1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
|
# mtrand.pyx -- A Pyrex wrapper of Jean-Sebastien Roy's RandomKit
#
# Copyright 2005 Robert Kern (robert.kern@gmail.com)
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
include "Python.pxi"
include "numpy.pxi"
cdef extern from "math.h":
double exp(double x)
double log(double x)
double floor(double x)
double sin(double x)
double cos(double x)
cdef extern from "randomkit.h":
ctypedef struct rk_state:
unsigned long key[624]
int pos
int has_gauss
double gauss
ctypedef enum rk_error:
RK_NOERR = 0
RK_ENODEV = 1
RK_ERR_MAX = 2
char *rk_strerror[2]
# 0xFFFFFFFFUL
unsigned long RK_MAX
void rk_seed(unsigned long seed, rk_state *state)
rk_error rk_randomseed(rk_state *state)
unsigned long rk_random(rk_state *state)
long rk_long(rk_state *state)
unsigned long rk_ulong(rk_state *state)
unsigned long rk_interval(unsigned long max, rk_state *state)
double rk_double(rk_state *state)
void rk_fill(void *buffer, size_t size, rk_state *state)
rk_error rk_devfill(void *buffer, size_t size, int strong)
rk_error rk_altfill(void *buffer, size_t size, int strong,
rk_state *state)
double rk_gauss(rk_state *state)
cdef extern from "distributions.h":
double rk_normal(rk_state *state, double loc, double scale)
double rk_standard_exponential(rk_state *state)
double rk_exponential(rk_state *state, double scale)
double rk_uniform(rk_state *state, double loc, double scale)
double rk_standard_gamma(rk_state *state, double shape)
double rk_gamma(rk_state *state, double shape, double scale)
double rk_beta(rk_state *state, double a, double b)
double rk_chisquare(rk_state *state, double df)
double rk_noncentral_chisquare(rk_state *state, double df, double nonc)
double rk_f(rk_state *state, double dfnum, double dfden)
double rk_noncentral_f(rk_state *state, double dfnum, double dfden, double nonc)
double rk_standard_cauchy(rk_state *state)
double rk_standard_t(rk_state *state, double df)
double rk_vonmises(rk_state *state, double mu, double kappa)
double rk_pareto(rk_state *state, double a)
double rk_weibull(rk_state *state, double a)
double rk_power(rk_state *state, double a)
double rk_laplace(rk_state *state, double loc, double scale)
double rk_gumbel(rk_state *state, double loc, double scale)
double rk_logistic(rk_state *state, double loc, double scale)
double rk_lognormal(rk_state *state, double mode, double sigma)
double rk_rayleigh(rk_state *state, double mode)
double rk_wald(rk_state *state, double mean, double scale)
double rk_triangular(rk_state *state, double left, double mode, double right)
long rk_binomial(rk_state *state, long n, double p)
long rk_binomial_btpe(rk_state *state, long n, double p)
long rk_binomial_inversion(rk_state *state, long n, double p)
long rk_negative_binomial(rk_state *state, long n, double p)
long rk_poisson(rk_state *state, double lam)
long rk_poisson_mult(rk_state *state, double lam)
long rk_poisson_ptrs(rk_state *state, double lam)
long rk_zipf(rk_state *state, double a)
long rk_geometric(rk_state *state, double p)
long rk_hypergeometric(rk_state *state, long good, long bad, long sample)
long rk_logseries(rk_state *state, double p)
ctypedef double (* rk_cont0)(rk_state *state)
ctypedef double (* rk_cont1)(rk_state *state, double a)
ctypedef double (* rk_cont2)(rk_state *state, double a, double b)
ctypedef double (* rk_cont3)(rk_state *state, double a, double b, double c)
ctypedef long (* rk_disc0)(rk_state *state)
ctypedef long (* rk_discnp)(rk_state *state, long n, double p)
ctypedef long (* rk_discnmN)(rk_state *state, long n, long m, long N)
ctypedef long (* rk_discd)(rk_state *state, double a)
cdef extern from "initarray.h":
void init_by_array(rk_state *self, unsigned long *init_key,
unsigned long key_length)
# Initialize numpy
import_array()
import numpy as _sp
cdef object cont0_array(rk_state *state, rk_cont0 func, object size):
cdef double *array_data
cdef ndarray array "arrayObject"
cdef long length
cdef long i
if size is None:
return func(state)
else:
array = <ndarray>_sp.empty(size, _sp.float64)
length = PyArray_SIZE(array)
array_data = <double *>array.data
for i from 0 <= i < length:
array_data[i] = func(state)
return array
cdef object cont1_array_sc(rk_state *state, rk_cont1 func, object size, double a):
cdef double *array_data
cdef ndarray array "arrayObject"
cdef long length
cdef long i
if size is None:
return func(state, a)
else:
array = <ndarray>_sp.empty(size, _sp.float64)
length = PyArray_SIZE(array)
array_data = <double *>array.data
for i from 0 <= i < length:
array_data[i] = func(state, a)
return array
cdef object cont1_array(rk_state *state, rk_cont1 func, object size, ndarray oa):
cdef double *array_data
cdef double *oa_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
cdef flatiter itera
cdef broadcast multi
if size is None:
array = <ndarray>PyArray_SimpleNew(oa.nd, oa.dimensions, NPY_DOUBLE)
length = PyArray_SIZE(array)
array_data = <double *>array.data
itera = <flatiter>PyArray_IterNew(<object>oa)
for i from 0 <= i < length:
array_data[i] = func(state, (<double *>(itera.dataptr))[0])
PyArray_ITER_NEXT(itera)
else:
array = <ndarray>_sp.empty(size, _sp.float64)
array_data = <double *>array.data
multi = <broadcast>PyArray_MultiIterNew(2, <void *>array,
<void *>oa)
if (multi.size != PyArray_SIZE(array)):
raise ValueError("size is not compatible with inputs")
for i from 0 <= i < multi.size:
oa_data = <double *>PyArray_MultiIter_DATA(multi, 1)
array_data[i] = func(state, oa_data[0])
PyArray_MultiIter_NEXTi(multi, 1)
return array
cdef object cont2_array_sc(rk_state *state, rk_cont2 func, object size, double a,
double b):
cdef double *array_data
cdef ndarray array "arrayObject"
cdef long length
cdef long i
if size is None:
return func(state, a, b)
else:
array = <ndarray>_sp.empty(size, _sp.float64)
length = PyArray_SIZE(array)
array_data = <double *>array.data
for i from 0 <= i < length:
array_data[i] = func(state, a, b)
return array
cdef object cont2_array(rk_state *state, rk_cont2 func, object size,
ndarray oa, ndarray ob):
cdef double *array_data
cdef double *oa_data
cdef double *ob_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
cdef broadcast multi
if size is None:
multi = <broadcast> PyArray_MultiIterNew(2, <void *>oa, <void *>ob)
array = <ndarray> PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_DOUBLE)
array_data = <double *>array.data
for i from 0 <= i < multi.size:
oa_data = <double *>PyArray_MultiIter_DATA(multi, 0)
ob_data = <double *>PyArray_MultiIter_DATA(multi, 1)
array_data[i] = func(state, oa_data[0], ob_data[0])
PyArray_MultiIter_NEXT(multi)
else:
array = <ndarray>_sp.empty(size, _sp.float64)
array_data = <double *>array.data
multi = <broadcast>PyArray_MultiIterNew(3, <void*>array, <void *>oa, <void *>ob)
if (multi.size != PyArray_SIZE(array)):
raise ValueError("size is not compatible with inputs")
for i from 0 <= i < multi.size:
oa_data = <double *>PyArray_MultiIter_DATA(multi, 1)
ob_data = <double *>PyArray_MultiIter_DATA(multi, 2)
array_data[i] = func(state, oa_data[0], ob_data[0])
