1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
|
"""mrecords
Defines the equivalent of recarrays for maskedarray.
Masked arrays already support named fields, but masking works only by records.
By comparison, mrecarrays support masking individual fields.
:author: Pierre Gerard-Marchant
"""
#TODO: We should make sure that no field is called '_mask','mask','_fieldmask',
#TODO: ...or whatever restricted keywords.
#TODO: An idea would be to no bother in the first place, and then rename the
#TODO: invalid fields with a trailing underscore...
#TODO: Maybe we could just overload the parser function ?
__author__ = "Pierre GF Gerard-Marchant"
import sys
import types
import numpy as np
from numpy import bool_, complex_, float_, int_, str_, object_, dtype, \
chararray, ndarray, recarray, record, array as narray
import numpy.core.numerictypes as ntypes
from numpy.core.records import find_duplicate, format_parser
from numpy.core.records import fromarrays as recfromarrays, \
fromrecords as recfromrecords
_byteorderconv = np.core.records._byteorderconv
_typestr = ntypes._typestr
import numpy.ma as ma
from numpy.ma import MAError, MaskedArray, masked, nomask, masked_array,\
make_mask, mask_or, getdata, getmask, getmaskarray, filled, \
default_fill_value, masked_print_option
_check_fill_value = ma.core._check_fill_value
import warnings
__all__ = ['MaskedRecords','mrecarray',
'fromarrays','fromrecords','fromtextfile','addfield',
]
reserved_fields = ['_data','_mask','_fieldmask', 'dtype']
def _getformats(data):
"Returns the formats of each array of arraylist as a comma-separated string."
if hasattr(data,'dtype'):
return ",".join([desc[1] for desc in data.dtype.descr])
formats = ''
for obj in data:
obj = np.asarray(obj)
# if not isinstance(obj, ndarray):
## if not isinstance(obj, ndarray):
# raise ValueError, "item in the array list must be an ndarray."
formats += _typestr[obj.dtype.type]
if issubclass(obj.dtype.type, ntypes.flexible):
formats += `obj.itemsize`
formats += ','
return formats[:-1]
def _checknames(descr, names=None):
"""Checks that the field names of the descriptor ``descr`` are not some
reserved keywords. If this is the case, a default 'f%i' is substituted.
If the argument `names` is not None, updates the field names to valid names.
"""
ndescr = len(descr)
default_names = ['f%i' % i for i in range(ndescr)]
if names is None:
new_names = default_names
else:
if isinstance(names, (tuple, list)):
new_names = names
elif isinstance(names, str):
new_names = names.split(',')
else:
raise NameError, "illegal input names %s" % `names`
nnames = len(new_names)
if nnames < ndescr:
new_names += default_names[nnames:]
ndescr = []
for (n, d, t) in zip(new_names, default_names, descr.descr):
if n in reserved_fields:
if t[0] in reserved_fields:
ndescr.append((d,t[1]))
else:
ndescr.append(t)
else:
ndescr.append((n,t[1]))
return numeric.dtype(ndescr)
def _get_fieldmask(self):
mdescr = [(n,'|b1') for n in self.dtype.names]
fdmask = np.empty(self.shape, dtype=mdescr)
fdmask.flat = tuple([False]*len(mdescr))
return fdmask
class MaskedRecords(MaskedArray, object):
"""
*IVariables*:
_data : {recarray}
Underlying data, as a record array.
_mask : {boolean array}
Mask of the records. A record is masked when all its fields are masked.
_fieldmask : {boolean recarray}
Record array of booleans, setting the mask of each individual field of each record.
_fill_value : {record}
Filling values for each field.
