File: ufunc_docstrings.py

package info (click to toggle)
python-numpy 1%3A1.12.1-2~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 23,568 kB
  • sloc: ansic: 146,995; python: 98,089; cpp: 1,112; makefile: 425; f90: 307; sh: 173; fortran: 169; perl: 58
file content (3522 lines) | stat: -rw-r--r-- 92,602 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
"""
Docstrings for generated ufuncs

The syntax is designed to look like the function add_newdoc is being
called from numpy.lib, but in this file  add_newdoc puts the docstrings
in a dictionary. This dictionary is used in
numpy/core/code_generators/generate_umath.py to generate the docstrings
for the ufuncs in numpy.core at the C level when the ufuncs are created
at compile time.

"""
from __future__ import division, absolute_import, print_function

docdict = {}

def get(name):
    return docdict.get(name)

def add_newdoc(place, name, doc):
    docdict['.'.join((place, name))] = doc


add_newdoc('numpy.core.umath', 'absolute',
    """
    Calculate the absolute value element-wise.

    Parameters
    ----------
    x : array_like
        Input array.

    Returns
    -------
    absolute : ndarray
        An ndarray containing the absolute value of
        each element in `x`.  For complex input, ``a + ib``, the
        absolute value is :math:`\\sqrt{ a^2 + b^2 }`.

    Examples
    --------
    >>> x = np.array([-1.2, 1.2])
    >>> np.absolute(x)
    array([ 1.2,  1.2])
    >>> np.absolute(1.2 + 1j)
    1.5620499351813308

    Plot the function over ``[-10, 10]``:

    >>> import matplotlib.pyplot as plt

    >>> x = np.linspace(start=-10, stop=10, num=101)
    >>> plt.plot(x, np.absolute(x))
    >>> plt.show()

    Plot the function over the complex plane:

    >>> xx = x + 1j * x[:, np.newaxis]
    >>> plt.imshow(np.abs(xx), extent=[-10, 10, -10, 10])
    >>> plt.show()

    """)

add_newdoc('numpy.core.umath', 'add',
    """
    Add arguments element-wise.

    Parameters
    ----------
    x1, x2 : array_like
        The arrays to be added.  If ``x1.shape != x2.shape``, they must be
        broadcastable to a common shape (which may be the shape of one or
        the other).

    Returns
    -------
    add : ndarray or scalar
        The sum of `x1` and `x2`, element-wise.  Returns a scalar if
        both  `x1` and `x2` are scalars.

    Notes
    -----
    Equivalent to `x1` + `x2` in terms of array broadcasting.

    Examples
    --------
    >>> np.add(1.0, 4.0)
    5.0
    >>> x1 = np.arange(9.0).reshape((3, 3))
    >>> x2 = np.arange(3.0)
    >>> np.add(x1, x2)
    array([[  0.,   2.,   4.],
           [  3.,   5.,   7.],
           [  6.,   8.,  10.]])

    """)

add_newdoc('numpy.core.umath', 'arccos',
    """
    Trigonometric inverse cosine, element-wise.

    The inverse of `cos` so that, if ``y = cos(x)``, then ``x = arccos(y)``.

    Parameters
    ----------
    x : array_like
        `x`-coordinate on the unit circle.
        For real arguments, the domain is [-1, 1].

    out : ndarray, optional
        Array of the same shape as `a`, to store results in. See
        `doc.ufuncs` (Section "Output arguments") for more details.

    Returns
    -------
    angle : ndarray
        The angle of the ray intersecting the unit circle at the given
        `x`-coordinate in radians [0, pi]. If `x` is a scalar then a
        scalar is returned, otherwise an array of the same shape as `x`
        is returned.

    See Also
    --------
    cos, arctan, arcsin, emath.arccos

    Notes
    -----
    `arccos` is a multivalued function: for each `x` there are infinitely
    many numbers `z` such that `cos(z) = x`. The convention is to return
    the angle `z` whose real part lies in `[0, pi]`.

    For real-valued input data types, `arccos` always returns real output.
    For each value that cannot be expressed as a real number or infinity,
    it yields ``nan`` and sets the `invalid` floating point error flag.

    For complex-valued input, `arccos` is a complex analytic function that
    has branch cuts `[-inf, -1]` and `[1, inf]` and is continuous from
    above on the former and from below on the latter.

    The inverse `cos` is also known as `acos` or cos^-1.

    References
    ----------
    M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
    10th printing, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/

    Examples
    --------
    We expect the arccos of 1 to be 0, and of -1 to be pi:

    >>> np.arccos([1, -1])
    array([ 0.        ,  3.14159265])

    Plot arccos:

    >>> import matplotlib.pyplot as plt
    >>> x = np.linspace(-1, 1, num=100)
    >>> plt.plot(x, np.arccos(x))
    >>> plt.axis('tight')
    >>> plt.show()

    """)

add_newdoc('numpy.core.umath', 'arccosh',
    """
    Inverse hyperbolic cosine, element-wise.