PyArray_MultiIter_NEXTi(multi, 1)
PyArray_MultiIter_NEXTi(multi, 2)
return array
cdef object cont3_array_sc(rk_state *state, rk_cont3 func, object size, double a,
double b, double c):
cdef double *array_data
cdef ndarray array "arrayObject"
cdef long length
cdef long i
if size is None:
return func(state, a, b, c)
else:
array = <ndarray>_sp.empty(size, _sp.float64)
length = PyArray_SIZE(array)
array_data = <double *>array.data
for i from 0 <= i < length:
array_data[i] = func(state, a, b, c)
return array
cdef object cont3_array(rk_state *state, rk_cont3 func, object size, ndarray oa,
ndarray ob, ndarray oc):
cdef double *array_data
cdef double *oa_data
cdef double *ob_data
cdef double *oc_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
cdef broadcast multi
if size is None:
multi = <broadcast> PyArray_MultiIterNew(3, <void *>oa, <void *>ob, <void *>oc)
array = <ndarray> PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_DOUBLE)
array_data = <double *>array.data
for i from 0 <= i < multi.size:
oa_data = <double *>PyArray_MultiIter_DATA(multi, 0)
ob_data = <double *>PyArray_MultiIter_DATA(multi, 1)
oc_data = <double *>PyArray_MultiIter_DATA(multi, 2)
array_data[i] = func(state, oa_data[0], ob_data[0], oc_data[0])
PyArray_MultiIter_NEXT(multi)
else:
array = <ndarray>_sp.empty(size, _sp.float64)
array_data = <double *>array.data
multi = <broadcast>PyArray_MultiIterNew(4, <void*>array, <void *>oa,
<void *>ob, <void *>oc)
if (multi.size != PyArray_SIZE(array)):
raise ValueError("size is not compatible with inputs")
for i from 0 <= i < multi.size:
oa_data = <double *>PyArray_MultiIter_DATA(multi, 1)
ob_data = <double *>PyArray_MultiIter_DATA(multi, 2)
oc_data = <double *>PyArray_MultiIter_DATA(multi, 3)
array_data[i] = func(state, oa_data[0], ob_data[0], oc_data[0])
PyArray_MultiIter_NEXT(multi)
return array
cdef object disc0_array(rk_state *state, rk_disc0 func, object size):
cdef long *array_data
cdef ndarray array "arrayObject"
cdef long length
cdef long i
if size is None:
return func(state)
else:
array = <ndarray>_sp.empty(size, int)
length = PyArray_SIZE(array)
array_data = <long *>array.data
for i from 0 <= i < length:
array_data[i] = func(state)
return array
cdef object discnp_array_sc(rk_state *state, rk_discnp func, object size, long n, double p):
cdef long *array_data
cdef ndarray array "arrayObject"
cdef long length
cdef long i
if size is None:
return func(state, n, p)
else:
array = <ndarray>_sp.empty(size, int)
length = PyArray_SIZE(array)
array_data = <long *>array.data
for i from 0 <= i < length:
array_data[i] = func(state, n, p)
return array
cdef object discnp_array(rk_state *state, rk_discnp func, object size, ndarray on, ndarray op):
cdef long *array_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
cdef double *op_data
cdef long *on_data
cdef broadcast multi
if size is None:
multi = <broadcast> PyArray_MultiIterNew(2, <void *>on, <void *>op)
array = <ndarray> PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG)
array_data = <long *>array.data
for i from 0 <= i < multi.size:
on_data = <long *>PyArray_MultiIter_DATA(multi, 0)
op_data = <double *>PyArray_MultiIter_DATA(multi, 1)
array_data[i] = func(state, on_data[0], op_data[0])
PyArray_MultiIter_NEXT(multi)
else:
array = <ndarray>_sp.empty(size, int)
array_data = <long *>array.data
multi = <broadcast>PyArray_MultiIterNew(3, <void*>array, <void *>on, <void *>op)
if (multi.size != PyArray_SIZE(array)):
raise ValueError("size is not compatible with inputs")
for i from 0 <= i < multi.size:
on_data = <long *>PyArray_MultiIter_DATA(multi, 1)
op_data = <double *>PyArray_MultiIter_DATA(multi, 2)
array_data[i] = func(state, on_data[0], op_data[0])
PyArray_MultiIter_NEXTi(multi, 1)
PyArray_MultiIter_NEXTi(multi, 2)
return array
cdef object discnmN_array_sc(rk_state *state, rk_discnmN func, object size,
long n, long m, long N):
cdef long *array_data
cdef ndarray array "arrayObject"
cdef long length
cdef long i
if size is None:
return func(state, n, m, N)
else:
array = <ndarray>_sp.empty(size, int)
length = PyArray_SIZE(array)
array_data = <long *>array.data
for i from 0 <= i < length:
array_data[i] = func(state, n, m, N)
return array
cdef object discnmN_array(rk_state *state, rk_discnmN func, object size,
ndarray on, ndarray om, ndarray oN):
cdef long *array_data
cdef long *on_data
cdef long *om_data
cdef long *oN_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
cdef broadcast multi
if size is None:
multi = <broadcast> PyArray_MultiIterNew(3, <void *>on, <void *>om, <void *>oN)
array = <ndarray> PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG)
array_data = <long *>array.data
for i from 0 <= i < multi.size:
on_data = <long *>PyArray_MultiIter_DATA(multi, 0)
om_data = <long *>PyArray_MultiIter_DATA(multi, 1)
oN_data = <long *>PyArray_MultiIter_DATA(multi, 2)
array_data[i] = func(state, on_data[0], om_data[0], oN_data[0])
PyArray_MultiIter_NEXT(multi)
else:
array = <ndarray>_sp.empty(size, int)
array_data = <long *>array.data
multi = <broadcast>PyArray_MultiIterNew(4, <void*>array, <void *>on, <void *>om,
<void *>oN)
if (multi.size != PyArray_SIZE(array)):
raise ValueError("size is not compatible with inputs")
for i from 0 <= i < multi.size:
on_data = <long *>PyArray_MultiIter_DATA(multi, 1)
om_data = <long *>PyArray_MultiIter_DATA(multi, 2)
oN_data = <long *>PyArray_MultiIter_DATA(multi, 3)
array_data[i] = func(state, on_data[0], om_data[0], oN_data[0])
PyArray_MultiIter_NEXT(multi)
return array
cdef object discd_array_sc(rk_state *state, rk_discd func, object size, double a):
cdef long *array_data
cdef ndarray array "arrayObject"
cdef long length
cdef long i
if size is None:
return func(state, a)
else:
array = <ndarray>_sp.empty(size, int)
length = PyArray_SIZE(array)
array_data = <long *>array.data
for i from 0 <= i < length:
array_data[i] = func(state, a)
return array
cdef object discd_array(rk_state *state, rk_discd func, object size, ndarray oa):
cdef long *array_data
cdef double *oa_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
cdef broadcast multi
cdef flatiter itera
if size is None:
array = <ndarray>PyArray_SimpleNew(oa.nd, oa.dimensions, NPY_LONG)
length = PyArray_SIZE(array)
array_data = <long *>array.data
itera = <flatiter>PyArray_IterNew(<object>oa)
for i from 0 <= i < length:
array_data[i] = func(state, (<double *>(itera.dataptr))[0])
PyArray_ITER_NEXT(itera)
else:
array = <ndarray>_sp.empty(size, int)
array_data = <long *>array.data
multi = <broadcast>PyArray_MultiIterNew(2, <void *>array, <void *>oa)
if (multi.size != PyArray_SIZE(array)):
raise ValueError("size is not compatible with inputs")
for i from 0 <= i < multi.size:
oa_data = <double *>PyArray_MultiIter_DATA(multi, 1)
array_data[i] = func(state, oa_data[0])
PyArray_MultiIter_NEXTi(multi, 1)
return array
cdef double kahan_sum(double *darr, long n):
cdef double c, y, t, sum
cdef long i
sum = darr[0]
c = 0.0
for i from 1 <= i < n:
y = darr[i] - c
t = sum + y
c = (t-sum) - y
sum = t
return sum
cdef class RandomState:
"""Container for the Mersenne Twister PRNG.
