1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
|
# pylint: disable-msg=E1002
"""MA: a facility for dealing with missing observations
MA is generally used as a numpy.array look-alike.
by Paul F. Dubois.
Copyright 1999, 2000, 2001 Regents of the University of California.
Released for unlimited redistribution.
Adapted for numpy_core 2005 by Travis Oliphant and
(mainly) Paul Dubois.
Subclassing of the base ndarray 2006 by Pierre Gerard-Marchant.
pgmdevlist_AT_gmail_DOT_com
Improvements suggested by Reggie Dugard (reggie_AT_merfinllc_DOT_com)
:author: Pierre Gerard-Marchant
:contact: pierregm_at_uga_dot_edu
"""
__author__ = "Pierre GF Gerard-Marchant"
__docformat__ = "restructuredtext en"
__all__ = ['MAError', 'MaskType', 'MaskedArray',
'bool_', 'complex_', 'float_', 'int_', 'object_',
'abs', 'absolute', 'add', 'all', 'allclose', 'allequal', 'alltrue',
'amax', 'amin', 'anom', 'anomalies', 'any', 'arange',
'arccos', 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2',
'arctanh', 'argmax', 'argmin', 'argsort', 'around',
'array', 'asarray','asanyarray',
'bitwise_and', 'bitwise_or', 'bitwise_xor',
'ceil', 'choose', 'clip', 'common_fill_value', 'compress',
'compressed', 'concatenate', 'conjugate', 'cos', 'cosh', 'count',
'default_fill_value', 'diagonal', 'divide', 'dump', 'dumps',
'empty', 'empty_like', 'equal', 'exp',
'fabs', 'fmod', 'filled', 'floor', 'floor_divide','fix_invalid',
'frombuffer', 'fromfunction',
'getdata','getmask', 'getmaskarray', 'greater', 'greater_equal',
'hypot',
'identity', 'ids', 'indices', 'inner', 'innerproduct',
'isMA', 'isMaskedArray', 'is_mask', 'is_masked', 'isarray',
'left_shift', 'less', 'less_equal', 'load', 'loads', 'log', 'log10',
'logical_and', 'logical_not', 'logical_or', 'logical_xor',
'make_mask', 'make_mask_none', 'mask_or', 'masked',
'masked_array', 'masked_equal', 'masked_greater',
'masked_greater_equal', 'masked_inside', 'masked_invalid',
'masked_less','masked_less_equal', 'masked_not_equal',
'masked_object','masked_outside', 'masked_print_option',
'masked_singleton','masked_values', 'masked_where', 'max', 'maximum',
'mean', 'min', 'minimum', 'multiply',
'negative', 'nomask', 'nonzero', 'not_equal',
'ones', 'outer', 'outerproduct',
'power', 'product', 'ptp', 'put', 'putmask',
'rank', 'ravel', 'remainder', 'repeat', 'reshape', 'resize',
'right_shift', 'round_',
'set_fill_value', 'shape', 'sin', 'sinh', 'size', 'sometrue', 'sort',
'sqrt', 'std', 'subtract', 'sum', 'swapaxes',
'take', 'tan', 'tanh', 'transpose', 'true_divide',
'var', 'where',
'zeros']
import sys
import types
import cPickle
import operator
import numpy
from numpy.core import bool_, complex_, float_, int_, object_, str_
import numpy.core.umath as umath
import numpy.core.fromnumeric as fromnumeric
import numpy.core.numeric as numeric
import numpy.core.numerictypes as ntypes
from numpy import bool_, dtype, typecodes, amax, amin, ndarray, iscomplexobj
from numpy import expand_dims as n_expand_dims
from numpy import array as narray
import warnings
MaskType = bool_
nomask = MaskType(0)
divide_tolerance = 1.e-35
numpy.seterr(all='ignore')
def doc_note(note):
return "\nNotes\n-----\n%s" % note
#####--------------------------------------------------------------------------
#---- --- Exceptions ---
#####--------------------------------------------------------------------------
class MAError(Exception):
"Class for MA related errors."
def __init__ (self, args=None):
"Creates an exception."
Exception.__init__(self,args)
self.args = args
def __str__(self):
"Calculates the string representation."
return str(self.args)
__repr__ = __str__
#####--------------------------------------------------------------------------
#---- --- Filling options ---
#####--------------------------------------------------------------------------
# b: boolean - c: complex - f: floats - i: integer - O: object - S: string
default_filler = {'b': True,
'c' : 1.e20 + 0.0j,
'f' : 1.e20,
'i' : 999999,
'O' : '?',
'S' : 'N/A',
'u' : 999999,
'V' : '???',
}
max_filler = ntypes._minvals
max_filler.update([(k,-numpy.inf) for k in [numpy.float32, numpy.float64]])
min_filler = ntypes._maxvals
min_filler.update([(k,numpy.inf) for k in [numpy.float32, numpy.float64]])
if 'float128' in ntypes.typeDict:
max_filler.update([(numpy.float128,-numpy.inf)])
min_filler.update([(numpy.float128, numpy.inf)])
def default_fill_value(obj):
"""Calculate the default fill value for the argument object.
"""
if hasattr(obj,'dtype'):
defval = default_filler[obj.dtype.kind]
elif isinstance(obj, numeric.dtype):
defval = default_filler[obj.kind]
elif isinstance(obj, float):
defval = default_filler['f']
elif isinstance(obj, int) or isinstance(obj, long):
defval = default_filler['i']
elif isinstance(obj, str):
defval = default_filler['S']
elif isinstance(obj, complex):
defval = default_filler['c']
else:
defval = default_filler['O']
return defval
def minimum_fill_value(obj):
"""Calculate the default fill value suitable for taking the
minimum of ``obj``.
"""
if hasattr(obj, 'dtype'):
objtype = obj.dtype
filler = min_filler[objtype]
if filler is None:
raise TypeError, 'Unsuitable type for calculating minimum.'
return filler
elif isinstance(obj, float):
return min_filler[ntypes.typeDict['float_']]
elif isinstance(obj, int):
return min_filler[ntypes.typeDict['int_']]
elif isinstance(obj, long):
return min_filler[ntypes.typeDict['uint']]
elif isinstance(obj, numeric.dtype):
return min_filler[obj]
else:
raise TypeError, 'Unsuitable type for calculating minimum.'
def maximum_fill_value(obj):
"""Calculate the default fill value suitable for taking the maximum
of ``obj``.
"""
if hasattr(obj, 'dtype'):
objtype = obj.dtype
filler = max_filler[objtype]
if filler is None:
raise TypeError, 'Unsuitable type for calculating minimum.'
return filler
elif isinstance(obj, float):
return max_filler[ntypes.typeDict['float_']]
elif isinstance(obj, int):
return max_filler[ntypes.typeDict['int_']]
elif isinstance(obj, long):
return max_filler[ntypes.typeDict['uint']]
elif isinstance(obj, numeric.dtype):
return max_filler[obj]
else:
raise TypeError, 'Unsuitable type for calculating minimum.'
def _check_fill_value(fill_value, dtype):
descr = numpy.dtype(dtype).descr
if fill_value is None:
if len(descr) > 1:
fill_value = [default_fill_value(numeric.dtype(d[1]))
for d in descr]
else:
fill_value = default_fill_value(dtype)
else:
fill_value = narray(fill_value).tolist()
fval = numpy.resize(fill_value, len(descr))
if len(descr) > 1:
fill_value = [numpy.asarray(f).astype(d[1]).item()
for (f,d) in zip(fval, descr)]
else:
fill_value = narray(fval, copy=False, dtype=dtype).item()
return fill_value
def set_fill_value(a, fill_value):
"""Set the filling value of a, if a is a masked array. Otherwise,
do nothing.
Returns
-------
None
"""
if isinstance(a, MaskedArray):
a._fill_value = _check_fill_value(fill_value, a.dtype)
return
def get_fill_value(a):
"""Return the filling value of a, if any. Otherwise, returns the
default filling value for that type.
"""
if isinstance(a, MaskedArray):
result = a.fill_value
else:
result = default_fill_value(a)
return result
def common_fill_value(a, b):
"""Return the common filling value of a and b, if any.
If a and b have different filling values, returns None.
"""
t1 = get_fill_value(a)
t2 = get_fill_value(b)
if t1 == t2:
return t1
return None
#####--------------------------------------------------------------------------
def filled(a, value = None):
"""Return a as an array with masked data replaced by value. If
value is None, get_fill_value(a) is used instead. If a is already
a ndarray, a itself is returned.
Parameters
----------
a : maskedarray or array_like
An input object.
value : {var}, optional
Filling value. If not given, the output of get_fill_value(a)
is used instead.
Returns
-------
a : array_like
"""
if hasattr(a, 'filled'):
return a.filled(value)
elif isinstance(a, ndarray):
# Should we check for contiguity ? and a.flags['CONTIGUOUS']:
return a
elif isinstance(a, dict):
return narray(a, 'O')
else:
return narray(a)
#####--------------------------------------------------------------------------
def get_masked_subclass(*arrays):
"""Return the youngest subclass of MaskedArray from a list of
(masked) arrays. In case of siblings, the first takes over.
"""
if len(arrays) == 1:
arr = arrays[0]
if isinstance(arr, MaskedArray):
rcls = type(arr)
else:
rcls = MaskedArray
else:
arrcls = [type(a) for a in arrays]
rcls = arrcls[0]
if not issubclass(rcls, MaskedArray):
rcls = MaskedArray
for cls in arrcls[1:]:
if issubclass(cls, rcls):
rcls = cls
return rcls
#####--------------------------------------------------------------------------
def get_data(a, subok=True):
"""Return the _data part of a (if any), or a as a ndarray.
Parameters
----------
a : array_like
A ndarray or a subclass of.
subok : bool
Whether to force the output to a 'pure' ndarray (False) or to
return a subclass of ndarray if approriate (True).
"""
data = getattr(a, '_data', numpy.array(a, subok=subok))
if not subok:
return data.view(ndarray)
return data
getdata = get_data
def fix_invalid(a, copy=True, fill_value=None):
"""Return (a copy of) a where invalid data (nan/inf) are masked
and replaced by fill_value.
Note that a copy is performed by default (just in case...).
Parameters
----------
a : array_like
A (subclass of) ndarray.
copy : bool
Whether to use a copy of a (True) or to fix a in place (False).
fill_value : {var}, optional
Value used for fixing invalid data. If not given, the output
of get_fill_value(a) is used instead.
Returns
-------
b : MaskedArray
"""
a = masked_array(a, copy=copy, subok=True)
#invalid = (numpy.isnan(a._data) | numpy.isinf(a._data))
invalid = numpy.logical_not(numpy.isfinite(a._data))
if not invalid.any():
return a
a._mask |= invalid
if fill_value is None:
fill_value = a.fill_value
a._data[invalid] = fill_value
return a
#####--------------------------------------------------------------------------
#---- --- Ufuncs ---
#####--------------------------------------------------------------------------
ufunc_domain = {}
ufunc_fills = {}
class _DomainCheckInterval:
"""Define a valid interval, so that :
``domain_check_interval(a,b)(x) = true`` where
``x < a`` or ``x > b``.
"""
def __init__(self, a, b):
"domain_check_interval(a,b)(x) = true where x < a or y > b"
if (a > b):
(a, b) = (b, a)
self.a = a
self.b = b
def __call__ (self, x):
"Execute the call behavior."
return umath.logical_or(umath.greater (x, self.b),
umath.less(x, self.a))
#............................
class _DomainTan:
"""Define a valid interval for the `tan` function, so that:
``domain_tan(eps) = True`` where ``abs(cos(x)) < eps``
"""
def __init__(self, eps):
"domain_tan(eps) = true where abs(cos(x)) < eps)"
self.eps = eps
def __call__ (self, x):
"Executes the call behavior."
return umath.less(umath.absolute(umath.cos(x)), self.eps)
#............................
class _DomainSafeDivide:
"""Define a domain for safe division."""
def __init__ (self, tolerance=divide_tolerance):
self.tolerance = tolerance
def __call__ (self, a, b):
return umath.absolute(a) * self.tolerance >= umath.absolute(b)
#............................
class _DomainGreater:
"DomainGreater(v)(x) = true where x <= v"
def __init__(self, critical_value):
"DomainGreater(v)(x) = true where x <= v"
self.critical_value = critical_value
def __call__ (self, x):
"Executes the call behavior."
return umath.less_equal(x, self.critical_value)
#............................
class _DomainGreaterEqual:
"DomainGreaterEqual(v)(x) = true where x < v"
def __init__(self, critical_value):
"DomainGreaterEqual(v)(x) = true where x < v"
self.critical_value = critical_value
def __call__ (self, x):
"Executes the call behavior."
return umath.less(x, self.critical_value)
#..............................................................................
class _MaskedUnaryOperation:
"""Defines masked version of unary operations, where invalid
values are pre-masked.