    Parameters
    ----------
    x : array_like
        Input array.
    out : ndarray, optional
        Array of the same shape as `x`, to store results in.
        See `doc.ufuncs` (Section "Output arguments") for details.


    Returns
    -------
    arccosh : ndarray
        Array of the same shape as `x`.

    See Also
    --------

    cosh, arcsinh, sinh, arctanh, tanh

    Notes
    -----
    `arccosh` is a multivalued function: for each `x` there are infinitely
    many numbers `z` such that `cosh(z) = x`. The convention is to return the
    `z` whose imaginary part lies in `[-pi, pi]` and the real part in
    ``[0, inf]``.

    For real-valued input data types, `arccosh` always returns real output.
    For each value that cannot be expressed as a real number or infinity, it
    yields ``nan`` and sets the `invalid` floating point error flag.

    For complex-valued input, `arccosh` is a complex analytical function that
    has a branch cut `[-inf, 1]` and is continuous from above on it.

    References
    ----------
    .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
           10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/
    .. [2] Wikipedia, "Inverse hyperbolic function",
           http://en.wikipedia.org/wiki/Arccosh

    Examples
    --------
    >>> np.arccosh([np.e, 10.0])
    array([ 1.65745445,  2.99322285])
    >>> np.arccosh(1)
    0.0

    """)

add_newdoc('numpy.core.umath', 'arcsin',
    """
    Inverse sine, element-wise.

    Parameters
    ----------
    x : array_like
        `y`-coordinate on the unit circle.

    out : ndarray, optional
        Array of the same shape as `x`, in which to store the results.
        See `doc.ufuncs` (Section "Output arguments") for more details.

    Returns
    -------
    angle : ndarray
        The inverse sine of each element in `x`, in radians and in the
        closed interval ``[-pi/2, pi/2]``.  If `x` is a scalar, a scalar
        is returned, otherwise an array.

    See Also
    --------
    sin, cos, arccos, tan, arctan, arctan2, emath.arcsin

    Notes
    -----
    `arcsin` is a multivalued function: for each `x` there are infinitely
    many numbers `z` such that :math:`sin(z) = x`.  The convention is to
    return the angle `z` whose real part lies in [-pi/2, pi/2].

    For real-valued input data types, *arcsin* always returns real output.
    For each value that cannot be expressed as a real number or infinity,
    it yields ``nan`` and sets the `invalid` floating point error flag.

    For complex-valued input, `arcsin` is a complex analytic function that
    has, by convention, the branch cuts [-inf, -1] and [1, inf]  and is
    continuous from above on the former and from below on the latter.

    The inverse sine is also known as `asin` or sin^{-1}.

    References
    ----------
    Abramowitz, M. and Stegun, I. A., *Handbook of Mathematical Functions*,
    10th printing, New York: Dover, 1964, pp. 79ff.
    http://www.math.sfu.ca/~cbm/aands/

    Examples
    --------
    >>> np.arcsin(1)     # pi/2
    1.5707963267948966
    >>> np.arcsin(-1)    # -pi/2
    -1.5707963267948966
    >>> np.arcsin(0)
    0.0

    """)

add_newdoc('numpy.core.umath', 'arcsinh',
    """
    Inverse hyperbolic sine element-wise.

    Parameters
    ----------
    x : array_like
        Input array.
    out : ndarray, optional
        Array into which the output is placed. Its type is preserved and it
        must be of the right shape to hold the output. See `doc.ufuncs`.

    Returns
    -------
    out : ndarray
        Array of of the same shape as `x`.

    Notes
    -----
    `arcsinh` is a multivalued function: for each `x` there are infinitely
    many numbers `z` such that `sinh(z) = x`. The convention is to return the
    `z` whose imaginary part lies in `[-pi/2, pi/2]`.

    For real-valued input data types, `arcsinh` always returns real output.
    For each value that cannot be expressed as a real number or infinity, it
    returns ``nan`` and sets the `invalid` floating point error flag.

    For complex-valued input, `arccos` is a complex analytical function that
    has branch cuts `[1j, infj]` and `[-1j, -infj]` and is continuous from
    the right on the former and from the left on the latter.

    The inverse hyperbolic sine is also known as `asinh` or ``sinh^-1``.