Constructor
-----------
RandomState(seed=None): initializes the PRNG with the given seed. See the
seed() method for details.
Distribution Methods
-----------------
RandomState exposes a number of methods for generating random numbers drawn
from a variety of probability distributions. In addition to the
distribution-specific arguments, each method takes a keyword argument
size=None. If size is None, then a single value is generated and returned.
If size is an integer, then a 1-D numpy array filled with generated values
is returned. If size is a tuple, then a numpy array with that shape is
filled and returned.
"""
cdef rk_state *internal_state
def __init__(self, seed=None):
self.internal_state = <rk_state*>PyMem_Malloc(sizeof(rk_state))
self.seed(seed)
def __dealloc__(self):
if self.internal_state != NULL:
PyMem_Free(self.internal_state)
self.internal_state = NULL
def seed(self, seed=None):
"""Seed the generator.
seed(seed=None)
seed can be an integer, an array (or other sequence) of integers of any
length, or None. If seed is None, then RandomState will try to read data
from /dev/urandom (or the Windows analogue) if available or seed from
the clock otherwise.
"""
cdef rk_error errcode
cdef ndarray obj "arrayObject_obj"
if seed is None:
errcode = rk_randomseed(self.internal_state)
elif type(seed) is int:
rk_seed(seed, self.internal_state)
elif isinstance(seed, _sp.integer):
iseed = int(seed)
rk_seed(iseed, self.internal_state)
else:
obj = <ndarray>PyArray_ContiguousFromObject(seed, NPY_LONG, 1, 1)
init_by_array(self.internal_state, <unsigned long *>(obj.data),
obj.dimensions[0])
def get_state(self):
"""Return a tuple representing the internal state of the generator.
get_state() -> ('MT19937', int key[624], int pos, int has_gauss, float cached_gaussian)
"""
cdef ndarray state "arrayObject_state"
state = <ndarray>_sp.empty(624, _sp.uint)
memcpy(<void*>(state.data), <void*>(self.internal_state.key), 624*sizeof(long))
state = <ndarray>_sp.asarray(state, _sp.uint32)
return ('MT19937', state, self.internal_state.pos,
self.internal_state.has_gauss, self.internal_state.gauss)
def set_state(self, state):
"""Set the state from a tuple.
state = ('MT19937', int key[624], int pos, int has_gauss, float cached_gaussian)
For backwards compatibility, the following form is also accepted
although it is missing some information about the cached Gaussian value.
state = ('MT19937', int key[624], int pos)
set_state(state)
"""
cdef ndarray obj "arrayObject_obj"
cdef int pos
algorithm_name = state[0]
if algorithm_name != 'MT19937':
raise ValueError("algorithm must be 'MT19937'")
key, pos = state[1:3]
if len(state) == 3:
has_gauss = 0
cached_gaussian = 0.0
else:
has_gauss, cached_gaussian = state[3:5]
try:
obj = <ndarray>PyArray_ContiguousFromObject(key, NPY_ULONG, 1, 1)
except TypeError:
# compatibility -- could be an older pickle
obj = <ndarray>PyArray_ContiguousFromObject(key, NPY_LONG, 1, 1)
if obj.dimensions[0] != 624:
raise ValueError("state must be 624 longs")
memcpy(<void*>(self.internal_state.key), <void*>(obj.data), 624*sizeof(long))
self.internal_state.pos = pos
self.internal_state.has_gauss = has_gauss
self.internal_state.gauss = cached_gaussian
# Pickling support:
def __getstate__(self):
return self.get_state()
def __setstate__(self, state):
self.set_state(state)
def __reduce__(self):
return (_sp.random.__RandomState_ctor, (), self.get_state())
# Basic distributions:
def random_sample(self, size=None):
"""Return random floats in the half-open interval [0.0, 1.0).
random_sample(size=None) -> random values
"""
return cont0_array(self.internal_state, rk_double, size)
def tomaxint(self, size=None):
"""Returns random integers x such that 0 <= x <= sys.maxint.
tomaxint(size=None) -> random values
"""
return disc0_array(self.internal_state, rk_long, size)
def randint(self, low, high=None, size=None):
"""Return random integers x such that low <= x < high.
randint(low, high=None, size=None) -> random values
If high is None, then 0 <= x < low.
