1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
|
"""Masked arrays add-ons.
A collection of utilities for maskedarray
:author: Pierre Gerard-Marchant
:contact: pierregm_at_uga_dot_edu
:version: $Id: extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $
"""
__author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)"
__version__ = '1.0'
__revision__ = "$Revision: 3473 $"
__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $'
__all__ = ['apply_along_axis', 'atleast_1d', 'atleast_2d', 'atleast_3d',
'average',
'column_stack','compress_cols','compress_rowcols', 'compress_rows',
'count_masked',
'dot','dstack',
'ediff1d','expand_dims',
'flatnotmasked_contiguous','flatnotmasked_edges',
'hsplit','hstack',
'mask_cols','mask_rowcols','mask_rows','masked_all','masked_all_like',
'median','mr_',
'notmasked_contiguous','notmasked_edges',
'polyfit',
'row_stack',
'vander','vstack',
]
from itertools import groupby
import core
from core import MaskedArray, MAError, add, array, asarray, concatenate, count,\
filled, getmask, getmaskarray, masked, masked_array, mask_or, nomask, ones,\
sort, zeros
#from core import *
import numpy as np
from numpy import ndarray, array as nxarray
import numpy.core.umath as umath
from numpy.lib.index_tricks import AxisConcatenator
from numpy.lib.polynomial import _lstsq, _single_eps, _double_eps
#...............................................................................
def issequence(seq):
"""Is seq a sequence (ndarray, list or tuple)?"""
if isinstance(seq, ndarray):
return True
elif isinstance(seq, tuple):
return True
elif isinstance(seq, list):
return True
return False
def count_masked(arr, axis=None):
"""Count the number of masked elements along the given axis.
Parameters
----------
axis : int, optional
Axis along which to count.
If None (default), a flattened version of the array is used.
"""
m = getmaskarray(arr)
return m.sum(axis)
def masked_all(shape, dtype=float):
"""Return an empty masked array of the given shape and dtype,
where all the data are masked.
Parameters
----------
dtype : dtype, optional
Data type of the output.
"""
a = masked_array(np.empty(shape, dtype),
mask=np.ones(shape, bool))
return a
def masked_all_like(arr):
"""Return an empty masked array of the same shape and dtype as
the array `a`, where all the data are masked.
"""
a = masked_array(np.empty_like(arr),
mask=np.ones(arr.shape, bool))
return a
#####--------------------------------------------------------------------------
#---- --- Standard functions ---
#####--------------------------------------------------------------------------
class _fromnxfunction:
"""Defines a wrapper to adapt numpy functions to masked arrays."""
def __init__(self, funcname):
self._function = funcname
self.__doc__ = self.getdoc()
def getdoc(self):
"Retrieves the __doc__ string from the function."
return getattr(np, self._function).__doc__ +\
"*Notes*:\n (The function is applied to both the _data and the _mask, if any.)"
def __call__(self, *args, **params):
func = getattr(np, self._function)
if len(args)==1:
x = args[0]
if isinstance(x, ndarray):
_d = func(np.asarray(x), **params)
_m = func(getmaskarray(x), **params)
return masked_array(_d, mask=_m)
elif isinstance(x, tuple) or isinstance(x, list):
_d = func(tuple([np.asarray(a) for a in x]), **params)
_m = func(tuple([getmaskarray(a) for a in x]), **params)
return masked_array(_d, mask=_m)
else:
arrays = []
args = list(args)
while len(args)>0 and issequence(args[0]):
arrays.append(args.pop(0))
res = []
for x in arrays:
_d = func(np.asarray(x), *args, **params)
_m = func(getmaskarray(x), *args, **params)
res.append(masked_array(_d, mask=_m))
return res
atleast_1d = _fromnxfunction('atleast_1d')
atleast_2d = _fromnxfunction('atleast_2d')
atleast_3d = _fromnxfunction('atleast_3d')
vstack = row_stack = _fromnxfunction('vstack')
hstack = _fromnxfunction('hstack')
column_stack = _fromnxfunction('column_stack')
dstack = _fromnxfunction('dstack')
hsplit = _fromnxfunction('hsplit')
def expand_dims(a, axis):
"""Expands the shape of a by including newaxis before axis.