Parameters
----------
f : callable
fill :
Default filling value (0).
domain :
Default domain (None).
"""
def __init__ (self, mufunc, fill=0, domain=None):
""" _MaskedUnaryOperation(aufunc, fill=0, domain=None)
aufunc(fill) must be defined
self(x) returns aufunc(x)
with masked values where domain(x) is true or getmask(x) is true.
"""
self.f = mufunc
self.fill = fill
self.domain = domain
self.__doc__ = getattr(mufunc, "__doc__", str(mufunc))
self.__name__ = getattr(mufunc, "__name__", str(mufunc))
ufunc_domain[mufunc] = domain
ufunc_fills[mufunc] = fill
#
def __call__ (self, a, *args, **kwargs):
"Execute the call behavior."
#
m = getmask(a)
d1 = get_data(a)
#
if self.domain is not None:
dm = narray(self.domain(d1), copy=False)
m = numpy.logical_or(m, dm)
# The following two lines control the domain filling methods.
d1 = d1.copy()
# We could use smart indexing : d1[dm] = self.fill ...
# ... but numpy.putmask looks more efficient, despite the copy.
numpy.putmask(d1, dm, self.fill)
# Take care of the masked singletong first ...
if not m.ndim and m:
return masked
# Get the result class .......................
if isinstance(a, MaskedArray):
subtype = type(a)
else:
subtype = MaskedArray
# Get the result as a view of the subtype ...
result = self.f(d1, *args, **kwargs).view(subtype)
# Fix the mask if we don't have a scalar
if result.ndim > 0:
result._mask = m
result._update_from(a)
return result
#
def __str__ (self):
return "Masked version of %s. [Invalid values are masked]" % str(self.f)
#..............................................................................
class _MaskedBinaryOperation:
"""Define masked version of binary operations, where invalid
values are pre-masked.
Parameters
----------
f : callable
fillx :
Default filling value for the first argument (0).
filly :
Default filling value for the second argument (0).
domain :
Default domain (None).
"""
def __init__ (self, mbfunc, fillx=0, filly=0):
"""abfunc(fillx, filly) must be defined.
abfunc(x, filly) = x for all x to enable reduce.
"""
self.f = mbfunc
self.fillx = fillx
self.filly = filly
self.__doc__ = getattr(mbfunc, "__doc__", str(mbfunc))
self.__name__ = getattr(mbfunc, "__name__", str(mbfunc))
ufunc_domain[mbfunc] = None
ufunc_fills[mbfunc] = (fillx, filly)
#
def __call__ (self, a, b, *args, **kwargs):
"Execute the call behavior."
m = mask_or(getmask(a), getmask(b))
(d1, d2) = (get_data(a), get_data(b))
result = self.f(d1, d2, *args, **kwargs).view(get_masked_subclass(a,b))
if result.size > 1:
if m is not nomask:
result._mask = make_mask_none(result.shape)
result._mask.flat = m
if isinstance(a,MaskedArray):
result._update_from(a)
if isinstance(b,MaskedArray):
result._update_from(b)
elif m:
return masked
return result
#
def reduce (self, target, axis=0, dtype=None):
"""Reduce `target` along the given `axis`."""
if isinstance(target, MaskedArray):
tclass = type(target)
else:
tclass = MaskedArray
m = getmask(target)
t = filled(target, self.filly)
if t.shape == ():
t = t.reshape(1)
if m is not nomask:
m = make_mask(m, copy=1)
m.shape = (1,)
if m is nomask:
return self.f.reduce(t, axis).view(tclass)
t = t.view(tclass)
t._mask = m
tr = self.f.reduce(getdata(t), axis, dtype=dtype or t.dtype)
mr = umath.logical_and.reduce(m, axis)
tr = tr.view(tclass)
if mr.ndim > 0:
tr._mask = mr
return tr
elif mr:
return masked
return tr
def outer (self, a, b):
"""Return the function applied to the outer product of a and b.
"""
ma = getmask(a)
mb = getmask(b)
if ma is nomask and mb is nomask:
m = nomask
else:
ma = getmaskarray(a)
mb = getmaskarray(b)
m = umath.logical_or.outer(ma, mb)
if (not m.ndim) and m:
return masked
rcls = get_masked_subclass(a,b)
# We could fill the arguments first, butis it useful ?
# d = self.f.outer(filled(a, self.fillx), filled(b, self.filly)).view(rcls)
d = self.f.outer(getdata(a), getdata(b)).view(rcls)
if d.ndim > 0:
d._mask = m
return d
def accumulate (self, target, axis=0):
"""Accumulate `target` along `axis` after filling with y fill
value.
"""
if isinstance(target, MaskedArray):
tclass = type(target)
else:
tclass = masked_array
t = filled(target, self.filly)
return self.f.accumulate(t, axis).view(tclass)
def __str__ (self):
return "Masked version of " + str(self.f)
#..............................................................................
class _DomainedBinaryOperation:
"""Define binary operations that have a domain, like divide.
They have no reduce, outer or accumulate.
Parameters
----------
f : function.
domain : Default domain.
fillx : Default filling value for the first argument (0).
filly : Default filling value for the second argument (0).
"""
def __init__ (self, dbfunc, domain, fillx=0, filly=0):
"""abfunc(fillx, filly) must be defined.
abfunc(x, filly) = x for all x to enable reduce.
"""
self.f = dbfunc
self.domain = domain
self.fillx = fillx
self.filly = filly
self.__doc__ = getattr(dbfunc, "__doc__", str(dbfunc))
self.__name__ = getattr(dbfunc, "__name__", str(dbfunc))
ufunc_domain[dbfunc] = domain
ufunc_fills[dbfunc] = (fillx, filly)
def __call__(self, a, b):
"Execute the call behavior."
ma = getmask(a)
mb = getmask(b)
d1 = getdata(a)
d2 = get_data(b)
t = narray(self.domain(d1, d2), copy=False)
if t.any(None):
mb = mask_or(mb, t)
# The following line controls the domain filling
d2 = numpy.where(t,self.filly,d2)
m = mask_or(ma, mb)
if (not m.ndim) and m:
return masked
result = self.f(d1, d2).view(get_masked_subclass(a,b))
if result.ndim > 0:
result._mask = m
if isinstance(a,MaskedArray):
result._update_from(a)
if isinstance(b,MaskedArray):
result._update_from(b)
return result
def __str__ (self):
return "Masked version of " + str(self.f)
#..............................................................................
# Unary ufuncs
exp = _MaskedUnaryOperation(umath.exp)
conjugate = _MaskedUnaryOperation(umath.conjugate)
sin = _MaskedUnaryOperation(umath.sin)
cos = _MaskedUnaryOperation(umath.cos)
tan = _MaskedUnaryOperation(umath.tan)
arctan = _MaskedUnaryOperation(umath.arctan)
arcsinh = _MaskedUnaryOperation(umath.arcsinh)
sinh = _MaskedUnaryOperation(umath.sinh)
cosh = _MaskedUnaryOperation(umath.cosh)
tanh = _MaskedUnaryOperation(umath.tanh)
abs = absolute = _MaskedUnaryOperation(umath.absolute)
fabs = _MaskedUnaryOperation(umath.fabs)
negative = _MaskedUnaryOperation(umath.negative)
floor = _MaskedUnaryOperation(umath.floor)
ceil = _MaskedUnaryOperation(umath.ceil)
around = _MaskedUnaryOperation(fromnumeric.round_)
logical_not = _MaskedUnaryOperation(umath.logical_not)
# Domained unary ufuncs .......................................................
sqrt = _MaskedUnaryOperation(umath.sqrt, 0.0,
_DomainGreaterEqual(0.0))
log = _MaskedUnaryOperation(umath.log, 1.0,
_DomainGreater(0.0))
log10 = _MaskedUnaryOperation(umath.log10, 1.0,
_DomainGreater(0.0))
tan = _MaskedUnaryOperation(umath.tan, 0.0,
_DomainTan(1.e-35))
arcsin = _MaskedUnaryOperation(umath.arcsin, 0.0,
_DomainCheckInterval(-1.0, 1.0))
arccos = _MaskedUnaryOperation(umath.arccos, 0.0,
_DomainCheckInterval(-1.0, 1.0))
arccosh = _MaskedUnaryOperation(umath.arccosh, 1.0,
_DomainGreaterEqual(1.0))
arctanh = _MaskedUnaryOperation(umath.arctanh, 0.0,
_DomainCheckInterval(-1.0+1e-15, 1.0-1e-15))
# Binary ufuncs ...............................................................
add = _MaskedBinaryOperation(umath.add)
subtract = _MaskedBinaryOperation(umath.subtract)
multiply = _MaskedBinaryOperation(umath.multiply, 1, 1)
arctan2 = _MaskedBinaryOperation(umath.arctan2, 0.0, 1.0)
equal = _MaskedBinaryOperation(umath.equal)
equal.reduce = None
not_equal = _MaskedBinaryOperation(umath.not_equal)
not_equal.reduce = None
less_equal = _MaskedBinaryOperation(umath.less_equal)
less_equal.reduce = None
greater_equal = _MaskedBinaryOperation(umath.greater_equal)
greater_equal.reduce = None
less = _MaskedBinaryOperation(umath.less)
less.reduce = None
greater = _MaskedBinaryOperation(umath.greater)
greater.reduce = None
logical_and = _MaskedBinaryOperation(umath.logical_and)
alltrue = _MaskedBinaryOperation(umath.logical_and, 1, 1).reduce
logical_or = _MaskedBinaryOperation(umath.logical_or)
sometrue = logical_or.reduce
logical_xor = _MaskedBinaryOperation(umath.logical_xor)
bitwise_and = _MaskedBinaryOperation(umath.bitwise_and)
bitwise_or = _MaskedBinaryOperation(umath.bitwise_or)
bitwise_xor = _MaskedBinaryOperation(umath.bitwise_xor)
hypot = _MaskedBinaryOperation(umath.hypot)
# Domained binary ufuncs ......................................................
divide = _DomainedBinaryOperation(umath.divide, _DomainSafeDivide(), 0, 1)
true_divide = _DomainedBinaryOperation(umath.true_divide,
_DomainSafeDivide(), 0, 1)
floor_divide = _DomainedBinaryOperation(umath.floor_divide,
_DomainSafeDivide(), 0, 1)
remainder = _DomainedBinaryOperation(umath.remainder,
_DomainSafeDivide(), 0, 1)
fmod = _DomainedBinaryOperation(umath.fmod, _DomainSafeDivide(), 0, 1)
#####--------------------------------------------------------------------------
#---- --- Mask creation functions ---
#####--------------------------------------------------------------------------
def get_mask(a):
"""Return the mask of a, if any, or nomask.
To get a full array of booleans of the same shape as a, use
getmaskarray.
"""
return getattr(a, '_mask', nomask)
getmask = get_mask
def getmaskarray(a):
"""Return the mask of a, if any, or a boolean array of the shape
of a, full of False.
"""
m = getmask(a)
if m is nomask:
m = make_mask_none(fromnumeric.shape(a))
return m
def is_mask(m):
"""Return True if m is a legal mask.
Does not check contents, only type.
"""
try:
return m.dtype.type is MaskType
except AttributeError:
return False
#
def make_mask(m, copy=False, shrink=True, flag=None):
"""Return m as a mask, creating a copy if necessary or requested.
