r = _fastCopyAndTranspose(result_t, a[:,:mn])
for i in range(mn):
r[i,:i].fill(0.0)
# 'r'-mode, that is, calculate only r
if mode[0] == 'r':
return r
# from here on: build orthonormal matrix q from a
if isComplexType(t):
lapack_routine = lapack_lite.zungqr
routine_name = 'zungqr'
else:
lapack_routine = lapack_lite.dorgqr
routine_name = 'dorgqr'
# determine optimal lwork
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine(m, mn, mn, a, m, tau, work, -1, 0)
if results['info'] != 0:
raise LinAlgError, '%s returns %d' % (routine_name, results['info'])
# compute q
lwork = int(abs(work[0]))
work = zeros((lwork,), t)
results = lapack_routine(m, mn, mn, a, m, tau, work, lwork, 0)
if results['info'] != 0:
raise LinAlgError, '%s returns %d' % (routine_name, results['info'])
q = _fastCopyAndTranspose(result_t, a[:mn,:])
return wrap(q), wrap(r)
# Eigenvalues
def eigvals(a):
"""Compute the eigenvalues of a general matrix.
Parameters
----------
a : array-like, shape (M, M)
A complex or real matrix whose eigenvalues and eigenvectors
will be computed.
Returns
-------
w : double or complex array, shape (M,)
The eigenvalues, each repeated according to its multiplicity.
They are not necessarily ordered, nor are they necessarily
real for real matrices.
If a is a matrix, so is w.
Raises LinAlgError if eigenvalue computation does not converge
See Also
--------
eig : eigenvalues and right eigenvectors of general arrays
eigvalsh : eigenvalues of symmetric or Hemitiean arrays.
eigh : eigenvalues and eigenvectors of symmetric/Hermitean arrays.
Notes
-----
This is a simple interface to the LAPACK routines dgeev and zgeev
that sets the flags to return only the eigenvalues of general real
and complex arrays respectively.
The number w is an eigenvalue of a if there exists a vector v
satisfying the equation dot(a,v) = w*v. Alternately, if w is a root of
the characteristic equation det(a - w[i]*I) = 0, where det is the
determinant and I is the identity matrix.
"""
a, wrap = _makearray(a)
_assertRank2(a)
_assertSquareness(a)
_assertFinite(a)
t, result_t = _commonType(a)
real_t = _linalgRealType(t)
a = _fastCopyAndTranspose(t, a)
n = a.shape[0]
dummy = zeros((1,), t)
if isComplexType(t):
lapack_routine = lapack_lite.zgeev
w = zeros((n,), t)
rwork = zeros((n,), real_t)
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine('N', 'N', n, a, n, w,
dummy, 1, dummy, 1, work, -1, rwork, 0)
lwork = int(abs(work[0]))
work = zeros((lwork,), t)
results = lapack_routine('N', 'N', n, a, n, w,
dummy, 1, dummy, 1, work, lwork, rwork, 0)
else:
lapack_routine = lapack_lite.dgeev
wr = zeros((n,), t)
wi = zeros((n,), t)
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine('N', 'N', n, a, n, wr, wi,
dummy, 1, dummy, 1, work, -1, 0)
lwork = int(work[0])
work = zeros((lwork,), t)
results = lapack_routine('N', 'N', n, a, n, wr, wi,
dummy, 1, dummy, 1, work, lwork, 0)
if all(wi == 0.):
w = wr
result_t = _realType(result_t)
else:
w = wr+1j*wi
result_t = _complexType(result_t)
if results['info'] > 0:
raise LinAlgError, 'Eigenvalues did not converge'
return w.astype(result_t)
def eigvalsh(a, UPLO='L'):
"""Compute the eigenvalues of a Hermitean or real symmetric matrix.
Parameters
----------
a : array-like, shape (M, M)
A complex or real matrix whose eigenvalues and eigenvectors
will be computed.
UPLO : {'L', 'U'}
Specifies whether the pertinent array data is taken from the upper
or lower triangular part of a. Possible values are 'L', and 'U' for
upper and lower respectively. Default is 'L'.
Returns
-------
w : double array, shape (M,)
The eigenvalues, each repeated according to its multiplicity.
They are not necessarily ordered.