"""
_defaultfieldmask = nomask
_defaulthardmask = False
#............................................
def __new__(cls, shape, dtype=None, buf=None, offset=0, strides=None,
formats=None, names=None, titles=None,
byteorder=None, aligned=False,
mask=nomask, hard_mask=False, fill_value=None, keep_mask=True,
copy=False,
**options):
#
self = recarray.__new__(cls, shape, dtype=dtype, buf=buf, offset=offset,
strides=strides, formats=formats,
byteorder=byteorder, aligned=aligned,)
# self = self.view(cls)
#
mdtype = [(k,'|b1') for (k,_) in self.dtype.descr]
if mask is nomask or not np.size(mask):
if not keep_mask:
self._fieldmask = tuple([False]*len(mdtype))
else:
mask = np.array(mask, copy=copy)
if mask.shape != self.shape:
(nd, nm) = (self.size, mask.size)
if nm == 1:
mask = np.resize(mask, self.shape)
elif nm == nd:
mask = np.reshape(mask, self.shape)
else:
msg = "Mask and data not compatible: data size is %i, "+\
"mask size is %i."
raise MAError(msg % (nd, nm))
copy = True
if not keep_mask:
self.__setmask__(mask)
self._sharedmask = True
else:
if mask.dtype == mdtype:
_fieldmask = mask
else:
_fieldmask = np.array([tuple([m]*len(mdtype)) for m in mask],
dtype=mdtype)
self._fieldmask = _fieldmask
return self
#......................................................
def __array_finalize__(self,obj):
# Make sure we have a _fieldmask by default ..
_fieldmask = getattr(obj, '_fieldmask', None)
if _fieldmask is None:
mdescr = [(n,'|b1') for (n,_) in self.dtype.descr]
_mask = getattr(obj, '_mask', nomask)
if _mask is nomask:
_fieldmask = np.empty(self.shape, dtype=mdescr).view(recarray)
_fieldmask.flat = tuple([False]*len(mdescr))
else:
_fieldmask = narray([tuple([m]*len(mdescr)) for m in _mask],
dtype=mdescr).view(recarray)
# Update some of the attributes
if obj is not None:
_baseclass = getattr(obj,'_baseclass',type(obj))
else:
_baseclass = recarray
attrdict = dict(_fieldmask=_fieldmask,
_hardmask=getattr(obj,'_hardmask',False),
_fill_value=getattr(obj,'_fill_value',None),
_sharedmask=getattr(obj,'_sharedmask',False),
_baseclass=_baseclass)
self.__dict__.update(attrdict)
# Finalize as a regular maskedarray .....
# Update special attributes ...
self._basedict = getattr(obj, '_basedict', getattr(obj,'__dict__',{}))
self.__dict__.update(self._basedict)
return
#......................................................
def _getdata(self):
"Returns the data as a recarray."
return ndarray.view(self,recarray)
_data = property(fget=_getdata)
#......................................................
def __setmask__(self, mask):
"Sets the mask and update the fieldmask."
names = self.dtype.names
fmask = self.__dict__['_fieldmask']
#
if isinstance(mask,ndarray) and mask.dtype.names == names:
for n in names:
fmask[n] = mask[n].astype(bool)
# self.__dict__['_fieldmask'] = fmask.view(recarray)
return
newmask = make_mask(mask, copy=False)
if names is not None:
if self._hardmask:
for n in names:
fmask[n].__ior__(newmask)
else:
for n in names:
fmask[n].flat = newmask
return
_setmask = __setmask__
#
def _getmask(self):
"""Return the mask of the mrecord.
A record is masked when all the fields are masked.
"""
if self.size > 1:
return self._fieldmask.view((bool_, len(self.dtype))).all(1)
else:
return self._fieldmask.view((bool_, len(self.dtype))).all()
mask = _mask = property(fget=_getmask, fset=_setmask)
#......................................................
def get_fill_value(self):
"""Return the filling value.
"""
if self._fill_value is None:
ddtype = self.dtype
fillval = _check_fill_value(None, ddtype)
self._fill_value = np.array(tuple(fillval), dtype=ddtype)
return self._fill_value
def set_fill_value(self, value=None):
"""Set the filling value to value.
If value is None, use a default based on the data type.
"""
ddtype = self.dtype
fillval = _check_fill_value(value, ddtype)
self._fill_value = np.array(tuple(fillval), dtype=ddtype)
fill_value = property(fget=get_fill_value, fset=set_fill_value,
doc="Filling value.")