The function can accept any sequence of integers or nomask. Does
not check that contents must be 0s and 1s.
Parameters
----------
m : array_like
Potential mask.
copy : bool
Whether to return a copy of m (True) or m itself (False).
shrink : bool
Whether to shrink m to nomask if all its values are False.
"""
if flag is not None:
warnings.warn("The flag 'flag' is now called 'shrink'!",
DeprecationWarning)
shrink = flag
if m is nomask:
return nomask
elif isinstance(m, ndarray):
m = filled(m, True)
if m.dtype.type is MaskType:
if copy:
result = narray(m, dtype=MaskType, copy=copy)
else:
result = m
else:
result = narray(m, dtype=MaskType)
else:
result = narray(filled(m, True), dtype=MaskType)
# Bas les masques !
if shrink and not result.any():
return nomask
else:
return result
def make_mask_none(s):
"""Return a mask of shape s, filled with False.
Parameters
----------
s : tuple
A tuple indicating the shape of the final mask.
"""
result = numeric.zeros(s, dtype=MaskType)
return result
def mask_or (m1, m2, copy=False, shrink=True):
"""Return the combination of two masks m1 and m2.
The masks are combined with the *logical_or* operator, treating
nomask as False. The result may equal m1 or m2 if the other is
nomask.
Parameters
----------
m1 : array_like
First mask.
m2 : array_like
Second mask
copy : bool
Whether to return a copy.
shrink : bool
Whether to shrink m to nomask if all its values are False.
"""
if m1 is nomask:
return make_mask(m2, copy=copy, shrink=shrink)
if m2 is nomask:
return make_mask(m1, copy=copy, shrink=shrink)
if m1 is m2 and is_mask(m1):
return m1
return make_mask(umath.logical_or(m1, m2), copy=copy, shrink=shrink)
#####--------------------------------------------------------------------------
#--- --- Masking functions ---
#####--------------------------------------------------------------------------
def masked_where(condition, a, copy=True):
"""Return a as an array masked where condition is true.
Masked values of a or condition are kept.
Parameters
----------
condition : array_like
Masking condition.
a : array_like
Array to mask.
copy : bool
Whether to return a copy of a (True) or modify a in place.
"""
cond = make_mask(condition)
a = narray(a, copy=copy, subok=True)
if hasattr(a, '_mask'):
cond = mask_or(cond, a._mask)
cls = type(a)
else:
cls = MaskedArray
result = a.view(cls)
result._mask = cond
return result
def masked_greater(x, value, copy=True):
"Shortcut to masked_where, with condition = (x > value)."
return masked_where(greater(x, value), x, copy=copy)
def masked_greater_equal(x, value, copy=True):
"Shortcut to masked_where, with condition = (x >= value)."
return masked_where(greater_equal(x, value), x, copy=copy)
def masked_less(x, value, copy=True):
"Shortcut to masked_where, with condition = (x < value)."
return masked_where(less(x, value), x, copy=copy)
def masked_less_equal(x, value, copy=True):
"Shortcut to masked_where, with condition = (x <= value)."
return masked_where(less_equal(x, value), x, copy=copy)
def masked_not_equal(x, value, copy=True):
"Shortcut to masked_where, with condition = (x != value)."
return masked_where((x != value), x, copy=copy)
#
def masked_equal(x, value, copy=True):
"""Shortcut to masked_where, with condition = (x == value). For
floating point, consider `masked_values(x, value)` instead.
"""
# An alternative implementation relies on filling first: probably not needed.
# d = filled(x, 0)
# c = umath.equal(d, value)
# m = mask_or(c, getmask(x))
# return array(d, mask=m, copy=copy)
return masked_where((x == value), x, copy=copy)
def masked_inside(x, v1, v2, copy=True):
"""Shortcut to masked_where, where condition is True for x inside
the interval [v1,v2] (v1 <= x <= v2). The boundaries v1 and v2
can be given in either order.
Notes
-----
The array x is prefilled with its filling value.
"""
if v2 < v1:
(v1, v2) = (v2, v1)
xf = filled(x)
condition = (xf >= v1) & (xf <= v2)
return masked_where(condition, x, copy=copy)
def masked_outside(x, v1, v2, copy=True):
"""Shortcut to masked_where, where condition is True for x outside
the interval [v1,v2] (x < v1)|(x > v2). The boundaries v1 and v2
can be given in either order.
Notes
-----
The array x is prefilled with its filling value.
"""
if v2 < v1:
(v1, v2) = (v2, v1)
xf = filled(x)
condition = (xf < v1) | (xf > v2)
return masked_where(condition, x, copy=copy)
#
def masked_object(x, value, copy=True):
"""Mask the array x where the data are exactly equal to value.
This function is suitable only for object arrays: for floating
point, please use ``masked_values`` instead.
Notes
-----
The mask is set to `nomask` if posible.
"""
if isMaskedArray(x):
condition = umath.equal(x._data, value)
mask = x._mask
else:
condition = umath.equal(fromnumeric.asarray(x), value)
mask = nomask
mask = mask_or(mask, make_mask(condition, shrink=True))
return masked_array(x, mask=mask, copy=copy, fill_value=value)
def masked_values(x, value, rtol=1.e-5, atol=1.e-8, copy=True):
"""Mask the array x where the data are approximately equal in
value, i.e.
(abs(x - value) <= atol+rtol*abs(value))
Suitable only for floating points. For integers, please use
``masked_equal``. The mask is set to nomask if posible.
Parameters
----------
x : array_like
Array to fill.
value : float
Masking value.
rtol : float
Tolerance parameter.
atol : float
Tolerance parameter (1e-8).
copy : bool
Whether to return a copy of x.
"""
abs = umath.absolute
xnew = filled(x, value)
if issubclass(xnew.dtype.type, numeric.floating):
condition = umath.less_equal(abs(xnew-value), atol+rtol*abs(value))
mask = getattr(x, '_mask', nomask)
else:
condition = umath.equal(xnew, value)
mask = nomask
mask = mask_or(mask, make_mask(condition, shrink=True))
return masked_array(xnew, mask=mask, copy=copy, fill_value=value)
def masked_invalid(a, copy=True):
"""Mask the array for invalid values (nans or infs). Any
preexisting mask is conserved.
"""
a = narray(a, copy=copy, subok=True)
condition = ~(numpy.isfinite(a))
if hasattr(a, '_mask'):
condition = mask_or(condition, a._mask)
cls = type(a)
else:
cls = MaskedArray
result = a.view(cls)
result._mask = condition
return result
#####--------------------------------------------------------------------------
#---- --- Printing options ---
#####--------------------------------------------------------------------------
class _MaskedPrintOption:
"""Handle the string used to represent missing data in a masked
array.
"""
def __init__ (self, display):
"Create the masked_print_option object."
self._display = display
self._enabled = True
def display(self):
"Display the string to print for masked values."
return self._display
def set_display (self, s):
"Set the string to print for masked values."
self._display = s
def enabled(self):
"Is the use of the display value enabled?"
return self._enabled
def enable(self, shrink=1):
"Set the enabling shrink to `shrink`."
self._enabled = shrink
def __str__ (self):
return str(self._display)
__repr__ = __str__
#if you single index into a masked location you get this object.
masked_print_option = _MaskedPrintOption('--')
#####--------------------------------------------------------------------------
#---- --- MaskedArray class ---
#####--------------------------------------------------------------------------
#...............................................................................
class _arraymethod(object):
"""Define a wrapper for basic array methods.
Upon call, returns a masked array, where the new _data array is
the output of the corresponding method called on the original
_data.
If onmask is True, the new mask is the output of the method called
on the initial mask. Otherwise, the new mask is just a reference
to the initial mask.
Parameters
----------
_name : String
Name of the function to apply on data.
_onmask : bool
Whether the mask must be processed also (True) or left
alone (False). Default: True.
obj : Object
The object calling the arraymethod.
"""
def __init__(self, funcname, onmask=True):
self._name = funcname
self._onmask = onmask
self.obj = None
self.__doc__ = self.getdoc()
#
def getdoc(self):
"Return the doc of the function (from the doc of the method)."
methdoc = getattr(ndarray, self._name, None)
methdoc = getattr(numpy, self._name, methdoc)
if methdoc is not None:
return methdoc.__doc__
#
def __get__(self, obj, objtype=None):
self.obj = obj
return self
#
def __call__(self, *args, **params):
methodname = self._name
data = self.obj._data
mask = self.obj._mask
cls = type(self.obj)
result = getattr(data, methodname)(*args, **params).view(cls)
result._update_from(self.obj)
if result.ndim:
if not self._onmask:
result.__setmask__(mask)
elif mask is not nomask:
result.__setmask__(getattr(mask, methodname)(*args, **params))
else:
if mask.ndim and mask.all():
return masked
return result
#..........................................................
class FlatIter(object):
"Define an interator."
def __init__(self, ma):
self.ma = ma
self.ma_iter = numpy.asarray(ma).flat
if ma._mask is nomask:
self.maskiter = None
else:
self.maskiter = ma._mask.flat
def __iter__(self):
return self
### This won't work is ravel makes a copy
def __setitem__(self, index, value):
a = self.ma.ravel()
a[index] = value
def next(self):
d = self.ma_iter.next()
if self.maskiter is not None and self.maskiter.next():
d = masked
return d
class MaskedArray(numeric.ndarray):
"""Arrays with possibly masked values. Masked values of True
exclude the corresponding element from any computation.
Construction:
x = MaskedArray(data, mask=nomask, dtype=None, copy=True,
fill_value=None, keep_mask=True, hard_mask=False, shrink=True)
Parameters
----------
data : {var}
Input data.
mask : {nomask, sequence}
Mask. Must be convertible to an array of booleans with
the same shape as data: True indicates a masked (eg.,
invalid) data.
dtype : dtype
Data type of the output. If None, the type of the data
argument is used. If dtype is not None and different from
data.dtype, a copy is performed.
copy : bool
Whether to copy the input data (True), or to use a
reference instead. Note: data are NOT copied by default.
subok : {True, boolean}
Whether to return a subclass of MaskedArray (if possible)
or a plain MaskedArray.
ndmin : {0, int}
Minimum number of dimensions
fill_value : {var}
Value used to fill in the masked values when necessary. If
None, a default based on the datatype is used.
keep_mask : {True, boolean}
Whether to combine mask with the mask of the input data,
if any (True), or to use only mask for the output (False).
hard_mask : {False, boolean}
Whether to use a hard mask or not. With a hard mask,
masked values cannot be unmasked.
shrink : {True, boolean}
Whether to force compression of an empty mask.
"""
__array_priority__ = 15
_defaultmask = nomask
_defaulthardmask = False
_baseclass = numeric.ndarray
def __new__(cls, data=None, mask=nomask, dtype=None, copy=False,
subok=True, ndmin=0, fill_value=None,
keep_mask=True, hard_mask=False, flag=None,shrink=True,
**options):
"""Create a new masked array from scratch.
Note: you can also create an array with the .view(MaskedArray)
method.
"""
if flag is not None:
warnings.warn("The flag 'flag' is now called 'shrink'!",
DeprecationWarning)
shrink = flag
# Process data............
_data = narray(data, dtype=dtype, copy=copy, subok=True, ndmin=ndmin)
_baseclass = getattr(data, '_baseclass', type(_data))
_basedict = getattr(data, '_basedict', getattr(data, '__dict__', {}))
if not isinstance(data, MaskedArray) or not subok:
_data = _data.view(cls)
else:
_data = _data.view(type(data))
# Backwards compatibility w/ numpy.core.ma .......
if hasattr(data,'_mask') and not isinstance(data, ndarray):
_data._mask = data._mask
_sharedmask = True
# Process mask ...........
if mask is nomask:
if not keep_mask:
if shrink:
_data._mask = nomask
else:
_data._mask = make_mask_none(_data)
if copy:
_data._mask = _data._mask.copy()
_data._sharedmask = False
else:
_data._sharedmask = True
else:
mask = narray(mask, dtype=MaskType, copy=copy)
if mask.shape != _data.shape:
(nd, nm) = (_data.size, mask.size)
if nm == 1:
mask = numeric.resize(mask, _data.shape)
elif nm == nd:
mask = fromnumeric.reshape(mask, _data.shape)
else:
msg = "Mask and data not compatible: data size is %i, "+\
"mask size is %i."
raise MAError, msg % (nd, nm)
copy = True
if _data._mask is nomask:
_data._mask = mask
_data._sharedmask = not copy
else:
if not keep_mask:
_data._mask = mask
_data._sharedmask = not copy
else:
_data._mask = umath.logical_or(mask, _data._mask)
_data._sharedmask = False
# Update fill_value.......
_data._fill_value = _check_fill_value(fill_value, _data.dtype)
# Process extra options ..
_data._hardmask = hard_mask
_data._baseclass = _baseclass
_data._basedict = _basedict
return _data
#
def _update_from(self, obj):
"""Copies some attributes of obj to self.