Raises LinAlgError if eigenvalue computation does not converge
See Also
--------
eigh : eigenvalues and eigenvectors of symmetric/Hermitean arrays.
eigvals : eigenvalues of general real or complex arrays.
eig : eigenvalues and eigenvectors of general real or complex arrays.
Notes
-----
This is a simple interface to the LAPACK routines dsyevd and
zheevd that sets the flags to return only the eigenvalues of real
symmetric and complex Hermetian arrays respectively.
The number w is an eigenvalue of a if there exists a vector v
satisfying the equation dot(a,v) = w*v. Alternately, if w is a root of
the characteristic equation det(a - w[i]*I) = 0, where det is the
determinant and I is the identity matrix.
"""
a, wrap = _makearray(a)
_assertRank2(a)
_assertSquareness(a)
t, result_t = _commonType(a)
real_t = _linalgRealType(t)
a = _fastCopyAndTranspose(t, a)
n = a.shape[0]
liwork = 5*n+3
iwork = zeros((liwork,), fortran_int)
if isComplexType(t):
lapack_routine = lapack_lite.zheevd
w = zeros((n,), real_t)
lwork = 1
work = zeros((lwork,), t)
lrwork = 1
rwork = zeros((lrwork,), real_t)
results = lapack_routine('N', UPLO, n, a, n, w, work, -1,
rwork, -1, iwork, liwork, 0)
lwork = int(abs(work[0]))
work = zeros((lwork,), t)
lrwork = int(rwork[0])
rwork = zeros((lrwork,), real_t)
results = lapack_routine('N', UPLO, n, a, n, w, work, lwork,
rwork, lrwork, iwork, liwork, 0)
else:
lapack_routine = lapack_lite.dsyevd
w = zeros((n,), t)
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine('N', UPLO, n, a, n, w, work, -1,
iwork, liwork, 0)
lwork = int(work[0])
work = zeros((lwork,), t)
results = lapack_routine('N', UPLO, n, a, n, w, work, lwork,
iwork, liwork, 0)
if results['info'] > 0:
raise LinAlgError, 'Eigenvalues did not converge'
return w.astype(result_t)
def _convertarray(a):
t, result_t = _commonType(a)
a = _fastCT(a.astype(t))
return a, t, result_t
# Eigenvectors
def eig(a):
"""Compute eigenvalues and right eigenvectors of a general matrix.
Parameters
----------
a : array-like, shape (M, M)
A complex or real 2-d array whose eigenvalues and eigenvectors
will be computed.
Returns
-------
w : double or complex array, shape (M,)
The eigenvalues, each repeated according to its multiplicity.
The eigenvalues are not necessarily ordered, nor are they
necessarily real for real matrices.
v : double or complex array, shape (M, M)
The normalized eigenvector corresponding to the eigenvalue w[i] is
the column v[:,i].
If a is a matrix, so are all the return values.
Raises LinAlgError if eigenvalue computation does not converge
See Also
--------
eigvalsh : eigenvalues of symmetric or Hemitiean arrays.
eig : eigenvalues and right eigenvectors for non-symmetric arrays
eigvals : eigenvalues of non-symmetric array.
Notes
-----
This is a simple interface to the LAPACK routines dgeev and zgeev
that compute the eigenvalues and eigenvectors of general real and
complex arrays respectively.
The number w is an eigenvalue of a if there exists a vector v
satisfying the equation dot(a,v) = w*v. Alternately, if w is a root of
the characteristic equation det(a - w[i]*I) = 0, where det is the
determinant and I is the identity matrix. The arrays a, w, and v
satisfy the equation dot(a,v[i]) = w[i]*v[:,i].
The array v of eigenvectors may not be of maximum rank, that is, some
of the columns may be dependent, although roundoff error may obscure
that fact. If the eigenvalues are all different, then theoretically the
eigenvectors are independent. Likewise, the matrix of eigenvectors is
unitary if the matrix a is normal, i.e., if dot(a, a.H) = dot(a.H, a).
The left and right eigenvectors are not necessarily the (Hermitian)
transposes of each other.