#......................................................
def __len__(self):
"Returns the length"
# We have more than one record
if self.ndim:
return len(self._data)
# We have only one record: return the nb of fields
return len(self.dtype)
#......................................................
def __getattribute__(self, attr):
"Returns the given attribute."
try:
# Returns a generic attribute
return object.__getattribute__(self,attr)
except AttributeError:
# OK, so attr must be a field name
pass
# Get the list of fields ......
_names = self.dtype.names
if attr in _names:
_data = self._data
_mask = self._fieldmask
# obj = masked_array(_data.__getattribute__(attr), copy=False,
# mask=_mask.__getattribute__(attr))
# Use a view in order to avoid the copy of the mask in MaskedArray.__new__
obj = narray(_data.__getattribute__(attr), copy=False).view(MaskedArray)
obj._mask = _mask.__getattribute__(attr)
if not obj.ndim and obj._mask:
return masked
return obj
raise AttributeError,"No attribute '%s' !" % attr
def __setattr__(self, attr, val):
"Sets the attribute attr to the value val."
# newattr = attr not in self.__dict__
try:
# Is attr a generic attribute ?
ret = object.__setattr__(self, attr, val)
except:
# Not a generic attribute: exit if it's not a valid field
fielddict = self.dtype.names or {}
if attr not in fielddict:
exctype, value = sys.exc_info()[:2]
raise exctype, value
else:
if attr in ['_mask','fieldmask']:
self.__setmask__(val)
return
# Get the list of names ......
_names = self.dtype.names
if _names is None:
_names = []
else:
_names = list(_names)
# Check the attribute
self_dict = self.__dict__
if attr not in _names+list(self_dict):
return ret
if attr not in self_dict: # We just added this one
try: # or this setattr worked on an internal
# attribute.
object.__delattr__(self, attr)
except:
return ret
# Case #1.: Basic field ............
base_fmask = self._fieldmask
_names = self.dtype.names or []
if attr in _names:
if val is masked:
fval = self.fill_value[attr]
mval = True
else:
fval = filled(val)
mval = getmaskarray(val)
if self._hardmask:
mval = mask_or(mval, base_fmask.__getattr__(attr))
self._data.__setattr__(attr, fval)
base_fmask.__setattr__(attr, mval)
return
#............................................
def __getitem__(self, indx):
"""Returns all the fields sharing the same fieldname base.
The fieldname base is either `_data` or `_mask`."""
_localdict = self.__dict__
_fieldmask = _localdict['_fieldmask']
_data = self._data
# We want a field ........
if isinstance(indx, basestring):
obj = _data[indx].view(MaskedArray)
obj._set_mask(_fieldmask[indx])
# Force to nomask if the mask is empty
if not obj._mask.any():
obj._mask = nomask
# Force to masked if the mask is True
if not obj.ndim and obj._mask:
return masked
return obj
# We want some elements ..
# First, the data ........
obj = narray(_data[indx], copy=False).view(mrecarray)
obj._fieldmask = narray(_fieldmask[indx], copy=False).view(recarray)
return obj
#....
def __setitem__(self, indx, value):
"Sets the given record to value."
MaskedArray.__setitem__(self, indx, value)
if isinstance(indx, basestring):
self._fieldmask[indx] = ma.getmaskarray(value)
#............................................
def __setslice__(self, i, j, value):
"Sets the slice described by [i,j] to `value`."
_localdict = self.__dict__
d = self._data
m = _localdict['_fieldmask']
names = self.dtype.names
if value is masked:
for n in names:
m[i:j][n] = True
elif not self._hardmask:
fval = filled(value)
mval = getmaskarray(value)
for n in names:
d[n][i:j] = fval
m[n][i:j] = mval
else:
mindx = getmaskarray(self)[i:j]
dval = np.asarray(value)
valmask = getmask(value)
if valmask is nomask:
for n in names:
mval = mask_or(m[n][i:j], valmask)
d[n][i:j][~mval] = value
elif valmask.size > 1:
for n in names:
mval = mask_or(m[n][i:j], valmask)
d[n][i:j][~mval] = dval[~mval]
m[n][i:j] = mask_or(m[n][i:j], mval)
self._fieldmask = m
#......................................................
def __str__(self):
"Calculates the string representation."
if self.size > 1:
mstr = ["(%s)" % ",".join([str(i) for i in s])
for s in zip(*[getattr(self,f) for f in self.dtype.names])]
return "[%s]" % ", ".join(mstr)
else:
mstr = ["%s" % ",".join([str(i) for i in s])
for s in zip([getattr(self,f) for f in self.dtype.names])]
return "(%s)" % ", ".join(mstr)
#
def __repr__(self):
"Calculates the repr representation."