"""
cdef long lo, hi, diff
cdef long *array_data
cdef ndarray array "arrayObject"
cdef long length
cdef long i
if high is None:
lo = 0
hi = low
else:
lo = low
hi = high
diff = hi - lo - 1
if diff < 0:
raise ValueError("low >= high")
if size is None:
return <long>rk_interval(diff, self.internal_state) + lo
else:
array = <ndarray>_sp.empty(size, int)
length = PyArray_SIZE(array)
array_data = <long *>array.data
for i from 0 <= i < length:
array_data[i] = lo + <long>rk_interval(diff, self.internal_state)
return array
def bytes(self, unsigned int length):
"""Return random bytes.
bytes(length) -> str
"""
cdef void *bytes
bytestring = PyString_FromStringAndSize(NULL, length)
bytes = PyString_AS_STRING(bytestring)
rk_fill(bytes, length, self.internal_state)
return bytestring
def uniform(self, low=0.0, high=1.0, size=None):
"""Uniform distribution over [low, high).
uniform(low=0.0, high=1.0, size=None) -> random values
"""
cdef ndarray olow, ohigh, odiff
cdef double flow, fhigh
cdef object temp
flow = PyFloat_AsDouble(low)
fhigh = PyFloat_AsDouble(high)
if not PyErr_Occurred():
return cont2_array_sc(self.internal_state, rk_uniform, size, flow, fhigh-flow)
PyErr_Clear()
olow = <ndarray>PyArray_FROM_OTF(low, NPY_DOUBLE, NPY_ALIGNED)
ohigh = <ndarray>PyArray_FROM_OTF(high, NPY_DOUBLE, NPY_ALIGNED)
temp = _sp.subtract(ohigh, olow)
Py_INCREF(temp) # needed to get around Pyrex's automatic reference-counting
# rules because EnsureArray steals a reference
odiff = <ndarray>PyArray_EnsureArray(temp)
return cont2_array(self.internal_state, rk_uniform, size, olow, odiff)
def rand(self, *args):
"""Return an array of the given dimensions which is initialized to
random numbers from a uniform distribution in the range [0,1).
rand(d0, d1, ..., dn) -> random values
Note: This is a convenience function. If you want an
interface that takes a tuple as the first argument
use numpy.random.random_sample(shape_tuple).
"""
if len(args) == 0:
return self.random_sample()
else:
return self.random_sample(size=args)
def randn(self, *args):
"""Returns zero-mean, unit-variance Gaussian random numbers in an
array of shape (d0, d1, ..., dn).
randn(d0, d1, ..., dn) -> random values
Note: This is a convenience function. If you want an
interface that takes a tuple as the first argument
use numpy.random.standard_normal(shape_tuple).
"""
if len(args) == 0:
return self.standard_normal()
else:
return self.standard_normal(args)
def random_integers(self, low, high=None, size=None):
"""Return random integers x such that low <= x <= high.
random_integers(low, high=None, size=None) -> random values.
If high is None, then 1 <= x <= low.
"""
if high is None:
high = low
low = 1
return self.randint(low, high+1, size)
# Complicated, continuous distributions:
def standard_normal(self, size=None):
"""Standard Normal distribution (mean=0, stdev=1).
standard_normal(size=None) -> random values
"""
return cont0_array(self.internal_state, rk_gauss, size)
def normal(self, loc=0.0, scale=1.0, size=None):
"""Normal distribution (mean=loc, stdev=scale).
normal(loc=0.0, scale=1.0, size=None) -> random values
"""
cdef ndarray oloc, oscale
cdef double floc, fscale
floc = PyFloat_AsDouble(loc)
fscale = PyFloat_AsDouble(scale)
if not PyErr_Occurred():
if fscale <= 0:
raise ValueError("scale <= 0")
return cont2_array_sc(self.internal_state, rk_normal, size, floc, fscale)
PyErr_Clear()
oloc = <ndarray>PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ALIGNED)
oscale = <ndarray>PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(oscale, 0)):
raise ValueError("scale <= 0")
return cont2_array(self.internal_state, rk_normal, size, oloc, oscale)
def beta(self, a, b, size=None):
"""Beta distribution over [0, 1].
beta(a, b, size=None) -> random values
"""
cdef ndarray oa, ob
cdef double fa, fb
fa = PyFloat_AsDouble(a)
fb = PyFloat_AsDouble(b)
if not PyErr_Occurred():
if fa <= 0:
raise ValueError("a <= 0")
if fb <= 0:
raise ValueError("b <= 0")
return cont2_array_sc(self.internal_state, rk_beta, size, fa, fb)
PyErr_Clear()
oa = <ndarray>PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ALIGNED)
ob = <ndarray>PyArray_FROM_OTF(b, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(oa, 0)):
raise ValueError("a <= 0")
if _sp.any(_sp.less_equal(ob, 0)):
raise ValueError("b <= 0")
return cont2_array(self.internal_state, rk_beta, size, oa, ob)
def exponential(self, scale=1.0, size=None):
"""Exponential distribution.
exponential(scale=1.0, size=None) -> random values
"""
cdef ndarray oscale
cdef double fscale
fscale = PyFloat_AsDouble(scale)
if not PyErr_Occurred():
if fscale <= 0:
raise ValueError("scale <= 0")
return cont1_array_sc(self.internal_state, rk_exponential, size, fscale)
PyErr_Clear()
oscale = <ndarray> PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(oscale, 0.0)):
raise ValueError("scale <= 0")
return cont1_array(self.internal_state, rk_exponential, size, oscale)
def standard_exponential(self, size=None):
"""Standard exponential distribution (scale=1).
standard_exponential(size=None) -> random values
"""
return cont0_array(self.internal_state, rk_standard_exponential, size)
def standard_gamma(self, shape, size=None):
"""Standard Gamma distribution.
standard_gamma(shape, size=None) -> random values
"""
cdef ndarray oshape
cdef double fshape
fshape = PyFloat_AsDouble(shape)
if not PyErr_Occurred():
if fshape <= 0:
raise ValueError("shape <= 0")
return cont1_array_sc(self.internal_state, rk_standard_gamma, size, fshape)
PyErr_Clear()
oshape = <ndarray> PyArray_FROM_OTF(shape, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(oshape, 0.0)):
raise ValueError("shape <= 0")
return cont1_array(self.internal_state, rk_standard_gamma, size, oshape)
def gamma(self, shape, scale=1.0, size=None):
"""Gamma distribution.
gamma(shape, scale=1.0, size=None) -> random values
"""
cdef ndarray oshape, oscale
cdef double fshape, fscale
fshape = PyFloat_AsDouble(shape)
fscale = PyFloat_AsDouble(scale)
if not PyErr_Occurred():
if fshape <= 0:
raise ValueError("shape <= 0")
if fscale <= 0:
raise ValueError("scale <= 0")
return cont2_array_sc(self.internal_state, rk_gamma, size, fshape, fscale)
PyErr_Clear()
oshape = <ndarray>PyArray_FROM_OTF(shape, NPY_DOUBLE, NPY_ALIGNED)
oscale = <ndarray>PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(oshape, 0.0)):
raise ValueError("shape <= 0")
if _sp.any(_sp.less_equal(oscale, 0.0)):
raise ValueError("scale <= 0")
return cont2_array(self.internal_state, rk_gamma, size, oshape, oscale)
def f(self, dfnum, dfden, size=None):
"""F distribution.
f(dfnum, dfden, size=None) -> random values
"""
cdef ndarray odfnum, odfden
cdef double fdfnum, fdfden
fdfnum = PyFloat_AsDouble(dfnum)
fdfden = PyFloat_AsDouble(dfden)
if not PyErr_Occurred():
if fdfnum <= 0:
raise ValueError("shape <= 0")
if fdfden <= 0:
raise ValueError("scale <= 0")
return cont2_array_sc(self.internal_state, rk_f, size, fdfnum, fdfden)
PyErr_Clear()
odfnum = <ndarray>PyArray_FROM_OTF(dfnum, NPY_DOUBLE, NPY_ALIGNED)
odfden = <ndarray>PyArray_FROM_OTF(dfden, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(odfnum, 0.0)):
raise ValueError("dfnum <= 0")
if _sp.any(_sp.less_equal(odfden, 0.0)):
raise ValueError("dfden <= 0")
return cont2_array(self.internal_state, rk_f, size, odfnum, odfden)
def noncentral_f(self, dfnum, dfden, nonc, size=None):
"""Noncentral F distribution.