    References
    ----------
    .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
           10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/
    .. [2] Wikipedia, "Inverse hyperbolic function",
           http://en.wikipedia.org/wiki/Arcsinh

    Examples
    --------
    >>> np.arcsinh(np.array([np.e, 10.0]))
    array([ 1.72538256,  2.99822295])

    """)

add_newdoc('numpy.core.umath', 'arctan',
    """
    Trigonometric inverse tangent, element-wise.

    The inverse of tan, so that if ``y = tan(x)`` then ``x = arctan(y)``.

    Parameters
    ----------
    x : array_like
        Input values.  `arctan` is applied to each element of `x`.

    Returns
    -------
    out : ndarray
        Out has the same shape as `x`.  Its real part is in
        ``[-pi/2, pi/2]`` (``arctan(+/-inf)`` returns ``+/-pi/2``).
        It is a scalar if `x` is a scalar.

    See Also
    --------
    arctan2 : The "four quadrant" arctan of the angle formed by (`x`, `y`)
        and the positive `x`-axis.
    angle : Argument of complex values.

    Notes
    -----
    `arctan` is a multi-valued function: for each `x` there are infinitely
    many numbers `z` such that tan(`z`) = `x`.  The convention is to return
    the angle `z` whose real part lies in [-pi/2, pi/2].

    For real-valued input data types, `arctan` always returns real output.
    For each value that cannot be expressed as a real number or infinity,
    it yields ``nan`` and sets the `invalid` floating point error flag.

    For complex-valued input, `arctan` is a complex analytic function that
    has [`1j, infj`] and [`-1j, -infj`] as branch cuts, and is continuous
    from the left on the former and from the right on the latter.

    The inverse tangent is also known as `atan` or tan^{-1}.

    References
    ----------
    Abramowitz, M. and Stegun, I. A., *Handbook of Mathematical Functions*,
    10th printing, New York: Dover, 1964, pp. 79.
    http://www.math.sfu.ca/~cbm/aands/

    Examples
    --------
    We expect the arctan of 0 to be 0, and of 1 to be pi/4:

    >>> np.arctan([0, 1])
    array([ 0.        ,  0.78539816])

    >>> np.pi/4
    0.78539816339744828

    Plot arctan:

    >>> import matplotlib.pyplot as plt
    >>> x = np.linspace(-10, 10)
    >>> plt.plot(x, np.arctan(x))
    >>> plt.axis('tight')
    >>> plt.show()

    """)

add_newdoc('numpy.core.umath', 'arctan2',
    """
    Element-wise arc tangent of ``x1/x2`` choosing the quadrant correctly.

    The quadrant (i.e., branch) is chosen so that ``arctan2(x1, x2)`` is
    the signed angle in radians between the ray ending at the origin and
    passing through the point (1,0), and the ray ending at the origin and
    passing through the point (`x2`, `x1`).  (Note the role reversal: the
    "`y`-coordinate" is the first function parameter, the "`x`-coordinate"
    is the second.)  By IEEE convention, this function is defined for
    `x2` = +/-0 and for either or both of `x1` and `x2` = +/-inf (see
    Notes for specific values).

    This function is not defined for complex-valued arguments; for the
    so-called argument of complex values, use `angle`.

    Parameters
    ----------
    x1 : array_like, real-valued
        `y`-coordinates.
    x2 : array_like, real-valued
        `x`-coordinates. `x2` must be broadcastable to match the shape of
        `x1` or vice versa.

    Returns
    -------
    angle : ndarray
        Array of angles in radians, in the range ``[-pi, pi]``.

    See Also
    --------
    arctan, tan, angle

    Notes
    -----
    *arctan2* is identical to the `atan2` function of the underlying
    C library.  The following special values are defined in the C
    standard: [1]_

    ====== ====== ================
    `x1`   `x2`   `arctan2(x1,x2)`
    ====== ====== ================
    +/- 0  +0     +/- 0
    +/- 0  -0     +/- pi
     > 0   +/-inf +0 / +pi
     < 0   +/-inf -0 / -pi
    +/-inf +inf   +/- (pi/4)
    +/-inf -inf   +/- (3*pi/4)
    ====== ====== ================

    Note that +0 and -0 are distinct floating point numbers, as are +inf
    and -inf.

    References
    ----------
    .. [1] ISO/IEC standard 9899:1999, "Programming language C."

    Examples
    --------
    Consider four points in different quadrants:

    >>> x = np.array([-1, +1, +1, -1])
    >>> y = np.array([-1, -1, +1, +1])
    >>> np.arctan2(y, x) * 180 / np.pi
    array([-135.,  -45.,   45.,  135.])