"""
if obj is not None and isinstance(obj,ndarray):
_baseclass = type(obj)
else:
_baseclass = ndarray
_basedict = getattr(obj,'_basedict',getattr(obj,'__dict__',{}))
_dict = dict(_fill_value=getattr(obj, '_fill_value', None),
_hardmask=getattr(obj, '_hardmask', False),
_sharedmask=getattr(obj, '_sharedmask', False),
_baseclass=getattr(obj,'_baseclass',_baseclass),
_basedict=_basedict,)
self.__dict__.update(_dict)
self.__dict__.update(_basedict)
return
#........................
def __array_finalize__(self,obj):
"""Finalizes the masked array.
"""
# Get main attributes .........
self._update_from(obj)
self._mask = getattr(obj, '_mask', nomask)
# Finalize the mask ...........
if self._mask is not nomask:
self._mask.shape = self.shape
return
#..................................
def __array_wrap__(self, obj, context=None):
"""Special hook for ufuncs.
Wraps the numpy array and sets the mask according to context.
"""
result = obj.view(type(self))
result._update_from(self)
#..........
if context is not None:
result._mask = result._mask.copy()
(func, args, _) = context
m = reduce(mask_or, [getmaskarray(arg) for arg in args])
# Get the domain mask................
domain = ufunc_domain.get(func, None)
if domain is not None:
if len(args) > 2:
d = reduce(domain, args)
else:
d = domain(*args)
# Fill the result where the domain is wrong
try:
# Binary domain: take the last value
fill_value = ufunc_fills[func][-1]
except TypeError:
# Unary domain: just use this one
fill_value = ufunc_fills[func]
except KeyError:
# Domain not recognized, use fill_value instead
fill_value = self.fill_value
result = result.copy()
numpy.putmask(result, d, fill_value)
# Update the mask
if m is nomask:
if d is not nomask:
m = d
else:
m |= d
# Make sure the mask has the proper size
if result.shape == () and m:
return masked
else:
result._mask = m
result._sharedmask = False
#....
return result
#.............................................
def __getitem__(self, indx):
"""x.__getitem__(y) <==> x[y]
Return the item described by i, as a masked array.
"""
# This test is useful, but we should keep things light...
# if getmask(indx) is not nomask:
# msg = "Masked arrays must be filled before they can be used as indices!"
# raise IndexError, msg
dout = ndarray.__getitem__(self.view(ndarray), indx)
# We could directly use ndarray.__getitem__ on self...
# But then we would have to modify __array_finalize__ to prevent the
# mask of being reshaped if it hasn't been set up properly yet...
# So it's easier to stick to the current version
m = self._mask
if not getattr(dout,'ndim', False):
# Just a scalar............
if m is not nomask and m[indx]:
return masked
else:
# Force dout to MA ........
dout = dout.view(type(self))
# Inherit attributes from self
dout._update_from(self)
# Check the fill_value ....
if isinstance(indx, basestring):
fvindx = list(self.dtype.names).index(indx)
dout._fill_value = self.fill_value[fvindx]
# Update the mask if needed
if m is not nomask:
if isinstance(indx, basestring):
dout._mask = m.reshape(dout.shape)
else:
dout._mask = ndarray.__getitem__(m, indx).reshape(dout.shape)
# Note: Don't try to check for m.any(), that'll take too long...
# mask = ndarray.__getitem__(m, indx).reshape(dout.shape)
# if self._shrinkmask and not m.any():
# dout._mask = nomask
# else:
# dout._mask = mask
return dout
#........................
def __setitem__(self, indx, value):
"""x.__setitem__(i, y) <==> x[i]=y
Set item described by index. If value is masked, masks those
locations.
"""
if self is masked:
raise MAError, 'Cannot alter the masked element.'
# This test is useful, but we should keep things light...
# if getmask(indx) is not nomask:
# msg = "Masked arrays must be filled before they can be used as indices!"
# raise IndexError, msg
if isinstance(indx, basestring):
ndarray.__setitem__(self._data,indx, getdata(value))
warnings.warn("MaskedArray.__setitem__ on fields: "\
"The mask is NOT affected!")
return
#....
if value is masked:
m = self._mask
if m is nomask:
m = numpy.zeros(self.shape, dtype=MaskType)
m[indx] = True
self._mask = m
self._sharedmask = False
return
#....
dval = narray(value, copy=False, dtype=self.dtype)
valmask = getmask(value)
if self._mask is nomask:
# Set the data, then the mask
ndarray.__setitem__(self._data,indx,dval)
if valmask is not nomask:
self._mask = numpy.zeros(self.shape, dtype=MaskType)
self._mask[indx] = valmask
elif not self._hardmask:
# Unshare the mask if necessary to avoid propagation
self.unshare_mask()
# Set the data, then the mask
ndarray.__setitem__(self._data,indx,dval)
self._mask[indx] = valmask
elif hasattr(indx, 'dtype') and (indx.dtype==bool_):
indx = indx * umath.logical_not(self._mask)
ndarray.__setitem__(self._data,indx,dval)
else:
mindx = mask_or(self._mask[indx], valmask, copy=True)
dindx = self._data[indx]
if dindx.size > 1:
dindx[~mindx] = dval
elif mindx is nomask:
dindx = dval
ndarray.__setitem__(self._data,indx,dindx)
self._mask[indx] = mindx
#............................................
def __getslice__(self, i, j):
"""x.__getslice__(i, j) <==> x[i:j]
Return the slice described by (i, j). The use of negative
indices is not supported.
"""
return self.__getitem__(slice(i,j))
#........................
def __setslice__(self, i, j, value):
"""x.__setslice__(i, j, value) <==> x[i:j]=value
Set the slice (i,j) of a to value. If value is masked, mask
those locations.
"""
self.__setitem__(slice(i,j), value)
#............................................
def __setmask__(self, mask, copy=False):
"""Set the mask.
"""
if mask is not nomask:
mask = narray(mask, copy=copy, dtype=MaskType)
# We could try to check whether shrinking is needed..
# ... but we would waste some precious time
# if self._shrinkmask and not mask.any():
# mask = nomask
if self._mask is nomask:
self._mask = mask
elif self._hardmask:
if mask is not nomask:
self._mask.__ior__(mask)
else:
# This one is tricky: if we set the mask that way, we may break the
# propagation. But if we don't, we end up with a mask full of False
# and a test on nomask fails...
if mask is nomask:
self._mask = nomask
else:
self.unshare_mask()
self._mask.flat = mask
if self._mask.shape:
self._mask = numeric.reshape(self._mask, self.shape)
_set_mask = __setmask__
#....
def _get_mask(self):
"""Return the current mask.
"""
# We could try to force a reshape, but that wouldn't work in some cases.
# return self._mask.reshape(self.shape)
return self._mask
mask = property(fget=_get_mask, fset=__setmask__, doc="Mask")
#............................................
def harden_mask(self):
"""Force the mask to hard.
"""
self._hardmask = True
def soften_mask(self):
"""Force the mask to soft.
"""
self._hardmask = False
def unshare_mask(self):
"""Copy the mask and set the sharedmask flag to False.
"""
if self._sharedmask:
self._mask = self._mask.copy()
self._sharedmask = False
def shrink_mask(self):
"""Reduce a mask to nomask when possible.
"""
m = self._mask
if m.ndim and not m.any():
self._mask = nomask
#............................................
def _get_data(self):
"""Return the current data, as a view of the original
underlying data.
"""
return self.view(self._baseclass)
_data = property(fget=_get_data)
data = property(fget=_get_data)
def raw_data(self):
"""Return the _data part of the MaskedArray.
DEPRECATED: You should really use ``.data`` instead...
"""
warnings.warn('Use .data instead.', DeprecationWarning)
return self._data
#............................................
def _get_flat(self):
"""Return a flat iterator.
"""
return FlatIter(self)
#
def _set_flat (self, value):
"""Set a flattened version of self to value.
"""
y = self.ravel()
y[:] = value
#
flat = property(fget=_get_flat, fset=_set_flat,
doc="Flat version of the array.")
#............................................
def get_fill_value(self):
"""Return the filling value.
"""
if self._fill_value is None:
self._fill_value = _check_fill_value(None, self.dtype)
return self._fill_value
def set_fill_value(self, value=None):
"""Set the filling value to value.
If value is None, use a default based on the data type.
"""
self._fill_value = _check_fill_value(value,self.dtype)
fill_value = property(fget=get_fill_value, fset=set_fill_value,
doc="Filling value.")
def filled(self, fill_value=None):
"""Return a copy of self._data, where masked values are filled
with fill_value.
If fill_value is None, self.fill_value is used instead.
Notes
-----
+ Subclassing is preserved
+ The result is NOT a MaskedArray !
Examples
--------
>>> x = array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
>>> x.filled()
array([1,2,-999,4,-999])
>>> type(x.filled())
<type 'numpy.ndarray'>
"""
m = self._mask
if m is nomask or not m.any():
return self._data
#
if fill_value is None:
fill_value = self.fill_value
#
if self is masked_singleton:
result = numeric.asanyarray(fill_value)
else:
result = self._data.copy()
try:
numpy.putmask(result, m, fill_value)
except (TypeError, AttributeError):
fill_value = narray(fill_value, dtype=object)
d = result.astype(object)
result = fromnumeric.choose(m, (d, fill_value))
except IndexError:
#ok, if scalar
if self._data.shape:
raise
elif m:
result = narray(fill_value, dtype=self.dtype)
else:
result = self._data
return result
def compressed(self):
"""Return a 1-D array of all the non-masked data.
"""
data = ndarray.ravel(self._data)
if self._mask is not nomask:
data = data.compress(numpy.logical_not(ndarray.ravel(self._mask)))
return data
def compress(self, condition, axis=None, out=None):
"""Return a where condition is True.
If condition is a MaskedArray, missing values are considered as False.
Returns
-------
A MaskedArray object.
Notes
-----
Please note the difference with compressed() !
The output of compress has a mask, the output of compressed does not.
"""
# Get the basic components
(_data, _mask) = (self._data, self._mask)
# Force the condition to a regular ndarray (forget the missing values...)
condition = narray(condition, copy=False, subok=False)
#
_new = _data.compress(condition, axis=axis, out=out).view(type(self))
_new._update_from(self)
if _mask is not nomask:
_new._mask = _mask.compress(condition, axis=axis)
return _new
#............................................
def __str__(self):
"""String representation.
"""
if masked_print_option.enabled():
f = masked_print_option
if self is masked:
return str(f)
m = self._mask
if m is nomask:
res = self._data
else:
if m.shape == ():
if m:
return str(f)
else:
return str(self._data)
# convert to object array to make filled work
#CHECK: the two lines below seem more robust than the self._data.astype
# res = numeric.empty(self._data.shape, object_)
# numeric.putmask(res,~m,self._data)
res = self._data.astype("|O8")
res[m] = f
else:
res = self.filled(self.fill_value)
return str(res)
def __repr__(self):
"""Literal string representation.