_names = self.dtype.names
fmt = "%%%is : %%s" % (max([len(n) for n in _names])+4,)
reprstr = [fmt % (f,getattr(self,f)) for f in self.dtype.names]
reprstr.insert(0,'masked_records(')
reprstr.extend([fmt % (' fill_value', self.fill_value),
' )'])
return str("\n".join(reprstr))
#......................................................
def view(self, obj):
"""Returns a view of the mrecarray."""
try:
if issubclass(obj, ndarray):
return ndarray.view(self, obj)
except TypeError:
pass
dtype = np.dtype(obj)
if dtype.fields is None:
return self.__array__().view(dtype)
return ndarray.view(self, obj)
#......................................................
def filled(self, fill_value=None):
"""Returns an array of the same class as the _data part, where masked
values are filled with fill_value.
If fill_value is None, self.fill_value is used instead.
Subclassing is preserved.
"""
_localdict = self.__dict__
d = self._data
fm = _localdict['_fieldmask']
if not np.asarray(fm, dtype=bool_).any():
return d
#
if fill_value is None:
value = _check_fill_value(_localdict['_fill_value'],self.dtype)
else:
value = fill_value
if np.size(value) == 1:
value = [value,] * len(self.dtype)
#
if self is masked:
result = np.asanyarray(value)
else:
result = d.copy()
for (n, v) in zip(d.dtype.names, value):
np.putmask(np.asarray(result[n]), np.asarray(fm[n]), v)
return result
#......................................................
def harden_mask(self):
"Forces the mask to hard"
self._hardmask = True
def soften_mask(self):
"Forces the mask to soft"
self._hardmask = False
#......................................................
def copy(self):
"""Returns a copy of the masked record."""
_localdict = self.__dict__
copied = self._data.copy().view(type(self))
copied._fieldmask = self._fieldmask.copy()
return copied
#......................................................
def tolist(self, fill_value=None):
"""Copy the data portion of the array to a hierarchical python
list and returns that list.
Data items are converted to the nearest compatible Python
type. Masked values are converted to fill_value. If
fill_value is None, the corresponding entries in the output
list will be ``None``.
"""
if fill_value is not None:
return self.filled(fill_value).tolist()
result = narray(self.filled().tolist(), dtype=object)
mask = narray(self._fieldmask.tolist())
result[mask] = None
return result.tolist()
#--------------------------------------------
# Pickling
def __getstate__(self):
"""Return the internal state of the masked array, for pickling purposes.
"""
state = (1,
self.shape,
self.dtype,
self.flags.fnc,
self._data.tostring(),
self._fieldmask.tostring(),
self._fill_value,
)
return state
#
def __setstate__(self, state):
"""Restore the internal state of the masked array, for pickling purposes.
``state`` is typically the output of the ``__getstate__`` output, and is a
5-tuple:
- class name
- a tuple giving the shape of the data
- a typecode for the data
- a binary string for the data
- a binary string for the mask.
"""
(ver, shp, typ, isf, raw, msk, flv) = state
ndarray.__setstate__(self, (shp, typ, isf, raw))
mdtype = dtype([(k,bool_) for (k,_) in self.dtype.descr])
self.__dict__['_fieldmask'].__setstate__((shp, mdtype, isf, msk))
self.fill_value = flv
#
def __reduce__(self):
"""Return a 3-tuple for pickling a MaskedArray.
"""
return (_mrreconstruct,
(self.__class__, self._baseclass, (0,), 'b', ),
self.__getstate__())
def _mrreconstruct(subtype, baseclass, baseshape, basetype,):
"""Internal function that builds a new MaskedArray from the
information stored in a pickle.
"""
_data = ndarray.__new__(baseclass, baseshape, basetype).view(subtype)
# _data._mask = ndarray.__new__(ndarray, baseshape, 'b1')
# return _data
_mask = ndarray.__new__(ndarray, baseshape, 'b1')
return subtype.__new__(subtype, _data, mask=_mask, dtype=basetype,)
mrecarray = MaskedRecords
#####---------------------------------------------------------------------------
#---- --- Constructors ---
#####---------------------------------------------------------------------------
def fromarrays(arraylist, dtype=None, shape=None, formats=None,
names=None, titles=None, aligned=False, byteorder=None,
fill_value=None):
"""Creates a mrecarray from a (flat) list of masked arrays.