"""
if not isinstance(a, MaskedArray):
return np.expand_dims(a, axis)
elif getmask(a) is nomask:
return np.expand_dims(a, axis).view(MaskedArray)
m = getmaskarray(a)
return masked_array(np.expand_dims(a, axis),
mask=np.expand_dims(m, axis))
#####--------------------------------------------------------------------------
#----
#####--------------------------------------------------------------------------
def flatten_inplace(seq):
"""Flatten a sequence in place."""
k = 0
while (k != len(seq)):
while hasattr(seq[k],'__iter__'):
seq[k:(k+1)] = seq[k]
k += 1
return seq
def apply_along_axis(func1d, axis, arr, *args, **kwargs):
"""Execute func1d(arr[i],*args) where func1d takes 1-D arrays and
arr is an N-d array. i varies so as to apply the function along
the given axis for each 1-d subarray in arr.
"""
arr = core.array(arr, copy=False, subok=True)
nd = arr.ndim
if axis < 0:
axis += nd
if (axis >= nd):
raise ValueError("axis must be less than arr.ndim; axis=%d, rank=%d."
% (axis,nd))
ind = [0]*(nd-1)
i = np.zeros(nd,'O')
indlist = range(nd)
indlist.remove(axis)
i[axis] = slice(None,None)
outshape = np.asarray(arr.shape).take(indlist)
i.put(indlist, ind)
j = i.copy()
res = func1d(arr[tuple(i.tolist())], *args, **kwargs)
# if res is a number, then we have a smaller output array
asscalar = np.isscalar(res)
if not asscalar:
try:
len(res)
except TypeError:
asscalar = True
# Note: we shouldn't set the dtype of the output from the first result...
#...so we force the type to object, and build a list of dtypes
#...we'll just take the largest, to avoid some downcasting
dtypes = []
if asscalar:
dtypes.append(np.asarray(res).dtype)
outarr = zeros(outshape, object)
outarr[tuple(ind)] = res
Ntot = np.product(outshape)
k = 1
while k < Ntot:
# increment the index
ind[-1] += 1
n = -1
while (ind[n] >= outshape[n]) and (n > (1-nd)):
ind[n-1] += 1
ind[n] = 0
n -= 1
i.put(indlist, ind)
res = func1d(arr[tuple(i.tolist())], *args, **kwargs)
outarr[tuple(ind)] = res
dtypes.append(asarray(res).dtype)
k += 1
else:
res = core.array(res, copy=False, subok=True)
j = i.copy()
j[axis] = ([slice(None, None)] * res.ndim)
j.put(indlist, ind)
Ntot = np.product(outshape)
holdshape = outshape
outshape = list(arr.shape)
outshape[axis] = res.shape
dtypes.append(asarray(res).dtype)
outshape = flatten_inplace(outshape)
outarr = zeros(outshape, object)
outarr[tuple(flatten_inplace(j.tolist()))] = res
k = 1
while k < Ntot:
# increment the index
ind[-1] += 1
n = -1
while (ind[n] >= holdshape[n]) and (n > (1-nd)):
ind[n-1] += 1
ind[n] = 0
n -= 1
i.put(indlist, ind)
j.put(indlist, ind)
res = func1d(arr[tuple(i.tolist())], *args, **kwargs)
outarr[tuple(flatten_inplace(j.tolist()))] = res
dtypes.append(asarray(res).dtype)
k += 1
max_dtypes = np.dtype(np.asarray(dtypes).max())
if not hasattr(arr, '_mask'):
result = np.asarray(outarr, dtype=max_dtypes)
else:
result = core.asarray(outarr, dtype=max_dtypes)
result.fill_value = core.default_fill_value(result)
return result
def average(a, axis=None, weights=None, returned=False):
"""Average the array over the given axis.
Parameters
----------
axis : {None,int}, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
weights : {None, sequence}, optional
Sequence of weights.
The weights must have the shape of a, or be 1D with length
the size of a along the given axis.
If no weights are given, weights are assumed to be 1.
returned : {False, True}, optional
Flag indicating whether a tuple (result, sum of weights/counts)
should be returned as output (True), or just the result (False).