"""
with_mask = """\
masked_%(name)s(data =
%(data)s,
mask =
%(mask)s,
fill_value=%(fill)s)
"""
with_mask1 = """\
masked_%(name)s(data = %(data)s,
mask = %(mask)s,
fill_value=%(fill)s)
"""
n = len(self.shape)
name = repr(self._data).split('(')[0]
if n <= 1:
return with_mask1 % {
'name': name,
'data': str(self),
'mask': str(self._mask),
'fill': str(self.fill_value),
}
return with_mask % {
'name': name,
'data': str(self),
'mask': str(self._mask),
'fill': str(self.fill_value),
}
#............................................
def __add__(self, other):
"Add other to self, and return a new masked array."
return add(self, other)
#
def __sub__(self, other):
"Subtract other to self, and return a new masked array."
return subtract(self, other)
#
def __mul__(self, other):
"Multiply other by self, and return a new masked array."
return multiply(self, other)
#
def __div__(self, other):
"Divide other into self, and return a new masked array."
return divide(self, other)
#
def __truediv__(self, other):
"Divide other into self, and return a new masked array."
return true_divide(self, other)
#
def __floordiv__(self, other):
"Divide other into self, and return a new masked array."
return floor_divide(self, other)
#
def __pow__(self, other):
"Raise self to the power other, masking the potential NaNs/Infs"
return power(self, other)
#............................................
def __iadd__(self, other):
"Add other to self in-place."
ndarray.__iadd__(self._data, getdata(other))
m = getmask(other)
if self._mask is nomask:
self._mask = m
elif m is not nomask:
self._mask += m
return self
#....
def __isub__(self, other):
"Subtract other from self in-place."
ndarray.__isub__(self._data, getdata(other))
m = getmask(other)
if self._mask is nomask:
self._mask = m
elif m is not nomask:
self._mask += m
return self
#....
def __imul__(self, other):
"Multiply self by other in-place."
ndarray.__imul__(self._data, getdata(other))
m = getmask(other)
if self._mask is nomask:
self._mask = m
elif m is not nomask:
self._mask += m
return self
#....
def __idiv__(self, other):
"Divide self by other in-place."
other_data = getdata(other)
dom_mask = _DomainSafeDivide().__call__(self._data, other_data)
other_mask = getmask(other)
new_mask = mask_or(other_mask, dom_mask)
# The following 3 lines control the domain filling
if dom_mask.any():
other_data = other_data.copy()
numpy.putmask(other_data, dom_mask, 1)
ndarray.__idiv__(self._data, other_data)
self._mask = mask_or(self._mask, new_mask)
return self
#...
def __ipow__(self, other):
"Raise self to the power other, in place"
_data = self._data
other_data = getdata(other)
other_mask = getmask(other)
ndarray.__ipow__(_data, other_data)
invalid = numpy.logical_not(numpy.isfinite(_data))
new_mask = mask_or(other_mask,invalid)
self._mask = mask_or(self._mask, new_mask)
# The following line is potentially problematic, as we change _data...
numpy.putmask(self._data,invalid,self.fill_value)
return self
#............................................
def __float__(self):
"Convert to float."
if self.size > 1:
raise TypeError,\
"Only length-1 arrays can be converted to Python scalars"
elif self._mask:
warnings.warn("Warning: converting a masked element to nan.")
return numpy.nan
return float(self.item())
def __int__(self):
"Convert to int."
if self.size > 1:
raise TypeError,\
"Only length-1 arrays can be converted to Python scalars"
elif self._mask:
raise MAError, 'Cannot convert masked element to a Python int.'
return int(self.item())
#............................................
def get_imag(self):
result = self._data.imag.view(type(self))
result.__setmask__(self._mask)
return result
imag = property(fget=get_imag,doc="Imaginary part")
def get_real(self):
result = self._data.real.view(type(self))
result.__setmask__(self._mask)
return result
real = property(fget=get_real,doc="Real part")
#............................................
def count(self, axis=None):
"""Count the non-masked elements of the array along the given
axis.
Parameters
----------
axis : int, optional
Axis along which to count the non-masked elements. If
not given, all the non masked elements are counted.
Returns
-------
A masked array where the mask is True where all data are
masked. If axis is None, returns either a scalar ot the
masked singleton if all values are masked.
"""
m = self._mask
s = self.shape
ls = len(s)
if m is nomask:
if ls == 0:
return 1
if ls == 1:
return s[0]
if axis is None:
return self.size
else:
n = s[axis]
t = list(s)
del t[axis]
return numeric.ones(t) * n
n1 = numpy.size(m, axis)
n2 = m.astype(int_).sum(axis)
if axis is None:
return (n1-n2)
else:
return narray(n1 - n2)
#............................................
flatten = _arraymethod('flatten')
#
def ravel(self):
"""Returns a 1D version of self, as a view."""
r = ndarray.ravel(self._data).view(type(self))
r._update_from(self)
if self._mask is not nomask:
r._mask = ndarray.ravel(self._mask).reshape(r.shape)
else:
r._mask = nomask
return r
#
repeat = _arraymethod('repeat')
#
def reshape (self, *s):
"""Reshape the array to shape s.
Returns
-------
A new masked array.
Notes
-----
If you want to modify the shape in place, please use
``a.shape = s``
"""
result = self._data.reshape(*s).view(type(self))
result.__dict__.update(self.__dict__)
if result._mask is not nomask:
result._mask = self._mask.copy()
result._mask.shape = result.shape
return result
#
def resize(self, newshape, refcheck=True, order=False):
"""Attempt to modify the size and the shape of the array in place.
The array must own its own memory and not be referenced by
other arrays.
Returns
-------
None.
"""
try:
self._data.resize(newshape, refcheck, order)
if self.mask is not nomask:
self._mask.resize(newshape, refcheck, order)
except ValueError:
raise ValueError("Cannot resize an array that has been referenced "
"or is referencing another array in this way.\n"
"Use the resize function.")
return None
#
def put(self, indices, values, mode='raise'):
"""Set storage-indexed locations to corresponding values.
a.put(values, indices, mode) sets a.flat[n] = values[n] for
each n in indices. If ``values`` is shorter than ``indices``
then it will repeat. If ``values`` has some masked values, the
initial mask is updated in consequence, else the corresponding
values are unmasked.
"""
m = self._mask
# Hard mask: Get rid of the values/indices that fall on masked data
if self._hardmask and self._mask is not nomask:
mask = self._mask[indices]
indices = narray(indices, copy=False)
values = narray(values, copy=False, subok=True)
values.resize(indices.shape)
indices = indices[~mask]
values = values[~mask]
#....
self._data.put(indices, values, mode=mode)
#....
if m is nomask:
m = getmask(values)
else:
m = m.copy()
if getmask(values) is nomask:
m.put(indices, False, mode=mode)
else:
m.put(indices, values._mask, mode=mode)
m = make_mask(m, copy=False, shrink=True)
self._mask = m
#............................................
def ids (self):
"""Return the addresses of the data and mask areas."""
if self._mask is nomask:
return (self.ctypes.data, id(nomask))
return (self.ctypes.data, self._mask.ctypes.data)
#............................................
def all(self, axis=None, out=None):
"""Return True if all entries along the given axis are True,
False otherwise. Masked values are considered as True during
computation.
Parameter
----------
axis : int, optional
Axis along which the operation is performed. If None,
the operation is performed on a flatten array
out : {MaskedArray}, optional
Alternate optional output. If not None, out should be
a valid MaskedArray of the same shape as the output of
self._data.all(axis).
Returns A masked array, where the mask is True if all data along
-------
the axis are masked.
Notes
-----
An exception is raised if ``out`` is not None and not of the
same type as self.
"""
if out is None:
d = self.filled(True).all(axis=axis).view(type(self))
if d.ndim > 0:
d.__setmask__(self._mask.all(axis))
return d
elif type(out) is not type(self):
raise TypeError("The external array should have " \
"a type %s (got %s instead)" %\
(type(self), type(out)))
self.filled(True).all(axis=axis, out=out)
if out.ndim:
out.__setmask__(self._mask.all(axis))
return out
def any(self, axis=None, out=None):
"""Returns True if at least one entry along the given axis is
True.
Returns False if all entries are False.
Masked values are considered as True during computation.
Parameter
----------
axis : int, optional
Axis along which the operation is performed.
If None, the operation is performed on a flatten array
out : {MaskedArray}, optional
Alternate optional output. If not None, out should be
a valid MaskedArray of the same shape as the output of
self._data.all(axis).
Returns A masked array, where the mask is True if all data along
-------
the axis are masked.
Notes
-----
An exception is raised if ``out`` is not None and not of the
same type as self.
"""
if out is None:
d = self.filled(False).any(axis=axis).view(type(self))
if d.ndim > 0:
d.__setmask__(self._mask.all(axis))
return d
elif type(out) is not type(self):
raise TypeError("The external array should have a type %s "\
"(got %s instead)" %\
(type(self), type(out)))
self.filled(False).any(axis=axis, out=out)
if out.ndim:
out.__setmask__(self._mask.all(axis))
return out
def nonzero(self):
"""Return the indices of the elements of a that are not zero
nor masked, as a tuple of arrays.
There are as many tuples as dimensions of a, each tuple
contains the indices of the non-zero elements in that
dimension. The corresponding non-zero values can be obtained
with ``a[a.nonzero()]``.
To group the indices by element, rather than dimension, use
instead: ``transpose(a.nonzero())``.
The result of this is always a 2d array, with a row for each
non-zero element.
"""
return narray(self.filled(0), copy=False).nonzero()
#............................................
def trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None):
"""a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along the offset diagonal of the array's
indicated `axis1` and `axis2`.
"""
# TODO: What are we doing with `out`?
m = self._mask
if m is nomask:
result = super(MaskedArray, self).trace(offset=offset, axis1=axis1,
axis2=axis2, out=out)
return result.astype(dtype)
else:
D = self.diagonal(offset=offset, axis1=axis1, axis2=axis2)
return D.astype(dtype).filled(0).sum(axis=None)
#............................................
def sum(self, axis=None, dtype=None):
"""Sum the array over the given axis.
Masked elements are set to 0 internally.
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
dtype : dtype, optional
Datatype for the intermediary computation. If not given,
the current dtype is used instead.
"""
if self._mask is nomask:
mask = nomask
else:
mask = self._mask.all(axis)
if (not mask.ndim) and mask:
return masked
result = self.filled(0).sum(axis, dtype=dtype).view(type(self))
if result.ndim > 0:
result.__setmask__(mask)
return result
def cumsum(self, axis=None, dtype=None):
"""Return the cumulative sum of the elements of the array
along the given axis.
Masked values are set to 0 internally.
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
dtype : {dtype}, optional
Datatype for the intermediary computation. If not
given, the current dtype is used instead.
"""
result = self.filled(0).cumsum(axis=axis, dtype=dtype).view(type(self))
result.__setmask__(self.mask)
return result
def prod(self, axis=None, dtype=None):
"""Return the product of the elements of the array along the
given axis.
Masked elements are set to 1 internally.
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
dtype : {dtype}, optional
Datatype for the intermediary computation. If not
given, the current dtype is used instead.
"""
if self._mask is nomask:
mask = nomask
else:
mask = self._mask.all(axis)
if (not mask.ndim) and mask:
return masked
result = self.filled(1).prod(axis=axis, dtype=dtype).view(type(self))
if result.ndim:
result.__setmask__(mask)
return result
product = prod
def cumprod(self, axis=None, dtype=None):
"""Return the cumulative product of the elements of the array
along the given axis.
Masked values are set to 1 internally.
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
dtype : {dtype}, optional
Datatype for the intermediary computation. If not
given, the current dtype is used instead.
"""
result = self.filled(1).cumprod(axis=axis, dtype=dtype).view(type(self))
result.__setmask__(self.mask)
return result
def mean(self, axis=None, dtype=None, out=None):
"""Average the array over the given axis. Equivalent to
a.sum(axis, dtype) / a.size(axis).
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
dtype : {dtype}, optional
Datatype for the intermediary computation. If not
given, the current dtype is used instead.