Parameters
----------
arraylist : sequence
A list of (masked) arrays. Each element of the sequence is first converted
to a masked array if needed. If a 2D array is passed as argument, it is
processed line by line
dtype : {None, dtype}, optional
Data type descriptor.
shape : {None, integer}, optional
Number of records. If None, shape is defined from the shape of the
first array in the list.
formats : {None, sequence}, optional
Sequence of formats for each individual field. If None, the formats will
be autodetected by inspecting the fields and selecting the highest dtype
possible.
names : {None, sequence}, optional
Sequence of the names of each field.
fill_value : {None, sequence}, optional
Sequence of data to be used as filling values.
Notes
-----
Lists of tuples should be preferred over lists of lists for faster processing.
"""
datalist = [getdata(x) for x in arraylist]
masklist = [np.atleast_1d(getmaskarray(x)) for x in arraylist]
_array = recfromarrays(datalist,
dtype=dtype, shape=shape, formats=formats,
names=names, titles=titles, aligned=aligned,
byteorder=byteorder).view(mrecarray)
_array._fieldmask.flat = zip(*masklist)
if fill_value is not None:
_array.fill_value = fill_value
return _array
#..............................................................................
def fromrecords(reclist, dtype=None, shape=None, formats=None, names=None,
titles=None, aligned=False, byteorder=None,
fill_value=None, mask=nomask):
"""Creates a MaskedRecords from a list of records.
Parameters
----------
reclist : sequence
A list of records. Each element of the sequence is first converted
to a masked array if needed. If a 2D array is passed as argument, it is
processed line by line
dtype : {None, dtype}, optional
Data type descriptor.
shape : {None,int}, optional
Number of records. If None, ``shape`` is defined from the shape of the
first array in the list.
formats : {None, sequence}, optional
Sequence of formats for each individual field. If None, the formats will
be autodetected by inspecting the fields and selecting the highest dtype
possible.
names : {None, sequence}, optional
Sequence of the names of each field.
fill_value : {None, sequence}, optional
Sequence of data to be used as filling values.
mask : {nomask, sequence}, optional.
External mask to apply on the data.
*Notes*:
Lists of tuples should be preferred over lists of lists for faster processing.
"""
# Grab the initial _fieldmask, if needed:
_fieldmask = getattr(reclist, '_fieldmask', None)
# Get the list of records.....
nfields = len(reclist[0])
if isinstance(reclist, ndarray):
# Make sure we don't have some hidden mask
if isinstance(reclist,MaskedArray):
reclist = reclist.filled().view(ndarray)
# Grab the initial dtype, just in case
if dtype is None:
dtype = reclist.dtype
reclist = reclist.tolist()
mrec = recfromrecords(reclist, dtype=dtype, shape=shape, formats=formats,
names=names, titles=titles,
aligned=aligned, byteorder=byteorder).view(mrecarray)
# Set the fill_value if needed
if fill_value is not None:
mrec.fill_value = fill_value
# Now, let's deal w/ the mask
if mask is not nomask:
mask = np.array(mask, copy=False)
maskrecordlength = len(mask.dtype)
if maskrecordlength:
mrec._fieldmask.flat = mask
elif len(mask.shape) == 2:
mrec._fieldmask.flat = [tuple(m) for m in mask]
else:
mrec._mask = mask
if _fieldmask is not None:
mrec._fieldmask[:] = _fieldmask
return mrec
def _guessvartypes(arr):
"""Tries to guess the dtypes of the str_ ndarray `arr`, by testing element-wise
conversion. Returns a list of dtypes.
The array is first converted to ndarray. If the array is 2D, the test is performed
on the first line. An exception is raised if the file is 3D or more.
"""
vartypes = []
arr = np.asarray(arr)
if len(arr.shape) == 2 :
arr = arr[0]
elif len(arr.shape) > 2:
raise ValueError, "The array should be 2D at most!"