"""
a = asarray(a)
mask = a.mask
ash = a.shape
if ash == ():
ash = (1,)
if axis is None:
if mask is nomask:
if weights is None:
n = a.sum(axis=None)
d = float(a.size)
else:
w = filled(weights, 0.0).ravel()
n = umath.add.reduce(a._data.ravel() * w)
d = umath.add.reduce(w)
del w
else:
if weights is None:
n = a.filled(0).sum(axis=None)
d = umath.add.reduce((-mask).ravel().astype(int))
else:
w = array(filled(weights, 0.0), float, mask=mask).ravel()
n = add.reduce(a.ravel() * w)
d = add.reduce(w)
del w
else:
if mask is nomask:
if weights is None:
d = ash[axis] * 1.0
n = add.reduce(a._data, axis, dtype=float)
else:
w = filled(weights, 0.0)
wsh = w.shape
if wsh == ():
wsh = (1,)
if wsh == ash:
w = np.array(w, float, copy=0)
n = add.reduce(a*w, axis)
d = add.reduce(w, axis)
del w
elif wsh == (ash[axis],):
ni = ash[axis]
r = [None]*len(ash)
r[axis] = slice(None, None, 1)
w = eval ("w["+ repr(tuple(r)) + "] * ones(ash, float)")
n = add.reduce(a*w, axis, dtype=float)
d = add.reduce(w, axis, dtype=float)
del w, r
else:
raise ValueError, 'average: weights wrong shape.'
else:
if weights is None:
n = add.reduce(a, axis, dtype=float)
d = umath.add.reduce((-mask), axis=axis, dtype=float)
else:
w = filled(weights, 0.0)
wsh = w.shape
if wsh == ():
wsh = (1,)
if wsh == ash:
w = array(w, dtype=float, mask=mask, copy=0)
n = add.reduce(a*w, axis, dtype=float)
d = add.reduce(w, axis, dtype=float)
elif wsh == (ash[axis],):
ni = ash[axis]
r = [None]*len(ash)
r[axis] = slice(None, None, 1)
w = eval ("w["+ repr(tuple(r)) + \
"] * masked_array(ones(ash, float), mask)")
n = add.reduce(a*w, axis, dtype=float)
d = add.reduce(w, axis, dtype=float)
else:
raise ValueError, 'average: weights wrong shape.'
del w
if n is masked or d is masked:
return masked
result = n/d
del n
if isinstance(result, MaskedArray):
if ((axis is None) or (axis==0 and a.ndim == 1)) and \
(result.mask is nomask):
result = result._data
if returned:
if not isinstance(d, MaskedArray):
d = masked_array(d)
if isinstance(d, ndarray) and (not d.shape == result.shape):
d = ones(result.shape, dtype=float) * d
if returned:
return result, d
else:
return result
def median(a, axis=0, out=None, overwrite_input=False):
"""Compute the median along the specified axis.
Returns the median of the array elements. The median is taken
over the first axis of the array by default, otherwise over
the specified axis.
Parameters
----------
a : array-like
Input array or object that can be converted to an array
axis : {int, None}, optional
Axis along which the medians are computed. The default is to
compute the median along the first dimension. axis=None
returns the median of the flattened array
out : {None, ndarray}, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.
overwrite_input : {False, True}, optional
If True, then allow use of memory of input array (a) for
calculations. The input array will be modified by the call to
median. This will save memory when you do not need to preserve
the contents of the input array. Treat the input as undefined,
but it will probably be fully or partially sorted. Default is
False. Note that, if overwrite_input is true, and the input
is not already an ndarray, an error will be raised.
Returns
-------
median : ndarray.
A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.
Return datatype is float64 for ints and floats smaller than
float64, or the input datatype otherwise.
See Also
-------
mean
Notes
-----
Given a vector V length N, the median of V is the middle value of
a sorted copy of V (Vs) - i.e. Vs[(N-1)/2], when N is odd. It is
the mean of the two middle values of Vs, when N is even.