"""
if self._mask is nomask:
result = super(MaskedArray, self).mean(axis=axis, dtype=dtype)
else:
dsum = self.sum(axis=axis, dtype=dtype)
cnt = self.count(axis=axis)
result = dsum*1./cnt
if out is not None:
out.flat = result.ravel()
return result
def anom(self, axis=None, dtype=None):
"""Return the anomalies (deviations from the average) along
the given axis.
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
dtype : {dtype}, optional
Datatype for the intermediary computation. If not
given, the current dtype is used instead.
"""
m = self.mean(axis, dtype)
if not axis:
return (self - m)
else:
return (self - expand_dims(m,axis))
def var(self, axis=None, dtype=None, ddof=0):
"""Return the variance, a measure of the spread of a distribution.
The variance is the average of the squared deviations from the
mean, i.e. var = mean(abs(x - x.mean())**2).
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
dtype : {dtype}, optional
Datatype for the intermediary computation. If not
given, the current dtype is used instead.
Notes
-----
The value returned is by default a biased estimate of the
true variance, since the mean is computed by dividing by N-ddof.
For the (more standard) unbiased estimate, use ddof=1 or.
Note that for complex numbers the absolute value is taken before
squaring, so that the result is always real and nonnegative.
"""
if self._mask is nomask:
# TODO: Do we keep super, or var _data and take a view ?
return super(MaskedArray, self).var(axis=axis, dtype=dtype,
ddof=ddof)
else:
cnt = self.count(axis=axis)-ddof
danom = self.anom(axis=axis, dtype=dtype)
if iscomplexobj(self):
danom = umath.absolute(danom)**2
else:
danom *= danom
dvar = narray(danom.sum(axis) / cnt).view(type(self))
if axis is not None:
dvar._mask = mask_or(self._mask.all(axis), (cnt==1))
dvar._update_from(self)
return dvar
def std(self, axis=None, dtype=None, ddof=0):
"""Return the standard deviation, a measure of the spread of a
distribution.
The standard deviation is the square root of the average of
the squared deviations from the mean, i.e.
std = sqrt(mean(abs(x - x.mean())**2)).
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
dtype : {dtype}, optional
Datatype for the intermediary computation.
If not given, the current dtype is used instead.
Notes
-----
The value returned is by default a biased estimate of the
true standard deviation, since the mean is computed by dividing
by N-ddof. For the more standard unbiased estimate, use ddof=1.
Note that for complex numbers the absolute value is taken before
squaring, so that the result is always real and nonnegative.
"""
dvar = self.var(axis,dtype,ddof=ddof)
if axis is not None or dvar is not masked:
dvar = sqrt(dvar)
return dvar
#............................................
def round(self, decimals=0, out=None):
result = self._data.round(decimals).view(type(self))
result._mask = self._mask
result._update_from(self)
if out is None:
return result
out[:] = result
return
round.__doc__ = ndarray.round.__doc__
#............................................
def argsort(self, axis=None, fill_value=None, kind='quicksort',
order=None):
"""Return an ndarray of indices that sort the array along the
specified axis. Masked values are filled beforehand to
fill_value.
Parameters
----------
axis : int, optional
Axis to be indirectly sorted.
If not given, uses a flatten version of the array.
fill_value : {var}
Value used to fill in the masked values.
If not given, self.fill_value is used instead.
kind : {string}
Sorting algorithm (default 'quicksort')
Possible values: 'quicksort', 'mergesort', or 'heapsort'
Notes
-----
This method executes an indirect sort along the given axis
using the algorithm specified by the kind keyword. It returns
an array of indices of the same shape as 'a' that index data
along the given axis in sorted order.
The various sorts are characterized by average speed, worst
case performance need for work space, and whether they are
stable. A stable sort keeps items with the same key in the
same relative order. The three available algorithms have the
following properties:
|------------------------------------------------------|
| kind | speed | worst case | work space | stable|
|------------------------------------------------------|
|'quicksort'| 1 | O(n^2) | 0 | no |
|'mergesort'| 2 | O(n*log(n)) | ~n/2 | yes |
|'heapsort' | 3 | O(n*log(n)) | 0 | no |
|------------------------------------------------------|
All the sort algorithms make temporary copies of the data when
the sort is not along the last axis. Consequently, sorts along
the last axis are faster and use less space than sorts along
other axis.
"""
if fill_value is None:
fill_value = default_fill_value(self)
d = self.filled(fill_value).view(ndarray)
return d.argsort(axis=axis, kind=kind, order=order)
#........................
def argmin(self, axis=None, fill_value=None):
"""Return an ndarray of indices for the minimum values of a
along the specified axis.
Masked values are treated as if they had the value fill_value.
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
fill_value : {var}, optional
Value used to fill in the masked values. If None, the
output of minimum_fill_value(self._data) is used.
"""
if fill_value is None:
fill_value = minimum_fill_value(self)
d = self.filled(fill_value).view(ndarray)
return d.argmin(axis)
#........................
def argmax(self, axis=None, fill_value=None):
"""Returns the array of indices for the maximum values of `a`
along the specified axis.
Masked values are treated as if they had the value fill_value.
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
fill_value : {var}, optional
Value used to fill in the masked values. If None, the
output of maximum_fill_value(self._data) is used.
"""
if fill_value is None:
fill_value = maximum_fill_value(self._data)
d = self.filled(fill_value).view(ndarray)
return d.argmax(axis)
def sort(self, axis=-1, kind='quicksort', order=None,
endwith=True, fill_value=None):
"""Sort along the given axis.
Parameters
----------
axis : int
Axis to be indirectly sorted.
kind : {string}
Sorting algorithm (default 'quicksort')
Possible values: 'quicksort', 'mergesort', or 'heapsort'.
order : {var}
If a has fields defined, then the order keyword can be
the field name to sort on or a list (or tuple) of
field names to indicate the order that fields should
be used to define the sort.
fill_value : {var}
Value used to fill in the masked values. If None, use
the the output of minimum_fill_value().
endwith : bool
Whether missing values (if any) should be forced in
the upper indices (at the end of the array) (True) or
lower indices (at the beginning).
Returns
-------
When used as method, returns None.
When used as a function, returns an array.
Notes
-----
This method sorts 'a' in place along the given axis using
the algorithm specified by the kind keyword.
The various sorts may characterized by average speed,
worst case performance need for work space, and whether
they are stable. A stable sort keeps items with the same
key in the same relative order and is most useful when
used w/ argsort where the key might differ from the items
being sorted. The three available algorithms have the
following properties:
|------------------------------------------------------|
| kind | speed | worst case | work space | stable|
|------------------------------------------------------|
|'quicksort'| 1 | O(n^2) | 0 | no |
|'mergesort'| 2 | O(n*log(n)) | ~n/2 | yes |
|'heapsort' | 3 | O(n*log(n)) | 0 | no |
|------------------------------------------------------|
"""
if self._mask is nomask:
ndarray.sort(self,axis=axis, kind=kind, order=order)
else:
if fill_value is None:
if endwith:
filler = minimum_fill_value(self)
else:
filler = maximum_fill_value(self)
else:
filler = fill_value
idx = numpy.indices(self.shape)
idx[axis] = self.filled(filler).argsort(axis=axis,kind=kind,order=order)
idx_l = idx.tolist()
tmp_mask = self._mask[idx_l].flat
tmp_data = self._data[idx_l].flat
self.flat = tmp_data
self._mask.flat = tmp_mask
return
#............................................
def min(self, axis=None, fill_value=None):
"""Return the minimum of a along the given axis.
Masked values are filled with fill_value.
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
fill_value : {var}, optional
Value used to fill in the masked values.
If None, use the the output of minimum_fill_value().
"""
mask = self._mask
# Check all/nothing case ......
if mask is nomask:
return super(MaskedArray, self).min(axis=axis)
elif (not mask.ndim) and mask:
return masked
# Get the mask ................
if axis is None:
mask = umath.logical_and.reduce(mask.flat)
else:
mask = umath.logical_and.reduce(mask, axis=axis)
# Skip if all masked ..........
if not mask.ndim and mask:
return masked
# Get the fill value ...........
if fill_value is None:
fill_value = minimum_fill_value(self)
# Get the data ................
result = self.filled(fill_value).min(axis=axis).view(type(self))
if result.ndim > 0:
result._mask = mask
return result
def mini(self, axis=None):
if axis is None:
return minimum(self)
else:
return minimum.reduce(self, axis)
#........................
def max(self, axis=None, fill_value=None):
"""Return the maximum/a along the given axis.
Masked values are filled with fill_value.
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
fill_value : {var}, optional
Value used to fill in the masked values.
If None, use the the output of maximum_fill_value().
"""
mask = self._mask
# Check all/nothing case ......
if mask is nomask:
return super(MaskedArray, self).max(axis=axis)
elif (not mask.ndim) and mask:
return masked
# Check the mask ..............
if axis is None:
mask = umath.logical_and.reduce(mask.flat)
else:
mask = umath.logical_and.reduce(mask, axis=axis)
# Skip if all masked ..........
if not mask.ndim and mask:
return masked
# Get the fill value ..........
if fill_value is None:
fill_value = maximum_fill_value(self)
# Get the data ................
result = self.filled(fill_value).max(axis=axis).view(type(self))
if result.ndim > 0:
result._mask = mask
return result
#........................
def ptp(self, axis=None, fill_value=None):
"""Return the visible data range (max-min) along the given axis.
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
fill_value : {var}, optional
Value used to fill in the masked values. If None, the
maximum uses the maximum default, the minimum uses the
minimum default.
"""
return self.max(axis, fill_value) - self.min(axis, fill_value)
# Array methods ---------------------------------------
copy = _arraymethod('copy')
diagonal = _arraymethod('diagonal')
take = _arraymethod('take')
transpose = _arraymethod('transpose')
T = property(fget=lambda self:self.transpose())
swapaxes = _arraymethod('swapaxes')
clip = _arraymethod('clip', onmask=False)
copy = _arraymethod('copy')
squeeze = _arraymethod('squeeze')
#--------------------------------------------
def tolist(self, fill_value=None):
"""Copy the data portion of the array to a hierarchical python
list and returns that list.
Data items are converted to the nearest compatible Python
type. Masked values are converted to fill_value. If
fill_value is None, the corresponding entries in the output
list will be ``None``.
"""
if fill_value is not None:
return self.filled(fill_value).tolist()
result = self.filled().tolist()
# Set temps to save time when dealing w/ mrecarrays...
_mask = self._mask
if _mask is nomask:
return result
nbdims = self.ndim
dtypesize = len(self.dtype)
if nbdims == 0:
return tuple([None]*dtypesize)
elif nbdims == 1:
maskedidx = _mask.nonzero()[0].tolist()
if dtypesize:
nodata = tuple([None]*dtypesize)
else:
nodata = None
[operator.setitem(result,i,nodata) for i in maskedidx]
else:
for idx in zip(*[i.tolist() for i in _mask.nonzero()]):
tmp = result
for i in idx[:-1]:
tmp = tmp[i]
tmp[idx[-1]] = None
return result
#........................
def tostring(self, fill_value=None, order='C'):
"""Return a copy of array data as a Python string containing the raw
bytes in the array.
Parameters
----------
fill_value : {var}, optional
Value used to fill in the masked values.
If None, uses self.fill_value instead.
order : {string}
Order of the data item in the copy {"C","F","A"}.
"C" -- C order (row major)
"Fortran" -- Fortran order (column major)
"Any" -- Current order of array.
None -- Same as "Any"
"""
return self.filled(fill_value).tostring(order=order)
#........................
def tofile(self, fid, sep="", format="%s"):
raise NotImplementedError("Not implemented yet, sorry...")
#--------------------------------------------
# Pickling
def __getstate__(self):
"""Return the internal state of the masked array, for pickling
purposes.
"""
state = (1,
self.shape,
self.dtype,
self.flags.fnc,
self._data.tostring(),
getmaskarray(self).tostring(),
self._fill_value,
)
return state
#
def __setstate__(self, state):
"""Restore the internal state of the masked array, for
pickling purposes. ``state`` is typically the output of the
``__getstate__`` output, and is a 5-tuple:
- class name
- a tuple giving the shape of the data
- a typecode for the data
- a binary string for the data
- a binary string for the mask.