noncentral_f(dfnum, dfden, nonc, size=None) -> random values
"""
cdef ndarray odfnum, odfden, ononc
cdef double fdfnum, fdfden, fnonc
fdfnum = PyFloat_AsDouble(dfnum)
fdfden = PyFloat_AsDouble(dfden)
fnonc = PyFloat_AsDouble(nonc)
if not PyErr_Occurred():
if fdfnum <= 1:
raise ValueError("dfnum <= 1")
if fdfden <= 0:
raise ValueError("dfden <= 0")
if fnonc < 0:
raise ValueError("nonc < 0")
return cont3_array_sc(self.internal_state, rk_noncentral_f, size,
fdfnum, fdfden, fnonc)
PyErr_Clear()
odfnum = <ndarray>PyArray_FROM_OTF(dfnum, NPY_DOUBLE, NPY_ALIGNED)
odfden = <ndarray>PyArray_FROM_OTF(dfden, NPY_DOUBLE, NPY_ALIGNED)
ononc = <ndarray>PyArray_FROM_OTF(nonc, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(odfnum, 1.0)):
raise ValueError("dfnum <= 1")
if _sp.any(_sp.less_equal(odfden, 0.0)):
raise ValueError("dfden <= 0")
if _sp.any(_sp.less(ononc, 0.0)):
raise ValueError("nonc < 0")
return cont3_array(self.internal_state, rk_noncentral_f, size, odfnum,
odfden, ononc)
def chisquare(self, df, size=None):
"""Chi^2 distribution.
chisquare(df, size=None) -> random values
"""
cdef ndarray odf
cdef double fdf
fdf = PyFloat_AsDouble(df)
if not PyErr_Occurred():
if fdf <= 0:
raise ValueError("df <= 0")
return cont1_array_sc(self.internal_state, rk_chisquare, size, fdf)
PyErr_Clear()
odf = <ndarray>PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(odf, 0.0)):
raise ValueError("df <= 0")
return cont1_array(self.internal_state, rk_chisquare, size, odf)
def noncentral_chisquare(self, df, nonc, size=None):
"""Noncentral Chi^2 distribution.
noncentral_chisquare(df, nonc, size=None) -> random values
"""
cdef ndarray odf, ononc
cdef double fdf, fnonc
fdf = PyFloat_AsDouble(df)
fnonc = PyFloat_AsDouble(nonc)
if not PyErr_Occurred():
if fdf <= 1:
raise ValueError("df <= 0")
if fnonc <= 0:
raise ValueError("nonc <= 0")
return cont2_array_sc(self.internal_state, rk_noncentral_chisquare,
size, fdf, fnonc)
PyErr_Clear()
odf = <ndarray>PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ALIGNED)
ononc = <ndarray>PyArray_FROM_OTF(nonc, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(odf, 0.0)):
raise ValueError("df <= 1")
if _sp.any(_sp.less_equal(ononc, 0.0)):
raise ValueError("nonc < 0")
return cont2_array(self.internal_state, rk_noncentral_chisquare, size,
odf, ononc)
def standard_cauchy(self, size=None):
"""Standard Cauchy with mode=0.
standard_cauchy(size=None)
"""
return cont0_array(self.internal_state, rk_standard_cauchy, size)
def standard_t(self, df, size=None):
"""Standard Student's t distribution with df degrees of freedom.
standard_t(df, size=None)
"""
cdef ndarray odf
cdef double fdf
fdf = PyFloat_AsDouble(df)
if not PyErr_Occurred():
if fdf <= 0:
raise ValueError("df <= 0")
return cont1_array_sc(self.internal_state, rk_standard_t, size, fdf)
PyErr_Clear()
odf = <ndarray> PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(odf, 0.0)):
raise ValueError("df <= 0")
return cont1_array(self.internal_state, rk_standard_t, size, odf)
def vonmises(self, mu, kappa, size=None):
"""von Mises circular distribution with mode mu and dispersion parameter
kappa on [-pi, pi].
vonmises(mu, kappa, size=None)
"""
cdef ndarray omu, okappa
cdef double fmu, fkappa
fmu = PyFloat_AsDouble(mu)
fkappa = PyFloat_AsDouble(kappa)
if not PyErr_Occurred():
if fkappa < 0:
raise ValueError("kappa < 0")
return cont2_array_sc(self.internal_state, rk_vonmises, size, fmu, fkappa)
PyErr_Clear()
omu = <ndarray> PyArray_FROM_OTF(mu, NPY_DOUBLE, NPY_ALIGNED)
okappa = <ndarray> PyArray_FROM_OTF(kappa, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less(okappa, 0.0)):
raise ValueError("kappa < 0")
return cont2_array(self.internal_state, rk_vonmises, size, omu, okappa)
def pareto(self, a, size=None):
"""Pareto distribution.
pareto(a, size=None)
"""
cdef ndarray oa
cdef double fa
fa = PyFloat_AsDouble(a)
if not PyErr_Occurred():
if fa <= 0:
raise ValueError("a <= 0")
return cont1_array_sc(self.internal_state, rk_pareto, size, fa)
PyErr_Clear()
oa = <ndarray>PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(oa, 0.0)):
raise ValueError("a <= 0")
return cont1_array(self.internal_state, rk_pareto, size, oa)
def weibull(self, a, size=None):
"""Weibull distribution.
weibull(a, size=None)
"""
cdef ndarray oa
cdef double fa
fa = PyFloat_AsDouble(a)
if not PyErr_Occurred():
if fa <= 0:
raise ValueError("a <= 0")
return cont1_array_sc(self.internal_state, rk_weibull, size, fa)
PyErr_Clear()
oa = <ndarray>PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(oa, 0.0)):
raise ValueError("a <= 0")
return cont1_array(self.internal_state, rk_weibull, size, oa)
def power(self, a, size=None):
"""Power distribution.
power(a, size=None)
"""
cdef ndarray oa
cdef double fa
fa = PyFloat_AsDouble(a)
if not PyErr_Occurred():
if fa <= 0:
raise ValueError("a <= 0")
return cont1_array_sc(self.internal_state, rk_power, size, fa)
PyErr_Clear()
oa = <ndarray>PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(oa, 0.0)):
raise ValueError("a <= 0")
return cont1_array(self.internal_state, rk_power, size, oa)
def laplace(self, loc=0.0, scale=1.0, size=None):
"""Laplace distribution.