"""
def _median1D(data):
counts = filled(count(data, axis),0)
(idx, rmd) = divmod(counts, 2)
if rmd:
choice = slice(idx, idx+1)
else:
choice = slice(idx-1, idx+1)
return data[choice].mean(0)
#
if overwrite_input:
if axis is None:
asorted = a.ravel()
asorted.sort()
else:
a.sort(axis=axis)
asorted = a
else:
asorted = sort(a, axis=axis)
if axis is None:
result = _median1D(asorted)
else:
result = apply_along_axis(_median1D, axis, asorted)
if out is not None:
out = result
return result
#..............................................................................
def compress_rowcols(x, axis=None):
"""Suppress the rows and/or columns of a 2D array that contains
masked values.
The suppression behavior is selected with the `axis`parameter.
- If axis is None, rows and columns are suppressed.
- If axis is 0, only rows are suppressed.
- If axis is 1 or -1, only columns are suppressed.
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
Returns
-------
compressed_array : an ndarray.
"""
x = asarray(x)
if x.ndim != 2:
raise NotImplementedError, "compress2d works for 2D arrays only."
m = getmask(x)
# Nothing is masked: return x
if m is nomask or not m.any():
return x._data
# All is masked: return empty
if m.all():
return nxarray([])
# Builds a list of rows/columns indices
(idxr, idxc) = (range(len(x)), range(x.shape[1]))
masked = m.nonzero()
if not axis:
for i in np.unique(masked[0]):
idxr.remove(i)
if axis in [None, 1, -1]:
for j in np.unique(masked[1]):
idxc.remove(j)
return x._data[idxr][:,idxc]
def compress_rows(a):
"""Suppress whole rows of a 2D array that contain masked values.
"""
return compress_rowcols(a, 0)
def compress_cols(a):
"""Suppress whole columnss of a 2D array that contain masked values.
"""
return compress_rowcols(a, 1)
def mask_rowcols(a, axis=None):
"""Mask whole rows and/or columns of a 2D array that contain
masked values. The masking behavior is selected with the
`axis`parameter.
- If axis is None, rows and columns are masked.
- If axis is 0, only rows are masked.
- If axis is 1 or -1, only columns are masked.
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
Returns
-------
a *pure* ndarray.
"""
a = asarray(a)
if a.ndim != 2:
raise NotImplementedError, "compress2d works for 2D arrays only."
m = getmask(a)
# Nothing is masked: return a
if m is nomask or not m.any():
return a
maskedval = m.nonzero()
a._mask = a._mask.copy()
if not axis:
a[np.unique(maskedval[0])] = masked
if axis in [None, 1, -1]:
a[:,np.unique(maskedval[1])] = masked
return a
def mask_rows(a, axis=None):
"""Mask whole rows of a 2D array that contain masked values.
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
"""
return mask_rowcols(a, 0)
def mask_cols(a, axis=None):
"""Mask whole columns of a 2D array that contain masked values.
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
"""
return mask_rowcols(a, 1)
def dot(a,b, strict=False):
"""Return the dot product of two 2D masked arrays a and b.
Like the generic numpy equivalent, the product sum is over the
last dimension of a and the second-to-last dimension of b. If
strict is True, masked values are propagated: if a masked value
appears in a row or column, the whole row or column is considered
masked.
Parameters
----------
strict : {boolean}
Whether masked data are propagated (True) or set to 0 for
the computation.
Notes
-----
The first argument is not conjugated.
"""
#TODO: Works only with 2D arrays. There should be a way to get it to run with higher dimension
if strict and (a.ndim == 2) and (b.ndim == 2):
a = mask_rows(a)
b = mask_cols(b)
#
d = np.dot(filled(a, 0), filled(b, 0))
#
am = (~getmaskarray(a))
bm = (~getmaskarray(b))
m = ~np.dot(am, bm)
return masked_array(d, mask=m)
#...............................................................................
def ediff1d(array, to_end=None, to_begin=None):
"""Return the differences between consecutive elements of an
array, possibly with prefixed and/or appended values.
Parameters
----------
array : {array}
Input array, will be flattened before the difference is taken.
to_end : {number}, optional
If provided, this number will be tacked onto the end of the returned
differences.
to_begin : {number}, optional
If provided, this number will be taked onto the beginning of the
returned differences.