"""
(ver, shp, typ, isf, raw, msk, flv) = state
ndarray.__setstate__(self, (shp, typ, isf, raw))
self._mask.__setstate__((shp, dtype(bool), isf, msk))
self.fill_value = flv
#
def __reduce__(self):
"""Return a 3-tuple for pickling a MaskedArray.
"""
return (_mareconstruct,
(self.__class__, self._baseclass, (0,), 'b', ),
self.__getstate__())
def _mareconstruct(subtype, baseclass, baseshape, basetype,):
"""Internal function that builds a new MaskedArray from the
information stored in a pickle.
"""
_data = ndarray.__new__(baseclass, baseshape, basetype)
_mask = ndarray.__new__(ndarray, baseshape, 'b1')
return subtype.__new__(subtype, _data, mask=_mask, dtype=basetype,)
#####--------------------------------------------------------------------------
#---- --- Shortcuts ---
#####---------------------------------------------------------------------------
def isMaskedArray(x):
"Is x a masked array, that is, an instance of MaskedArray?"
return isinstance(x, MaskedArray)
isarray = isMaskedArray
isMA = isMaskedArray #backward compatibility
# We define the masked singleton as a float for higher precedence...
# Note that it can be tricky sometimes w/ type comparison
masked_singleton = MaskedArray(0, dtype=float_, mask=True)
masked = masked_singleton
masked_array = MaskedArray
def array(data, dtype=None, copy=False, order=False,
mask=nomask, fill_value=None,
keep_mask=True, hard_mask=False, shrink=True, subok=True, ndmin=0,
):
"""array(data, dtype=None, copy=False, order=False, mask=nomask,
fill_value=None, keep_mask=True, hard_mask=False, shrink=True,
subok=True, ndmin=0)
Acts as shortcut to MaskedArray, with options in a different order
for convenience. And backwards compatibility...
"""
#TODO: we should try to put 'order' somwehere
return MaskedArray(data, mask=mask, dtype=dtype, copy=copy, subok=subok,
keep_mask=keep_mask, hard_mask=hard_mask,
fill_value=fill_value, ndmin=ndmin, shrink=shrink)
array.__doc__ = masked_array.__doc__
def is_masked(x):
"""Does x have masked values?"""
m = getmask(x)
if m is nomask:
return False
elif m.any():
return True
return False
#####---------------------------------------------------------------------------
#---- --- Extrema functions ---
#####---------------------------------------------------------------------------
class _extrema_operation(object):
"Generic class for maximum/minimum functions."
def __call__(self, a, b=None):
"Executes the call behavior."
if b is None:
return self.reduce(a)
return where(self.compare(a, b), a, b)
#.........
def reduce(self, target, axis=None):
"Reduce target along the given axis."
target = narray(target, copy=False, subok=True)
m = getmask(target)
if axis is not None:
kargs = { 'axis' : axis }
else:
kargs = {}
target = target.ravel()
if not (m is nomask):
m = m.ravel()
if m is nomask:
t = self.ufunc.reduce(target, **kargs)
else:
target = target.filled(self.fill_value_func(target)).view(type(target))
t = self.ufunc.reduce(target, **kargs)
m = umath.logical_and.reduce(m, **kargs)
if hasattr(t, '_mask'):
t._mask = m
elif m:
t = masked
return t
#.........
def outer (self, a, b):
"Return the function applied to the outer product of a and b."
ma = getmask(a)
mb = getmask(b)
if ma is nomask and mb is nomask:
m = nomask
else:
ma = getmaskarray(a)
mb = getmaskarray(b)
m = logical_or.outer(ma, mb)
result = self.ufunc.outer(filled(a), filled(b))
result._mask = m
return result
#............................
class _minimum_operation(_extrema_operation):
"Object to calculate minima"
def __init__ (self):
"""minimum(a, b) or minimum(a)
In one argument case, returns the scalar minimum.
"""
self.ufunc = umath.minimum
self.afunc = amin
self.compare = less
self.fill_value_func = minimum_fill_value
#............................
class _maximum_operation(_extrema_operation):
"Object to calculate maxima"
def __init__ (self):
"""maximum(a, b) or maximum(a)
In one argument case returns the scalar maximum.
"""
self.ufunc = umath.maximum
self.afunc = amax
self.compare = greater
self.fill_value_func = maximum_fill_value
#..........................................................
def min(array, axis=None, out=None):
"""Return the minima along the given axis.
If `axis` is None, applies to the flattened array.
"""
if out is not None:
raise TypeError("Output arrays Unsupported for masked arrays")
if axis is None:
return minimum(array)
else:
return minimum.reduce(array, axis)
min.__doc__ = MaskedArray.min.__doc__
#............................
def max(obj, axis=None, out=None):
if out is not None:
raise TypeError("Output arrays Unsupported for masked arrays")
if axis is None:
return maximum(obj)
else:
return maximum.reduce(obj, axis)
max.__doc__ = MaskedArray.max.__doc__
#.............................
def ptp(obj, axis=None):
"""a.ptp(axis=None) = a.max(axis)-a.min(axis)"""
try:
return obj.max(axis)-obj.min(axis)
except AttributeError:
return max(obj, axis=axis) - min(obj, axis=axis)
ptp.__doc__ = MaskedArray.ptp.__doc__
#####---------------------------------------------------------------------------
#---- --- Definition of functions from the corresponding methods ---
#####---------------------------------------------------------------------------
class _frommethod:
"""Define functions from existing MaskedArray methods.
Parameters
----------
_methodname : string
Name of the method to transform.
"""
def __init__(self, methodname):
self._methodname = methodname
self.__doc__ = self.getdoc()
def getdoc(self):
"Return the doc of the function (from the doc of the method)."
try:
return getattr(MaskedArray, self._methodname).__doc__
except:
return getattr(numpy, self._methodname).__doc__
def __call__(self, a, *args, **params):
if isinstance(a, MaskedArray):
return getattr(a, self._methodname).__call__(*args, **params)
#FIXME ----
#As x is not a MaskedArray, we transform it to a ndarray with asarray
#... and call the corresponding method.
#Except that sometimes it doesn't work (try reshape([1,2,3,4],(2,2)))
#we end up with a "SystemError: NULL result without error in PyObject_Call"
#A dirty trick is then to call the initial numpy function...
method = getattr(narray(a, copy=False), self._methodname)
try:
return method(*args, **params)
except SystemError:
return getattr(numpy,self._methodname).__call__(a, *args, **params)
all = _frommethod('all')
anomalies = anom = _frommethod('anom')
any = _frommethod('any')
conjugate = _frommethod('conjugate')
ids = _frommethod('ids')
nonzero = _frommethod('nonzero')
diagonal = _frommethod('diagonal')
maximum = _maximum_operation()
mean = _frommethod('mean')
minimum = _minimum_operation ()
product = _frommethod('prod')
ptp = _frommethod('ptp')
ravel = _frommethod('ravel')
repeat = _frommethod('repeat')
round = _frommethod('round')
std = _frommethod('std')
sum = _frommethod('sum')
swapaxes = _frommethod('swapaxes')
take = _frommethod('take')
trace = _frommethod('trace')
var = _frommethod('var')
compress = _frommethod('compress')
#..............................................................................
def power(a, b, third=None):
"""Computes a**b elementwise.
"""
if third is not None:
raise MAError, "3-argument power not supported."
# Get the masks
ma = getmask(a)
mb = getmask(b)
m = mask_or(ma, mb)
# Get the rawdata
fa = getdata(a)
fb = getdata(b)
# Get the type of the result (so that we preserve subclasses)
if isinstance(a,MaskedArray):
basetype = type(a)
else:
basetype = MaskedArray
# Get the result and view it as a (subclass of) MaskedArray
result = umath.power(fa,fb).view(basetype)
# Find where we're in trouble w/ NaNs and Infs
invalid = numpy.logical_not(numpy.isfinite(result.view(ndarray)))
# Retrieve some extra attributes if needed
if isinstance(result,MaskedArray):
result._update_from(a)
# Add the initial mask
if m is not nomask:
if numpy.isscalar(result):
return masked
result._mask = m
# Fix the invalid parts
if invalid.any():
if not result.ndim:
return masked
result[invalid] = masked
result._data[invalid] = result.fill_value
return result
# if fb.dtype.char in typecodes["Integer"]:
# return masked_array(umath.power(fa, fb), m)
# m = mask_or(m, (fa < 0) & (fb != fb.astype(int)))
# if m is nomask:
# return masked_array(umath.power(fa, fb))
# else:
# fa = fa.copy()
# if m.all():
# fa.flat = 1
# else:
# numpy.putmask(fa,m,1)
# return masked_array(umath.power(fa, fb), m)
#..............................................................................
def argsort(a, axis=None, kind='quicksort', order=None, fill_value=None):
"Function version of the eponymous method."
if fill_value is None:
fill_value = default_fill_value(a)
d = filled(a, fill_value)
if axis is None:
return d.argsort(kind=kind, order=order)
return d.argsort(axis, kind=kind, order=order)
argsort.__doc__ = MaskedArray.argsort.__doc__
def argmin(a, axis=None, fill_value=None):
"Function version of the eponymous method."
if fill_value is None:
fill_value = default_fill_value(a)
d = filled(a, fill_value)
return d.argmin(axis=axis)
argmin.__doc__ = MaskedArray.argmin.__doc__
def argmax(a, axis=None, fill_value=None):
"Function version of the eponymous method."
if fill_value is None:
fill_value = default_fill_value(a)
try:
fill_value = - fill_value
except:
pass
d = filled(a, fill_value)
return d.argmax(axis=axis)
argmin.__doc__ = MaskedArray.argmax.__doc__
def sort(a, axis=-1, kind='quicksort', order=None, endwith=True, fill_value=None):
"Function version of the eponymous method."
a = narray(a, copy=True, subok=True)
if axis is None:
a = a.flatten()
axis = 0
if fill_value is None:
if endwith:
filler = minimum_fill_value(a)
else:
filler = maximum_fill_value(a)
else:
filler = fill_value
# return
indx = numpy.indices(a.shape).tolist()
indx[axis] = filled(a,filler).argsort(axis=axis,kind=kind,order=order)
return a[indx]
sort.__doc__ = MaskedArray.sort.__doc__
def compressed(x):
"""Return a 1-D array of all the non-masked data."""
if getmask(x) is nomask:
return numpy.asanyarray(x)
else:
return x.compressed()
def concatenate(arrays, axis=0):
"Concatenate the arrays along the given axis."
d = numpy.concatenate([getdata(a) for a in arrays], axis)
rcls = get_masked_subclass(*arrays)
data = d.view(rcls)
# Check whether one of the arrays has a non-empty mask...
for x in arrays:
if getmask(x) is not nomask:
break
else:
return data
# OK, so we have to concatenate the masks
dm = numpy.concatenate([getmaskarray(a) for a in arrays], axis)
# If we decide to keep a '_shrinkmask' option, we want to check that ...
# ... all of them are True, and then check for dm.any()
# shrink = numpy.logical_or.reduce([getattr(a,'_shrinkmask',True) for a in arrays])
# if shrink and not dm.any():
if not dm.any():
data._mask = nomask
else:
data._mask = dm.reshape(d.shape)
return data
def count(a, axis = None):
return masked_array(a, copy=False).count(axis)
count.__doc__ = MaskedArray.count.__doc__
def expand_dims(x,axis):
"""Expand the shape of the array by including a new axis before
the given one.
"""
result = n_expand_dims(x,axis)
if isinstance(x, MaskedArray):
new_shape = result.shape
result = x.view()
result.shape = new_shape
if result._mask is not nomask:
result._mask.shape = new_shape
return result
#......................................
def left_shift (a, n):
"Left shift n bits."
m = getmask(a)
if m is nomask:
d = umath.left_shift(filled(a), n)
return masked_array(d)
else:
d = umath.left_shift(filled(a, 0), n)
return masked_array(d, mask=m)
def right_shift (a, n):
"Right shift n bits."
m = getmask(a)
if m is nomask:
d = umath.right_shift(filled(a), n)
return masked_array(d)
else:
d = umath.right_shift(filled(a, 0), n)
return masked_array(d, mask=m)
#......................................
def put(a, indices, values, mode='raise'):
"""Set storage-indexed locations to corresponding values.