laplace(loc=0.0, scale=1.0, size=None)
"""
cdef ndarray oloc, oscale
cdef double floc, fscale
floc = PyFloat_AsDouble(loc)
fscale = PyFloat_AsDouble(scale)
if not PyErr_Occurred():
if fscale <= 0:
raise ValueError("scale <= 0")
return cont2_array_sc(self.internal_state, rk_laplace, size, floc, fscale)
PyErr_Clear()
oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ALIGNED)
oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(oscale, 0.0)):
raise ValueError("scale <= 0")
return cont2_array(self.internal_state, rk_laplace, size, oloc, oscale)
def gumbel(self, loc=0.0, scale=1.0, size=None):
"""Gumbel distribution.
gumbel(loc=0.0, scale=1.0, size=None)
"""
cdef ndarray oloc, oscale
cdef double floc, fscale
floc = PyFloat_AsDouble(loc)
fscale = PyFloat_AsDouble(scale)
if not PyErr_Occurred():
if fscale <= 0:
raise ValueError("scale <= 0")
return cont2_array_sc(self.internal_state, rk_gumbel, size, floc, fscale)
PyErr_Clear()
oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ALIGNED)
oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(oscale, 0.0)):
raise ValueError("scale <= 0")
return cont2_array(self.internal_state, rk_gumbel, size, oloc, oscale)
def logistic(self, loc=0.0, scale=1.0, size=None):
"""Logistic distribution.
logistic(loc=0.0, scale=1.0, size=None)
"""
cdef ndarray oloc, oscale
cdef double floc, fscale
floc = PyFloat_AsDouble(loc)
fscale = PyFloat_AsDouble(scale)
if not PyErr_Occurred():
if fscale <= 0:
raise ValueError("scale <= 0")
return cont2_array_sc(self.internal_state, rk_logistic, size, floc, fscale)
PyErr_Clear()
oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ALIGNED)
oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(oscale, 0.0)):
raise ValueError("scale <= 0")
return cont2_array(self.internal_state, rk_logistic, size, oloc, oscale)
def lognormal(self, mean=0.0, sigma=1.0, size=None):
"""Log-normal distribution.
Note that the mean parameter is not the mean of this distribution, but
the underlying normal distribution.
lognormal(mean, sigma) <=> exp(normal(mean, sigma))
lognormal(mean=0.0, sigma=1.0, size=None)
"""
cdef ndarray omean, osigma
cdef double fmean, fsigma
fmean = PyFloat_AsDouble(mean)
fsigma = PyFloat_AsDouble(sigma)
if not PyErr_Occurred():
if fsigma <= 0:
raise ValueError("sigma <= 0")
return cont2_array_sc(self.internal_state, rk_lognormal, size, fmean, fsigma)
PyErr_Clear()
omean = PyArray_FROM_OTF(mean, NPY_DOUBLE, NPY_ALIGNED)
osigma = PyArray_FROM_OTF(sigma, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(osigma, 0.0)):
raise ValueError("sigma <= 0.0")
return cont2_array(self.internal_state, rk_lognormal, size, omean, osigma)
def rayleigh(self, scale=1.0, size=None):
"""Rayleigh distribution.
rayleigh(scale=1.0, size=None)
"""
cdef ndarray oscale
cdef double fscale
fscale = PyFloat_AsDouble(scale)
if not PyErr_Occurred():
if fscale <= 0:
raise ValueError("scale <= 0")
return cont1_array_sc(self.internal_state, rk_rayleigh, size, fscale)
PyErr_Clear()
oscale = <ndarray>PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(oscale, 0.0)):
raise ValueError("scale <= 0.0")
return cont1_array(self.internal_state, rk_rayleigh, size, oscale)
def wald(self, mean, scale, size=None):
"""Wald (inverse Gaussian) distribution.
wald(mean, scale, size=None)
"""
cdef ndarray omean, oscale
cdef double fmean, fscale
fmean = PyFloat_AsDouble(mean)
fscale = PyFloat_AsDouble(scale)
if not PyErr_Occurred():
if fmean <= 0:
raise ValueError("mean <= 0")
if fscale <= 0:
raise ValueError("scale <= 0")
return cont2_array_sc(self.internal_state, rk_wald, size, fmean, fscale)
PyErr_Clear()
omean = PyArray_FROM_OTF(mean, NPY_DOUBLE, NPY_ALIGNED)
oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(omean,0.0)):
raise ValueError("mean <= 0.0")
elif _sp.any(_sp.less_equal(oscale,0.0)):
raise ValueError("scale <= 0.0")
return cont2_array(self.internal_state, rk_wald, size, omean, oscale)
def triangular(self, left, mode, right, size=None):
"""Triangular distribution starting at left, peaking at mode, and
ending at right (left <= mode <= right).
triangular(left, mode, right, size=None)
"""
cdef ndarray oleft, omode, oright
cdef double fleft, fmode, fright
fleft = PyFloat_AsDouble(left)
fright = PyFloat_AsDouble(right)
fmode = PyFloat_AsDouble(mode)
if not PyErr_Occurred():
if fleft > fmode:
raise ValueError("left > mode")
if fmode > fright:
raise ValueError("mode > right")
if fleft == fright:
raise ValueError("left == right")
return cont3_array_sc(self.internal_state, rk_triangular, size, fleft,
fmode, fright)
PyErr_Clear()
oleft = <ndarray>PyArray_FROM_OTF(left, NPY_DOUBLE, NPY_ALIGNED)
omode = <ndarray>PyArray_FROM_OTF(mode, NPY_DOUBLE, NPY_ALIGNED)
oright = <ndarray>PyArray_FROM_OTF(right, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.greater(oleft, omode)):
raise ValueError("left > mode")
if _sp.any(_sp.greater(omode, oright)):
raise ValueError("mode > right")
if _sp.any(_sp.equal(oleft, oright)):
raise ValueError("left == right")
return cont3_array(self.internal_state, rk_triangular, size, oleft,
omode, oright)
# Complicated, discrete distributions:
def binomial(self, n, p, size=None):
"""Binomial distribution of n trials and p probability of success.
binomial(n, p, size=None) -> random values
"""
cdef ndarray on, op
cdef long ln
cdef double fp
fp = PyFloat_AsDouble(p)
ln = PyInt_AsLong(n)
if not PyErr_Occurred():
if ln <= 0:
raise ValueError("n <= 0")
if fp < 0:
raise ValueError("p < 0")
elif fp > 1:
raise ValueError("p > 1")
return discnp_array_sc(self.internal_state, rk_binomial, size, ln, fp)
PyErr_Clear()
on = <ndarray>PyArray_FROM_OTF(n, NPY_LONG, NPY_ALIGNED)
op = <ndarray>PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(n, 0)):
raise ValueError("n <= 0")
if _sp.any(_sp.less(p, 0)):
raise ValueError("p < 0")
if _sp.any(_sp.greater(p, 1)):
raise ValueError("p > 1")
return discnp_array(self.internal_state, rk_binomial, size, on, op)
def negative_binomial(self, n, p, size=None):
"""Negative Binomial distribution.