Returns
-------
ed : {array}
The differences. Loosely, this will be (ary[1:] - ary[:-1]).
"""
a = masked_array(array, copy=True)
if a.ndim > 1:
a.reshape((a.size,))
(d, m, n) = (a._data, a._mask, a.size-1)
dd = d[1:]-d[:-1]
if m is nomask:
dm = nomask
else:
dm = m[1:]-m[:-1]
#
if to_end is not None:
to_end = asarray(to_end)
nend = to_end.size
if to_begin is not None:
to_begin = asarray(to_begin)
nbegin = to_begin.size
r_data = np.empty((n+nend+nbegin,), dtype=a.dtype)
r_mask = np.zeros((n+nend+nbegin,), dtype=bool)
r_data[:nbegin] = to_begin._data
r_mask[:nbegin] = to_begin._mask
r_data[nbegin:-nend] = dd
r_mask[nbegin:-nend] = dm
else:
r_data = np.empty((n+nend,), dtype=a.dtype)
r_mask = np.zeros((n+nend,), dtype=bool)
r_data[:-nend] = dd
r_mask[:-nend] = dm
r_data[-nend:] = to_end._data
r_mask[-nend:] = to_end._mask
#
elif to_begin is not None:
to_begin = asarray(to_begin)
nbegin = to_begin.size
r_data = np.empty((n+nbegin,), dtype=a.dtype)
r_mask = np.zeros((n+nbegin,), dtype=bool)
r_data[:nbegin] = to_begin._data
r_mask[:nbegin] = to_begin._mask
r_data[nbegin:] = dd
r_mask[nbegin:] = dm
#
else:
r_data = dd
r_mask = dm
return masked_array(r_data, mask=r_mask)
#####--------------------------------------------------------------------------
#---- --- Concatenation helpers ---
#####--------------------------------------------------------------------------
class MAxisConcatenator(AxisConcatenator):
"""Translate slice objects to concatenation along an axis.
"""
def __init__(self, axis=0):
AxisConcatenator.__init__(self, axis, matrix=False)
def __getitem__(self,key):
if isinstance(key, str):
raise MAError, "Unavailable for masked array."
if type(key) is not tuple:
key = (key,)
objs = []
scalars = []
final_dtypedescr = None
for k in range(len(key)):
scalar = False
if type(key[k]) is slice:
step = key[k].step
start = key[k].start
stop = key[k].stop
if start is None:
start = 0
if step is None:
step = 1
if type(step) is type(1j):
size = int(abs(step))
newobj = np.linspace(start, stop, num=size)
else:
newobj = np.arange(start, stop, step)
elif type(key[k]) is str:
if (key[k] in 'rc'):
self.matrix = True
self.col = (key[k] == 'c')
continue
try:
self.axis = int(key[k])
continue
except (ValueError, TypeError):
raise ValueError, "Unknown special directive"
elif type(key[k]) in np.ScalarType:
newobj = asarray([key[k]])
scalars.append(k)
scalar = True
else:
newobj = key[k]
objs.append(newobj)
if isinstance(newobj, ndarray) and not scalar:
if final_dtypedescr is None:
final_dtypedescr = newobj.dtype
elif newobj.dtype > final_dtypedescr:
final_dtypedescr = newobj.dtype
if final_dtypedescr is not None:
for k in scalars:
objs[k] = objs[k].astype(final_dtypedescr)
res = concatenate(tuple(objs),axis=self.axis)
return self._retval(res)
class mr_class(MAxisConcatenator):
"""Translate slice objects to concatenation along the first axis.
For example:
>>> mr_[array([1,2,3]), 0, 0, array([4,5,6])]
array([1, 2, 3, 0, 0, 4, 5, 6])
"""
def __init__(self):
MAxisConcatenator.__init__(self, 0)
mr_ = mr_class()
#####--------------------------------------------------------------------------
#---- Find unmasked data ---
#####--------------------------------------------------------------------------
def flatnotmasked_edges(a):
"""Find the indices of the first and last not masked values in a
1D masked array. If all values are masked, returns None.