Values and indices are filled if necessary.
"""
# We can't use 'frommethod', the order of arguments is different
try:
return a.put(indices, values, mode=mode)
except AttributeError:
return narray(a, copy=False).put(indices, values, mode=mode)
def putmask(a, mask, values): #, mode='raise'):
"""Set a.flat[n] = values[n] for each n where mask.flat[n] is true.
If values is not the same size of a and mask then it will repeat
as necessary. This gives different behavior than
a[mask] = values.
Note: Using a masked array as values will NOT transform a ndarray in
a maskedarray.
"""
# We can't use 'frommethod', the order of arguments is different
if not isinstance(a, MaskedArray):
a = a.view(MaskedArray)
(valdata, valmask) = (getdata(values), getmask(values))
if getmask(a) is nomask:
if valmask is not nomask:
a._sharedmask = True
a.mask = numpy.zeros(a.shape, dtype=bool_)
numpy.putmask(a._mask, mask, valmask)
elif a._hardmask:
if valmask is not nomask:
m = a._mask.copy()
numpy.putmask(m, mask, valmask)
a.mask |= m
else:
if valmask is nomask:
valmask = getmaskarray(values)
numpy.putmask(a._mask, mask, valmask)
numpy.putmask(a._data, mask, valdata)
return
def transpose(a,axes=None):
"""Return a view of the array with dimensions permuted according to axes,
as a masked array.
If ``axes`` is None (default), the output view has reversed
dimensions compared to the original.
"""
#We can't use 'frommethod', as 'transpose' doesn't take keywords
try:
return a.transpose(axes)
except AttributeError:
return narray(a, copy=False).transpose(axes).view(MaskedArray)
def reshape(a, new_shape):
"""Change the shape of the array a to new_shape."""
#We can't use 'frommethod', it whine about some parameters. Dmmit.
try:
return a.reshape(new_shape)
except AttributeError:
return narray(a, copy=False).reshape(new_shape).view(MaskedArray)
def resize(x, new_shape):
"""Return a new array with the specified shape.
The total size of the original array can be any size. The new
array is filled with repeated copies of a. If a was masked, the
new array will be masked, and the new mask will be a repetition of
the old one.
"""
# We can't use _frommethods here, as N.resize is notoriously whiny.
m = getmask(x)
if m is not nomask:
m = numpy.resize(m, new_shape)
result = numpy.resize(x, new_shape).view(get_masked_subclass(x))
if result.ndim:
result._mask = m
return result
#................................................
def rank(obj):
"maskedarray version of the numpy function."
return fromnumeric.rank(getdata(obj))
rank.__doc__ = numpy.rank.__doc__
#
def shape(obj):
"maskedarray version of the numpy function."
return fromnumeric.shape(getdata(obj))
shape.__doc__ = numpy.shape.__doc__
#
def size(obj, axis=None):
"maskedarray version of the numpy function."
return fromnumeric.size(getdata(obj), axis)
size.__doc__ = numpy.size.__doc__
#................................................
#####--------------------------------------------------------------------------
#---- --- Extra functions ---
#####--------------------------------------------------------------------------
def where (condition, x=None, y=None):
"""where(condition | x, y)
Returns a (subclass of) masked array, shaped like condition, where
the elements are x when condition is True, and y otherwise. If
neither x nor y are given, returns a tuple of indices where
condition is True (a la condition.nonzero()).
Parameters
----------
condition : {var}
The condition to meet. Must be convertible to an integer
array.
x : {var}, optional
Values of the output when the condition is met
y : {var}, optional
Values of the output when the condition is not met.
"""
if x is None and y is None:
return filled(condition, 0).nonzero()
elif x is None or y is None:
raise ValueError, "Either both or neither x and y should be given."
# Get the condition ...............
fc = filled(condition, 0).astype(bool_)
notfc = numpy.logical_not(fc)
# Get the data ......................................
xv = getdata(x)
yv = getdata(y)
if x is masked:
ndtype = yv.dtype
xm = numpy.ones(fc.shape, dtype=MaskType)
elif y is masked:
ndtype = xv.dtype
ym = numpy.ones(fc.shape, dtype=MaskType)
else:
ndtype = numpy.max([xv.dtype, yv.dtype])
xm = getmask(x)
d = numpy.empty(fc.shape, dtype=ndtype).view(MaskedArray)
numpy.putmask(d._data, fc, xv.astype(ndtype))
numpy.putmask(d._data, notfc, yv.astype(ndtype))
d._mask = numpy.zeros(fc.shape, dtype=MaskType)
numpy.putmask(d._mask, fc, getmask(x))
numpy.putmask(d._mask, notfc, getmask(y))
d._mask |= getmaskarray(condition)
if not d._mask.any():
d._mask = nomask
return d
def choose (indices, t, out=None, mode='raise'):
"Return array shaped like indices with elements chosen from t"
#TODO: implement options `out` and `mode`, if possible.
def fmask (x):
"Returns the filled array, or True if masked."
if x is masked:
return 1
return filled(x)
def nmask (x):
"Returns the mask, True if ``masked``, False if ``nomask``."
if x is masked:
return 1
m = getmask(x)
if m is nomask:
return 0
return m
c = filled(indices, 0)
masks = [nmask(x) for x in t]
a = [fmask(x) for x in t]
d = numpy.choose(c, a)
m = numpy.choose(c, masks)
m = make_mask(mask_or(m, getmask(indices)), copy=0, shrink=True)
return masked_array(d, mask=m)
def round_(a, decimals=0, out=None):
"""Return a copy of a, rounded to 'decimals' places.
When 'decimals' is negative, it specifies the number of positions
to the left of the decimal point. The real and imaginary parts of
complex numbers are rounded separately. Nothing is done if the
array is not of float type and 'decimals' is greater than or equal
to 0.
Parameters
----------
decimals : int
Number of decimals to round to. May be negative.
out : array_like
Existing array to use for output.
If not given, returns a default copy of a.
Notes
-----
If out is given and does not have a mask attribute, the mask of a
is lost!
"""
if out is None:
return numpy.round_(a, decimals, out)
else:
numpy.round_(getdata(a), decimals, out)
if hasattr(out, '_mask'):
out._mask = getmask(a)
return out
def arange(stop, start=None, step=1, dtype=None):
"maskedarray version of the numpy function."
return numpy.arange(stop, start, step, dtype).view(MaskedArray)
arange.__doc__ = numpy.arange.__doc__
def inner(a, b):
"maskedarray version of the numpy function."
fa = filled(a, 0)
fb = filled(b, 0)
if len(fa.shape) == 0:
fa.shape = (1,)
if len(fb.shape) == 0:
fb.shape = (1,)
return numpy.inner(fa, fb).view(MaskedArray)
inner.__doc__ = numpy.inner.__doc__
inner.__doc__ += doc_note("Masked values are replaced by 0.")
innerproduct = inner
def outer(a, b):
"maskedarray version of the numpy function."
fa = filled(a, 0).ravel()
fb = filled(b, 0).ravel()
d = numeric.outer(fa, fb)
ma = getmask(a)
mb = getmask(b)
if ma is nomask and mb is nomask:
return masked_array(d)
ma = getmaskarray(a)
mb = getmaskarray(b)
m = make_mask(1-numeric.outer(1-ma, 1-mb), copy=0)
return masked_array(d, mask=m)
outer.__doc__ = numpy.outer.__doc__
outer.__doc__ += doc_note("Masked values are replaced by 0.")
outerproduct = outer
def allequal (a, b, fill_value=True):
"""Return True if all entries of a and b are equal, using
fill_value as a truth value where either or both are masked.
"""
m = mask_or(getmask(a), getmask(b))
if m is nomask:
x = getdata(a)
y = getdata(b)
d = umath.equal(x, y)
return d.all()
elif fill_value:
x = getdata(a)
y = getdata(b)
d = umath.equal(x, y)
dm = array(d, mask=m, copy=False)
return dm.filled(True).all(None)
else:
return False
def allclose (a, b, fill_value=True, rtol=1.e-5, atol=1.e-8):
""" Return True if all elements of a and b are equal subject to
given tolerances.
If fill_value is True, masked values are considered equal.
If fill_value is False, masked values considered unequal.
The relative error rtol should be positive and << 1.0
The absolute error atol comes into play for those elements of b
that are very small or zero; it says how small `a` must be also.
"""
m = mask_or(getmask(a), getmask(b))
d1 = getdata(a)
d2 = getdata(b)
x = filled(array(d1, copy=0, mask=m), fill_value).astype(float)
y = filled(array(d2, copy=0, mask=m), 1).astype(float)
d = umath.less_equal(umath.absolute(x-y), atol + rtol * umath.absolute(y))
return fromnumeric.alltrue(fromnumeric.ravel(d))
#..............................................................................
def asarray(a, dtype=None):
"""asarray(data, dtype) = array(data, dtype, copy=0, subok=0)
Return a as a MaskedArray object of the given dtype.
If dtype is not given or None, is is set to the dtype of a.
No copy is performed if a is already an array.
Subclasses are converted to the base class MaskedArray.
"""
return masked_array(a, dtype=dtype, copy=False, keep_mask=True, subok=False)
def asanyarray(a, dtype=None):
"""asanyarray(data, dtype) = array(data, dtype, copy=0, subok=1)
Return a as an masked array.
If dtype is not given or None, is is set to the dtype of a.
No copy is performed if a is already an array.
Subclasses are conserved.
"""
return masked_array(a, dtype=dtype, copy=False, keep_mask=True, subok=True)
def empty(new_shape, dtype=float):
"maskedarray version of the numpy function."
return numpy.empty(new_shape, dtype).view(MaskedArray)
empty.__doc__ = numpy.empty.__doc__
def empty_like(a):
"maskedarray version of the numpy function."
return numpy.empty_like(a).view(MaskedArray)
empty_like.__doc__ = numpy.empty_like.__doc__
def ones(new_shape, dtype=float):
"maskedarray version of the numpy function."
return numpy.ones(new_shape, dtype).view(MaskedArray)
ones.__doc__ = numpy.ones.__doc__
def zeros(new_shape, dtype=float):
"maskedarray version of the numpy function."
return numpy.zeros(new_shape, dtype).view(MaskedArray)
zeros.__doc__ = numpy.zeros.__doc__
#####--------------------------------------------------------------------------
#---- --- Pickling ---
#####--------------------------------------------------------------------------
def dump(a,F):
"""Pickle the MaskedArray `a` to the file `F`. `F` can either be
the handle of an exiting file, or a string representing a file
name.
"""
if not hasattr(F,'readline'):
F = open(F,'w')
return cPickle.dump(a,F)
def dumps(a):
"""Return a string corresponding to the pickling of the
MaskedArray.
"""
return cPickle.dumps(a)
def load(F):
"""Wrapper around ``cPickle.load`` which accepts either a
file-like object or a filename.
"""
if not hasattr(F, 'readline'):
F = open(F,'r')
return cPickle.load(F)
def loads(strg):
"Load a pickle from the current string."""
return cPickle.loads(strg)
################################################################################
def fromfile(file, dtype=float, count=-1, sep=''):
raise NotImplementedError("Not yet implemented. Sorry")
class _convert2ma:
"""Convert functions from numpy to numpy.ma.
Parameters
----------
_methodname : string
Name of the method to transform.
"""
__doc__ = None
def __init__(self, funcname):
self._func = getattr(numpy, funcname)
self.__doc__ = self.getdoc()
def getdoc(self):
"Return the doc of the function (from the doc of the method)."
return self._func.__doc__
def __call__(self, a, *args, **params):
return self._func.__call__(a, *args, **params).view(MaskedArray)
frombuffer = _convert2ma('frombuffer')
fromfunction = _convert2ma('fromfunction')
identity = _convert2ma('identity')
indices = numpy.indices
clip = numpy.clip
###############################################################################
|