negative_binomial(n, p, size=None) -> random values
"""
cdef ndarray on
cdef ndarray op
cdef long ln
cdef double fp
fp = PyFloat_AsDouble(p)
ln = PyInt_AsLong(n)
if not PyErr_Occurred():
if ln <= 0:
raise ValueError("n <= 0")
if fp < 0:
raise ValueError("p < 0")
elif fp > 1:
raise ValueError("p > 1")
return discnp_array_sc(self.internal_state, rk_negative_binomial,
size, ln, fp)
PyErr_Clear()
on = <ndarray>PyArray_FROM_OTF(n, NPY_LONG, NPY_ALIGNED)
op = <ndarray>PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(n, 0)):
raise ValueError("n <= 0")
if _sp.any(_sp.less(p, 0)):
raise ValueError("p < 0")
if _sp.any(_sp.greater(p, 1)):
raise ValueError("p > 1")
return discnp_array(self.internal_state, rk_negative_binomial, size,
on, op)
def poisson(self, lam=1.0, size=None):
"""Poisson distribution.
poisson(lam=1.0, size=None) -> random values
"""
cdef ndarray olam
cdef double flam
flam = PyFloat_AsDouble(lam)
if not PyErr_Occurred():
if lam < 0:
raise ValueError("lam < 0")
return discd_array_sc(self.internal_state, rk_poisson, size, flam)
PyErr_Clear()
olam = <ndarray>PyArray_FROM_OTF(lam, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less(olam, 0)):
raise ValueError("lam < 0")
return discd_array(self.internal_state, rk_poisson, size, olam)
def zipf(self, a, size=None):
"""Zipf distribution.
zipf(a, size=None)
"""
cdef ndarray oa
cdef double fa
fa = PyFloat_AsDouble(a)
if not PyErr_Occurred():
if fa <= 1.0:
raise ValueError("a <= 1.0")
return discd_array_sc(self.internal_state, rk_zipf, size, fa)
PyErr_Clear()
oa = <ndarray>PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less_equal(oa, 1.0)):
raise ValueError("a <= 1.0")
return discd_array(self.internal_state, rk_zipf, size, oa)
def geometric(self, p, size=None):
"""Geometric distribution with p being the probability of "success" on
an individual trial.
geometric(p, size=None)
"""
cdef ndarray op
cdef double fp
fp = PyFloat_AsDouble(p)
if not PyErr_Occurred():
if fp < 0.0:
raise ValueError("p < 0.0")
if fp > 1.0:
raise ValueError("p > 1.0")
return discd_array_sc(self.internal_state, rk_geometric, size, fp)
PyErr_Clear()
op = <ndarray>PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less(op, 0.0)):
raise ValueError("p < 0.0")
if _sp.any(_sp.greater(op, 1.0)):
raise ValueError("p > 1.0")
return discd_array(self.internal_state, rk_geometric, size, op)
def hypergeometric(self, ngood, nbad, nsample, size=None):
"""Hypergeometric distribution.
Consider an urn with ngood "good" balls and nbad "bad" balls. If one
were to draw nsample balls from the urn without replacement, then
the hypergeometric distribution describes the distribution of "good"
balls in the sample.
hypergeometric(ngood, nbad, nsample, size=None)
"""
cdef ndarray ongood, onbad, onsample
cdef long lngood, lnbad, lnsample
lngood = PyInt_AsLong(ngood)
lnbad = PyInt_AsLong(nbad)
lnsample = PyInt_AsLong(nsample)
if not PyErr_Occurred():
if ngood < 1:
raise ValueError("ngood < 1")
if nbad < 1:
raise ValueError("nbad < 1")
if nsample < 1:
raise ValueError("nsample < 1")
if ngood + nbad < nsample:
raise ValueError("ngood + nbad < nsample")
return discnmN_array_sc(self.internal_state, rk_hypergeometric, size,
lngood, lnbad, lnsample)
PyErr_Clear()
ongood = <ndarray>PyArray_FROM_OTF(ngood, NPY_LONG, NPY_ALIGNED)
onbad = <ndarray>PyArray_FROM_OTF(nbad, NPY_LONG, NPY_ALIGNED)
onsample = <ndarray>PyArray_FROM_OTF(nsample, NPY_LONG, NPY_ALIGNED)
if _sp.any(_sp.less(ongood, 1)):
raise ValueError("ngood < 1")
if _sp.any(_sp.less(onbad, 1)):
raise ValueError("nbad < 1")
if _sp.any(_sp.less(onsample, 1)):
raise ValueError("nsample < 1")
if _sp.any(_sp.less(_sp.add(ongood, onbad),onsample)):
raise ValueError("ngood + nbad < nsample")
return discnmN_array(self.internal_state, rk_hypergeometric, size,
ongood, onbad, onsample)
def logseries(self, p, size=None):
"""Logarithmic series distribution.
logseries(p, size=None)
"""
cdef ndarray op
cdef double fp
fp = PyFloat_AsDouble(p)
if not PyErr_Occurred():
if fp < 0.0:
raise ValueError("p < 0.0")
if fp > 1.0:
raise ValueError("p > 1.0")
return discd_array_sc(self.internal_state, rk_logseries, size, fp)
PyErr_Clear()
op = <ndarray>PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ALIGNED)
if _sp.any(_sp.less(op, 0.0)):
raise ValueError("p < 0.0")
if _sp.any(_sp.greater(op, 1.0)):
raise ValueError("p > 1.0")
return discd_array(self.internal_state, rk_logseries, size, op)
# Multivariate distributions:
def multivariate_normal(self, mean, cov, size=None):
"""Return an array containing multivariate normally distributed random numbers
with specified mean and covariance.
multivariate_normal(mean, cov) -> random values
multivariate_normal(mean, cov, [m, n, ...]) -> random values
mean must be a 1 dimensional array. cov must be a square two dimensional
array with the same number of rows and columns as mean has elements.
The first form returns a single 1-D array containing a multivariate
normal.
The second form returns an array of shape (m, n, ..., cov.shape[0]).
In this case, output[i,j,...,:] is a 1-D array containing a multivariate
normal.
"""
# Check preconditions on arguments
mean = _sp.array(mean)
cov = _sp.array(cov)
if size is None:
shape = []
else:
shape = size
if len(mean.shape) != 1:
raise ValueError("mean must be 1 dimensional")
if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]):
raise ValueError("cov must be 2 dimensional and square")
if mean.shape[0] != cov.shape[0]:
raise ValueError("mean and cov must have same length")
# Compute shape of output
if isinstance(shape, int):
shape = [shape]
final_shape = list(shape[:])
final_shape.append(mean.shape[0])
# Create a matrix of independent standard normally distributed random
# numbers. The matrix has rows with the same length as mean and as
# many rows are necessary to form a matrix of shape final_shape.
x = self.standard_normal(_sp.multiply.reduce(final_shape))
x.shape = (_sp.multiply.reduce(final_shape[0:len(final_shape)-1]),
mean.shape[0])
# Transform matrix of standard normals into matrix where each row
# contains multivariate normals with the desired covariance.
# Compute A such that dot(transpose(A),A) == cov.
# Then the matrix products of the rows of x and A has the desired
# covariance. Note that sqrt(s)*v where (u,s,v) is the singular value
# decomposition of cov is such an A.
from numpy.dual import svd
# XXX: we really should be doing this by Cholesky decomposition
(u,s,v) = svd(cov)
x = _sp.dot(x*_sp.sqrt(s),v)
# The rows of x now have the correct covariance but mean 0. Add
# mean to each row. Then each row will have mean mean.
_sp.add(mean,x,x)
x.shape = tuple(final_shape)
return x
def multinomial(self, long n, object pvals, size=None):
"""Multinomial distribution.
multinomial(n, pvals, size=None) -> random values
pvals is a sequence of probabilities that should sum to 1 (however, the
last element is always assumed to account for the remaining probability
as long as sum(pvals[:-1]) <= 1).