"""
m = getmask(a)
if m is nomask or not np.any(m):
return [0,-1]
unmasked = np.flatnonzero(~m)
if len(unmasked) > 0:
return unmasked[[0,-1]]
else:
return None
def notmasked_edges(a, axis=None):
"""Find the indices of the first and last not masked values along
the given axis in a masked array.
If all values are masked, return None. Otherwise, return a list
of 2 tuples, corresponding to the indices of the first and last
unmasked values respectively.
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
"""
a = asarray(a)
if axis is None or a.ndim == 1:
return flatnotmasked_edges(a)
m = getmask(a)
idx = array(np.indices(a.shape), mask=np.asarray([m]*a.ndim))
return [tuple([idx[i].min(axis).compressed() for i in range(a.ndim)]),
tuple([idx[i].max(axis).compressed() for i in range(a.ndim)]),]
def flatnotmasked_contiguous(a):
"""Find contiguous unmasked data in a flattened masked array.
Return a sorted sequence of slices (start index, end index).
"""
m = getmask(a)
if m is nomask:
return (a.size, [0,-1])
unmasked = np.flatnonzero(~m)
if len(unmasked) == 0:
return None
result = []
for k, group in groupby(enumerate(unmasked), lambda (i,x):i-x):
tmp = np.array([g[1] for g in group], int)
# result.append((tmp.size, tuple(tmp[[0,-1]])))
result.append( slice(tmp[0], tmp[-1]) )
result.sort()
return result
def notmasked_contiguous(a, axis=None):
"""Find contiguous unmasked data in a masked array along the given
axis.
Parameters
----------
axis : int, optional
Axis along which to perform the operation.
If None, applies to a flattened version of the array.
Returns
-------
A sorted sequence of slices (start index, end index).
Notes
-----
Only accepts 2D arrays at most.
"""
a = asarray(a)
nd = a.ndim
if nd > 2:
raise NotImplementedError,"Currently limited to atmost 2D array."
if axis is None or nd == 1:
return flatnotmasked_contiguous(a)
#
result = []
#
other = (axis+1)%2
idx = [0,0]
idx[axis] = slice(None, None)
#
for i in range(a.shape[other]):
idx[other] = i
result.append( flatnotmasked_contiguous(a[idx]) )
return result
#####--------------------------------------------------------------------------
#---- Polynomial fit ---
#####--------------------------------------------------------------------------
def vander(x, n=None):
"""%s
Notes
-----
Masked values in x will result in rows of zeros.
"""
_vander = np.vander(x, n)
m = getmask(x)
if m is not nomask:
_vander[m] = 0
return _vander
def polyfit(x, y, deg, rcond=None, full=False):
"""%s
Notes
-----
Any masked values in x is propagated in y, and vice-versa.
"""
order = int(deg) + 1
x = asarray(x)
mx = getmask(x)
y = asarray(y)
if y.ndim == 1:
m = mask_or(mx, getmask(y))
elif y.ndim == 2:
y = mask_rows(y)
my = getmask(y)
if my is not nomask:
m = mask_or(mx, my[:,0])
else:
m = mx
else:
raise TypeError,"Expected a 1D or 2D array for y!"
if m is not nomask:
x[m] = y[m] = masked
# Set rcond
if rcond is None :
if x.dtype in (np.single, np.csingle):
rcond = len(x)*_single_eps
else :
rcond = len(x)*_double_eps
# Scale x to improve condition number
scale = abs(x).max()
if scale != 0 :
x = x / scale
# solve least squares equation for powers of x
v = vander(x, order)
c, resids, rank, s = _lstsq(v, y.filled(0), rcond)
# warn on rank reduction, which indicates an ill conditioned matrix
if rank != order and not full:
warnings.warn("Polyfit may be poorly conditioned", np.RankWarning)
# scale returned coefficients
if scale != 0 :
if c.ndim == 1 :
c /= np.vander([scale], order)[0]
else :
c /= np.vander([scale], order).T
if full :
return c, resids, rank, s, rcond
else :
return c
_g = globals()
for nfunc in ('vander', 'polyfit'):
_g[nfunc].func_doc = _g[nfunc].func_doc % getattr(np,nfunc).__doc__
################################################################################
|