"""
a, wrap = _makearray(a)
_assertRank2(a)
_assertSquareness(a)
_assertFinite(a)
a, t, result_t = _convertarray(a) # convert to double or cdouble type
real_t = _linalgRealType(t)
n = a.shape[0]
dummy = zeros((1,), t)
if isComplexType(t):
# Complex routines take different arguments
lapack_routine = lapack_lite.zgeev
w = zeros((n,), t)
v = zeros((n, n), t)
lwork = 1
work = zeros((lwork,), t)
rwork = zeros((2*n,), real_t)
results = lapack_routine('N', 'V', n, a, n, w,
dummy, 1, v, n, work, -1, rwork, 0)
lwork = int(abs(work[0]))
work = zeros((lwork,), t)
results = lapack_routine('N', 'V', n, a, n, w,
dummy, 1, v, n, work, lwork, rwork, 0)
else:
lapack_routine = lapack_lite.dgeev
wr = zeros((n,), t)
wi = zeros((n,), t)
vr = zeros((n, n), t)
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine('N', 'V', n, a, n, wr, wi,
dummy, 1, vr, n, work, -1, 0)
lwork = int(work[0])
work = zeros((lwork,), t)
results = lapack_routine('N', 'V', n, a, n, wr, wi,
dummy, 1, vr, n, work, lwork, 0)
if all(wi == 0.0):
w = wr
v = vr
result_t = _realType(result_t)
else:
w = wr+1j*wi
v = array(vr, w.dtype)
ind = flatnonzero(wi != 0.0) # indices of complex e-vals
for i in range(len(ind)/2):
v[ind[2*i]] = vr[ind[2*i]] + 1j*vr[ind[2*i+1]]
v[ind[2*i+1]] = vr[ind[2*i]] - 1j*vr[ind[2*i+1]]
result_t = _complexType(result_t)
if results['info'] > 0:
raise LinAlgError, 'Eigenvalues did not converge'
vt = v.transpose().astype(result_t)
return w.astype(result_t), wrap(vt)
def eigh(a, UPLO='L'):
"""Compute eigenvalues for a Hermitian or real symmetric matrix.
Parameters
----------
a : array-like, shape (M, M)
A complex Hermitian or symmetric real matrix whose eigenvalues
and eigenvectors will be computed.
UPLO : {'L', 'U'}
Specifies whether the pertinent array date is taken from the upper
or lower triangular part of a. Possible values are 'L', and 'U'.
Default is 'L'.
Returns
-------
w : double array, shape (M,)
The eigenvalues. The eigenvalues are not necessarily ordered.
v : double or complex double array, shape (M, M)
The normalized eigenvector corresponding to the eigenvalue w[i] is
the column v[:,i].
If a is a matrix, then so are the return values.
Raises LinAlgError if eigenvalue computation does not converge
See Also
--------
eigvalsh : eigenvalues of symmetric or Hemitiean arrays.
eig : eigenvalues and right eigenvectors for non-symmetric arrays
eigvals : eigenvalues of non-symmetric array.
Notes
-----
A simple interface to the LAPACK routines dsyevd and zheevd that compute
the eigenvalues and eigenvectors of real symmetric and complex Hermitian
arrays respectively.
The number w is an eigenvalue of a if there exists a vector v
satisfying the equation dot(a,v) = w*v. Alternately, if w is a root of
the characteristic equation det(a - w[i]*I) = 0, where det is the
determinant and I is the identity matrix. The eigenvalues of real
symmetric or complex Hermitean matrices are always real. The array v
of eigenvectors is unitary and a, w, and v satisfy the equation
dot(a,v[i]) = w[i]*v[:,i].
"""
a, wrap = _makearray(a)
_assertRank2(a)
_assertSquareness(a)
t, result_t = _commonType(a)
real_t = _linalgRealType(t)
a = _fastCopyAndTranspose(t, a)
n = a.shape[0]
liwork = 5*n+3
iwork = zeros((liwork,), fortran_int)
if isComplexType(t):
lapack_routine = lapack_lite.zheevd
w = zeros((n,), real_t)
lwork = 1
work = zeros((lwork,), t)
lrwork = 1
rwork = zeros((lrwork,), real_t)
results = lapack_routine('V', UPLO, n, a, n, w, work, -1,
rwork, -1, iwork, liwork, 0)
lwork = int(abs(work[0]))
work = zeros((lwork,), t)
lrwork = int(rwork[0])
rwork = zeros((lrwork,), real_t)
results = lapack_routine('V', UPLO, n, a, n, w, work, lwork,
rwork, lrwork, iwork, liwork, 0)
else:
lapack_routine = lapack_lite.dsyevd
w = zeros((n,), t)
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine('V', UPLO, n, a, n, w, work, -1,
iwork, liwork, 0)
lwork = int(work[0])
work = zeros((lwork,), t)
results = lapack_routine('V', UPLO, n, a, n, w, work, lwork,
iwork, liwork, 0)
if results['info'] > 0:
raise LinAlgError, 'Eigenvalues did not converge'
at = a.transpose().astype(result_t)
return w.astype(_realType(result_t)), wrap(at)
# Singular value decomposition
def svd(a, full_matrices=1, compute_uv=1):
"""Singular Value Decomposition.