"""
cdef long d
cdef ndarray parr "arrayObject_parr", mnarr "arrayObject_mnarr"
cdef double *pix
cdef long *mnix
cdef long i, j, dn
cdef double Sum
d = len(pvals)
parr = <ndarray>PyArray_ContiguousFromObject(pvals, NPY_DOUBLE, 1, 1)
pix = <double*>parr.data
if kahan_sum(pix, d-1) > (1.0 + 1e-12):
raise ValueError("sum(pvals[:-1]) > 1.0")
if size is None:
shape = (d,)
elif type(size) is int:
shape = (size, d)
else:
shape = size + (d,)
multin = _sp.zeros(shape, int)
mnarr = <ndarray>multin
mnix = <long*>mnarr.data
i = 0
while i < PyArray_SIZE(mnarr):
Sum = 1.0
dn = n
for j from 0 <= j < d-1:
mnix[i+j] = rk_binomial(self.internal_state, dn, pix[j]/Sum)
dn = dn - mnix[i+j]
if dn <= 0:
break
Sum = Sum - pix[j]
if dn > 0:
mnix[i+d-1] = dn
i = i + d
return multin
def dirichlet(self, object alpha, size=None):
"""dirichlet(alpha, size=None)
Draw `size` samples of dimension k from a Dirichlet distribution. A
Dirichlet-distributed random variable can be seen as a multivariate
generalization of a Beta distribution. Dirichlet pdf is the conjugate
prior of a multinomial in Bayesian inference.
Parameters
----------
alpha : array
Parameter of the distribution (k dimension for sample of
dimension k).
size : array
Number of samples to draw.
Notes
-----
.. math:: X \\approx \\prod_{i=1}^{k}{x^{\\alpha_i-1}_i}
Uses the following property for computation: for each dimension,
draw a random sample y_i from a standard gamma generator of shape
`alpha_i`, then
:math:`X = \\frac{1}{\\sum_{i=1}^k{y_i}} (y_1, \\ldot, y_n)` is
Dirichlet distributed.
References
----------
.. [1] David McKay, "Information Theory, Inference and Learning
Algorithms," chapter 23,
http://www.inference.phy.cam.ac.uk/mackay/
"""
#=================
# Pure python algo
#=================
#alpha = N.atleast_1d(alpha)
#k = alpha.size
#if n == 1:
# val = N.zeros(k)
# for i in range(k):
# val[i] = sgamma(alpha[i], n)
# val /= N.sum(val)
#else:
# val = N.zeros((k, n))
# for i in range(k):
# val[i] = sgamma(alpha[i], n)
# val /= N.sum(val, axis = 0)
# val = val.T
#return val
cdef long k
cdef long totsize
cdef ndarray alpha_arr, val_arr
cdef double *alpha_data, *val_data
cdef long i, j
cdef double acc, invacc
k = len(alpha)
alpha_arr = <ndarray>PyArray_ContiguousFromObject(alpha, NPY_DOUBLE, 1, 1)
alpha_data = <double*>alpha_arr.data
if size is None:
shape = (k,)
elif type(size) is int:
shape = (size, k)
else:
shape = size + (k,)
diric = _sp.zeros(shape, _sp.float64)
val_arr = <ndarray>diric
val_data= <double*>val_arr.data
i = 0
totsize = PyArray_SIZE(val_arr)
while i < totsize:
acc = 0.0
for j from 0 <= j < k:
val_data[i+j] = rk_standard_gamma(self.internal_state, alpha_data[j])
acc = acc + val_data[i+j]
invacc = 1/acc
for j from 0 <= j < k:
val_data[i+j] = val_data[i+j] * invacc
i = i + k
return diric
# Shuffling and permutations:
def shuffle(self, object x):
"""Modify a sequence in-place by shuffling its contents.
shuffle(x)
"""
cdef long i, j
cdef int copy
i = len(x) - 1
try:
j = len(x[0])
except:
j = 0
if (j == 0):
# adaptation of random.shuffle()
while i > 0:
j = rk_interval(i, self.internal_state)
x[i], x[j] = x[j], x[i]
i = i - 1
else:
# make copies
copy = hasattr(x[0], 'copy')
if copy:
while(i > 0):
j = rk_interval(i, self.internal_state)
x[i], x[j] = x[j].copy(), x[i].copy()
i = i - 1
else:
while(i > 0):
j = rk_interval(i, self.internal_state)
x[i], x[j] = x[j][:], x[i][:]
i = i - 1
def permutation(self, object x):
"""Given an integer, return a shuffled sequence of integers >= 0 and
< x; given a sequence, return a shuffled array copy.
permutation(x)
"""
if isinstance(x, (int, _sp.integer)):
arr = _sp.arange(x)
else:
arr = _sp.array(x)
self.shuffle(arr)
return arr
_rand = RandomState()
seed = _rand.seed
get_state = _rand.get_state
set_state = _rand.set_state
random_sample = _rand.random_sample
randint = _rand.randint
bytes = _rand.bytes
uniform = _rand.uniform
rand = _rand.rand
randn = _rand.randn
random_integers = _rand.random_integers
standard_normal = _rand.standard_normal
normal = _rand.normal
beta = _rand.beta
exponential = _rand.exponential
standard_exponential = _rand.standard_exponential
standard_gamma = _rand.standard_gamma
gamma = _rand.gamma
f = _rand.f
noncentral_f = _rand.noncentral_f
chisquare = _rand.chisquare
noncentral_chisquare = _rand.noncentral_chisquare
standard_cauchy = _rand.standard_cauchy
standard_t = _rand.standard_t
vonmises = _rand.vonmises
pareto = _rand.pareto
weibull = _rand.weibull
power = _rand.power
laplace = _rand.laplace
gumbel = _rand.gumbel
logistic = _rand.logistic
lognormal = _rand.lognormal
rayleigh = _rand.rayleigh
wald = _rand.wald
triangular = _rand.triangular
binomial = _rand.binomial
negative_binomial = _rand.negative_binomial
poisson = _rand.poisson
zipf = _rand.zipf
geometric = _rand.geometric
hypergeometric = _rand.hypergeometric
logseries = _rand.logseries
multivariate_normal = _rand.multivariate_normal
multinomial = _rand.multinomial
dirichlet = _rand.dirichlet
shuffle = _rand.shuffle
permutation = _rand.permutation
|