# Start the conversion loop .......
for f in arr:
try:
val = int(f)
except ValueError:
try:
val = float(f)
except ValueError:
try:
val = complex(f)
except ValueError:
vartypes.append(arr.dtype)
else:
vartypes.append(complex)
else:
vartypes.append(float)
else:
vartypes.append(int)
return vartypes
def openfile(fname):
"Opens the file handle of file `fname`"
# A file handle ...................
if hasattr(fname, 'readline'):
return fname
# Try to open the file and guess its type
try:
f = open(fname)
except IOError:
raise IOError, "No such file: '%s'" % fname
if f.readline()[:2] != "\\x":
f.seek(0,0)
return f
raise NotImplementedError, "Wow, binary file"
def fromtextfile(fname, delimitor=None, commentchar='#', missingchar='',
varnames=None, vartypes=None):
"""Creates a mrecarray from data stored in the file `filename`.
Parameters
----------
filename : {file name/handle}
Handle of an opened file.
delimitor : {None, string}, optional
Alphanumeric character used to separate columns in the file.
If None, any (group of) white spacestring(s) will be used.
commentchar : {'#', string}, optional
Alphanumeric character used to mark the start of a comment.
missingchar : {'', string}, optional
String indicating missing data, and used to create the masks.
varnames : {None, sequence}, optional
Sequence of the variable names. If None, a list will be created from
the first non empty line of the file.
vartypes : {None, sequence}, optional
Sequence of the variables dtypes. If None, it will be estimated from
the first non-commented line.
Ultra simple: the varnames are in the header, one line"""
# Try to open the file ......................
f = openfile(fname)
# Get the first non-empty line as the varnames
while True:
line = f.readline()
firstline = line[:line.find(commentchar)].strip()
_varnames = firstline.split(delimitor)
if len(_varnames) > 1:
break
if varnames is None:
varnames = _varnames
# Get the data ..............................
_variables = masked_array([line.strip().split(delimitor) for line in f
if line[0] != commentchar and len(line) > 1])
(_, nfields) = _variables.shape
# Try to guess the dtype ....................
if vartypes is None:
vartypes = _guessvartypes(_variables[0])
else:
vartypes = [np.dtype(v) for v in vartypes]
if len(vartypes) != nfields:
msg = "Attempting to %i dtypes for %i fields!"
msg += " Reverting to default."
warnings.warn(msg % (len(vartypes), nfields))
vartypes = _guessvartypes(_variables[0])
# Construct the descriptor ..................
mdescr = [(n,f) for (n,f) in zip(varnames, vartypes)]
# Get the data and the mask .................
# We just need a list of masked_arrays. It's easier to create it like that:
_mask = (_variables.T == missingchar)
_datalist = [masked_array(a,mask=m,dtype=t)
for (a,m,t) in zip(_variables.T, _mask, vartypes)]
return fromarrays(_datalist, dtype=mdescr)
#....................................................................
def addfield(mrecord, newfield, newfieldname=None):
"""Adds a new field to the masked record array, using `newfield` as data
and `newfieldname` as name. If `newfieldname` is None, the new field name is
set to 'fi', where `i` is the number of existing fields.
"""
_data = mrecord._data
_mask = mrecord._fieldmask
if newfieldname is None or newfieldname in reserved_fields:
newfieldname = 'f%i' % len(_data.dtype)
newfield = ma.array(newfield)
# Get the new data ............
# Create a new empty recarray
newdtype = np.dtype(_data.dtype.descr + [(newfieldname, newfield.dtype)])
newdata = recarray(_data.shape, newdtype)
# Add the exisintg field
[newdata.setfield(_data.getfield(*f),*f)
for f in _data.dtype.fields.values()]
# Add the new field
newdata.setfield(newfield._data, *newdata.dtype.fields[newfieldname])
newdata = newdata.view(MaskedRecords)
# Get the new mask .............
# Create a new empty recarray
newmdtype = np.dtype([(n,bool_) for n in newdtype.names])
newmask = recarray(_data.shape, newmdtype)
# Add the old masks
[newmask.setfield(_mask.getfield(*f),*f)
for f in _mask.dtype.fields.values()]
# Add the mask of the new field
newmask.setfield(getmaskarray(newfield),
*newmask.dtype.fields[newfieldname])
newdata._fieldmask = newmask
return newdata
###############################################################################
|