Factorizes the matrix a into two unitary matrices U and Vh and
an 1d-array s of singular values (real, non-negative) such that
a == U S Vh if S is an suitably shaped matrix of zeros whose
main diagonal is s.
Parameters
----------
a : array-like, shape (M, N)
Matrix to decompose
full_matrices : boolean
If true, U, Vh are shaped (M,M), (N,N)
If false, the shapes are (M,K), (K,N) where K = min(M,N)
compute_uv : boolean
Whether to compute U and Vh in addition to s
Returns
-------
U: array, shape (M,M) or (M,K) depending on full_matrices
s: array, shape (K,)
The singular values, sorted so that s[i] >= s[i+1]
K = min(M, N)
Vh: array, shape (N,N) or (K,N) depending on full_matrices
If a is a matrix, so are all the return values.
Raises LinAlgError if SVD computation does not converge
Examples
--------
>>> a = random.randn(9, 6) + 1j*random.randn(9, 6)
>>> U, s, Vh = linalg.svd(a)
>>> U.shape, Vh.shape, s.shape
((9, 9), (6, 6), (6,))
>>> U, s, Vh = linalg.svd(a, full_matrices=False)
>>> U.shape, Vh.shape, s.shape
((9, 6), (6, 6), (6,))
>>> S = diag(s)
>>> allclose(a, dot(U, dot(S, Vh)))
True
>>> s2 = linalg.svd(a, compute_uv=False)
>>> allclose(s, s2)
True
"""
a, wrap = _makearray(a)
_assertRank2(a)
_assertNonEmpty(a)
m, n = a.shape
t, result_t = _commonType(a)
real_t = _linalgRealType(t)
a = _fastCopyAndTranspose(t, a)
s = zeros((min(n, m),), real_t)
if compute_uv:
if full_matrices:
nu = m
nvt = n
option = 'A'
else:
nu = min(n, m)
nvt = min(n, m)
option = 'S'
u = zeros((nu, m), t)
vt = zeros((n, nvt), t)
else:
option = 'N'
nu = 1
nvt = 1
u = empty((1, 1), t)
vt = empty((1, 1), t)
iwork = zeros((8*min(m, n),), fortran_int)
if isComplexType(t):
lapack_routine = lapack_lite.zgesdd
rwork = zeros((5*min(m, n)*min(m, n) + 5*min(m, n),), real_t)
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt,
work, -1, rwork, iwork, 0)
lwork = int(abs(work[0]))
work = zeros((lwork,), t)
results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt,
work, lwork, rwork, iwork, 0)
else:
lapack_routine = lapack_lite.dgesdd
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt,
work, -1, iwork, 0)
lwork = int(work[0])
work = zeros((lwork,), t)
results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt,
work, lwork, iwork, 0)
if results['info'] > 0:
raise LinAlgError, 'SVD did not converge'
s = s.astype(_realType(result_t))
if compute_uv:
u = u.transpose().astype(result_t)
vt = vt.transpose().astype(result_t)
return wrap(u), s, wrap(vt)
else:
return s
def cond(x, p=None):
"""Compute the condition number of a matrix.
The condition number of x is the norm of x times the norm
of the inverse of x. The norm can be the usual L2
(root-of-sum-of-squares) norm or a number of other matrix norms.
Parameters
----------
x : array-like, shape (M, N)
The matrix whose condition number is sought.
p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}
Order of the norm:
p norm for matrices
===== ============================
None 2-norm, computed directly using the SVD
'fro' Frobenius norm
inf max(sum(abs(x), axis=1))
-inf min(sum(abs(x), axis=1))
1 max(sum(abs(x), axis=0))
-1 min(sum(abs(x), axis=0))
2 2-norm (largest sing. value)
-2 smallest singular value
===== ============================
Returns
-------
c : float
The condition number of the matrix. May be infinite.
"""
x = asarray(x) # in case we have a matrix
if p is None:
s = svd(x,compute_uv=False)
return s[0]/s[-1]
else:
return norm(x,p)*norm(inv(x),p)
# Generalized inverse
def pinv(a, rcond=1e-15 ):
"""Compute the (Moore-Penrose) pseudo-inverse of a matrix.
Calculate a generalized inverse of a matrix using its
singular-value decomposition and including all 'large' singular
values.
Parameters
----------
a : array-like, shape (M, N)
Matrix to be pseudo-inverted
rcond : float
Cutoff for 'small' singular values.
Singular values smaller than rcond*largest_singular_value are
considered zero.
Returns
-------
B : array, shape (N, M)
If a is a matrix, then so is B.
Raises LinAlgError if SVD computation does not converge
Examples
--------
>>> from numpy import *
>>> a = random.randn(9, 6)
>>> B = linalg.pinv(a)
>>> allclose(a, dot(a, dot(B, a)))
True
>>> allclose(B, dot(B, dot(a, B)))
True
"""
a, wrap = _makearray(a)
_assertNonEmpty(a)
a = a.conjugate()
u, s, vt = svd(a, 0)
m = u.shape[0]
n = vt.shape[1]
cutoff = rcond*maximum.reduce(s)
for i in range(min(n, m)):
if s[i] > cutoff:
s[i] = 1./s[i]
else:
s[i] = 0.;
res = dot(transpose(vt), multiply(s[:, newaxis],transpose(u)))
return wrap(res)
# Determinant
def det(a):
"""Compute the determinant of a matrix
Parameters
----------
a : array-like, shape (M, M)
Returns
-------
det : float or complex
Determinant of a
Notes
-----
The determinant is computed via LU factorization, LAPACK routine z/dgetrf.
"""
a = asarray(a)
_assertRank2(a)
_assertSquareness(a)
t, result_t = _commonType(a)
a = _fastCopyAndTranspose(t, a)
n = a.shape[0]
if isComplexType(t):
lapack_routine = lapack_lite.zgetrf
else:
lapack_routine = lapack_lite.dgetrf
pivots = zeros((n,), fortran_int)
results = lapack_routine(n, n, a, n, pivots, 0)
info = results['info']
if (info < 0):
raise TypeError, "Illegal input to Fortran routine"
elif (info > 0):
return 0.0
sign = add.reduce(pivots != arange(1, n+1)) % 2
return (1.-2.*sign)*multiply.reduce(diagonal(a), axis=-1)
# Linear Least Squares
def lstsq(a, b, rcond=-1):
"""Compute least-squares solution to equation :math:`a x = b`
Compute a vector x such that the 2-norm :math:`|b - a x|` is minimised.
Parameters
----------
a : array-like, shape (M, N)
b : array-like, shape (M,) or (M, K)
rcond : float
Cutoff for 'small' singular values.
Singular values smaller than rcond*largest_singular_value are
considered zero.
Raises LinAlgError if computation does not converge
Returns
-------
x : array, shape (N,) or (N, K) depending on shape of b
Least-squares solution
residues : array, shape () or (1,) or (K,)
Sums of residues, squared 2-norm for each column in :math:`b - a x`
If rank of matrix a is < N or > M this is an empty array.
If b was 1-d, this is an (1,) shape array, otherwise the shape is (K,)
rank : integer
Rank of matrix a
s : array, shape (min(M,N),)
Singular values of a
If b is a matrix, then all results except the rank are also returned as
matrices.
"""
import math
a, _ = _makearray(a)
b, wrap = _makearray(b)
is_1d = len(b.shape) == 1
if is_1d:
b = b[:, newaxis]
_assertRank2(a, b)
m = a.shape[0]
n = a.shape[1]
n_rhs = b.shape[1]
ldb = max(n, m)
if m != b.shape[0]:
raise LinAlgError, 'Incompatible dimensions'
t, result_t = _commonType(a, b)
real_t = _linalgRealType(t)
bstar = zeros((ldb, n_rhs), t)
bstar[:b.shape[0],:n_rhs] = b.copy()
a, bstar = _fastCopyAndTranspose(t, a, bstar)
s = zeros((min(m, n),), real_t)
nlvl = max( 0, int( math.log( float(min(m, n))/2. ) ) + 1 )
iwork = zeros((3*min(m, n)*nlvl+11*min(m, n),), fortran_int)
if isComplexType(t):
lapack_routine = lapack_lite.zgelsd
lwork = 1
rwork = zeros((lwork,), real_t)
work = zeros((lwork,), t)
results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond,
0, work, -1, rwork, iwork, 0)
lwork = int(abs(work[0]))
rwork = zeros((lwork,), real_t)
a_real = zeros((m, n), real_t)
bstar_real = zeros((ldb, n_rhs,), real_t)
results = lapack_lite.dgelsd(m, n, n_rhs, a_real, m,
bstar_real, ldb, s, rcond,
0, rwork, -1, iwork, 0)
lrwork = int(rwork[0])
work = zeros((lwork,), t)
rwork = zeros((lrwork,), real_t)
results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond,
0, work, lwork, rwork, iwork, 0)
else:
lapack_routine = lapack_lite.dgelsd
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond,
0, work, -1, iwork, 0)
lwork = int(work[0])
work = zeros((lwork,), t)
results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond,
0, work, lwork, iwork, 0)
if results['info'] > 0:
raise LinAlgError, 'SVD did not converge in Linear Least Squares'
resids = array([], t)
if is_1d:
x = array(ravel(bstar)[:n], dtype=result_t, copy=True)
if results['rank'] == n and m > n:
resids = array([sum((ravel(bstar)[n:])**2)], dtype=result_t)
else:
x = array(transpose(bstar)[:n,:], dtype=result_t, copy=True)
if results['rank'] == n and m > n:
resids = sum((transpose(bstar)[n:,:])**2, axis=0).astype(result_t)
st = s[:min(n, m)].copy().astype(_realType(result_t))
return wrap(x), wrap(resids), results['rank'], st
def norm(x, ord=None):
"""Matrix or vector norm.
Parameters
----------
x : array-like, shape (M,) or (M, N)
ord : number, or {None, 1, -1, 2, -2, inf, -inf, 'fro'}
Order of the norm:
ord norm for matrices norm for vectors
===== ============================ ==========================
None Frobenius norm 2-norm
'fro' Frobenius norm -
inf max(sum(abs(x), axis=1)) max(abs(x))
-inf min(sum(abs(x), axis=1)) min(abs(x))
1 max(sum(abs(x), axis=0)) as below
-1 min(sum(abs(x), axis=0)) as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other - sum(abs(x)**ord)**(1./ord)
===== ============================ ==========================
Returns
-------
n : float
Norm of the matrix or vector
Notes
-----
For values ord < 0, the result is, strictly speaking, not a
mathematical 'norm', but it may still be useful for numerical
purposes.
"""
x = asarray(x)
nd = len(x.shape)
if ord is None: # check the default case first and handle it immediately
return sqrt(add.reduce((x.conj() * x).ravel().real))
if nd == 1:
if ord == Inf:
return abs(x).max()
elif ord == -Inf:
return abs(x).min()
elif ord == 1:
return abs(x).sum() # special case for speedup
elif ord == 2:
return sqrt(((x.conj()*x).real).sum()) # special case for speedup
else:
return ((abs(x)**ord).sum())**(1.0/ord)
elif nd == 2:
if ord == 2:
return svd(x, compute_uv=0).max()
elif ord == -2:
return svd(x, compute_uv=0).min()
elif ord == 1:
return abs(x).sum(axis=0).max()
elif ord == Inf:
return abs(x).sum(axis=1).max()
elif ord == -1:
return abs(x).sum(axis=0).min()
elif ord == -Inf:
return abs(x).sum(axis=1).min()
elif ord in ['fro','f']:
return sqrt(add.reduce((x.conj() * x).real.ravel()))
else:
raise ValueError, "Invalid norm order for matrices."
else:
raise ValueError, "Improper number of dimensions to norm."
|