    Note the order of the parameters. `arctan2` is defined also when `x2` = 0
    and at several other special points, obtaining values in
    the range ``[-pi, pi]``:

    >>> np.arctan2([1., -1.], [0., 0.])
    array([ 1.57079633, -1.57079633])
    >>> np.arctan2([0., 0., np.inf], [+0., -0., np.inf])
    array([ 0.        ,  3.14159265,  0.78539816])

    """)

add_newdoc('numpy.core.umath', '_arg',
    """
    DO NOT USE, ONLY FOR TESTING
    """)

add_newdoc('numpy.core.umath', 'arctanh',
    """
    Inverse hyperbolic tangent element-wise.

    Parameters
    ----------
    x : array_like
        Input array.

    Returns
    -------
    out : ndarray
        Array of the same shape as `x`.

    See Also
    --------
    emath.arctanh

    Notes
    -----
    `arctanh` is a multivalued function: for each `x` there are infinitely
    many numbers `z` such that `tanh(z) = x`. The convention is to return
    the `z` whose imaginary part lies in `[-pi/2, pi/2]`.

    For real-valued input data types, `arctanh` always returns real output.
    For each value that cannot be expressed as a real number or infinity,
    it yields ``nan`` and sets the `invalid` floating point error flag.

    For complex-valued input, `arctanh` is a complex analytical function
    that has branch cuts `[-1, -inf]` and `[1, inf]` and is continuous from
    above on the former and from below on the latter.

    The inverse hyperbolic tangent is also known as `atanh` or ``tanh^-1``.

    References
    ----------
    .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
           10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/
    .. [2] Wikipedia, "Inverse hyperbolic function",
           http://en.wikipedia.org/wiki/Arctanh

    Examples
    --------
    >>> np.arctanh([0, -0.5])
    array([ 0.        , -0.54930614])

    """)

add_newdoc('numpy.core.umath', 'bitwise_and',
    """
    Compute the bit-wise AND of two arrays element-wise.

    Computes the bit-wise AND of the underlying binary representation of
    the integers in the input arrays. This ufunc implements the C/Python
    operator ``&``.

    Parameters
    ----------
    x1, x2 : array_like
        Only integer and boolean types are handled.

    Returns
    -------
    out : array_like
        Result.

    See Also
    --------
    logical_and
    bitwise_or
    bitwise_xor
    binary_repr :
        Return the binary representation of the input number as a string.

    Examples
    --------
    The number 13 is represented by ``00001101``.  Likewise, 17 is
    represented by ``00010001``.  The bit-wise AND of 13 and 17 is
    therefore ``000000001``, or 1:

    >>> np.bitwise_and(13, 17)
    1

    >>> np.bitwise_and(14, 13)
    12
    >>> np.binary_repr(12)
    '1100'
    >>> np.bitwise_and([14,3], 13)
    array([12,  1])

    >>> np.bitwise_and([11,7], [4,25])
    array([0, 1])
    >>> np.bitwise_and(np.array([2,5,255]), np.array([3,14,16]))
    array([ 2,  4, 16])
    >>> np.bitwise_and([True, True], [False, True])
    array([False,  True], dtype=bool)

    """)

add_newdoc('numpy.core.umath', 'bitwise_or',
    """
    Compute the bit-wise OR of two arrays element-wise.

    Computes the bit-wise OR of the underlying binary representation of
    the integers in the input arrays. This ufunc implements the C/Python
    operator ``|``.

    Parameters
    ----------
    x1, x2 : array_like
        Only integer and boolean types are handled.
    out : ndarray, optional
        Array into which the output is placed. Its type is preserved and it
        must be of the right shape to hold the output. See doc.ufuncs.

    Returns
    -------
    out : array_like
        Result.

    See Also
    --------
    logical_or
    bitwise_and
    bitwise_xor
    binary_repr :
        Return the binary representation of the input number as a string.

    Examples
    --------
    The number 13 has the binaray representation ``00001101``. Likewise,
    16 is represented by ``00010000``.  The bit-wise OR of 13 and 16 is
    then ``000111011``, or 29:

    >>> np.bitwise_or(13, 16)
    29
    >>> np.binary_repr(29)
    '11101'

    >>> np.bitwise_or(32, 2)
    34
    >>> np.bitwise_or([33, 4], 1)
    array([33,  5])
    >>> np.bitwise_or([33, 4], [1, 2])
    array([33,  6])

    >>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4]))
    array([  6,   5, 255])
    >>> np.array([2, 5, 255]) | np.array([4, 4, 4])
    array([  6,   5, 255])
    >>> np.bitwise_or(np.array([2, 5, 255, 2147483647L], dtype=np.int32),
    ...               np.array([4, 4, 4, 2147483647L], dtype=np.int32))
    array([         6,          5,        255, 2147483647])
    >>> np.bitwise_or([True, True], [False, True])
    array([ True,  True], dtype=bool)

    """)

add_newdoc('numpy.core.umath', 'bitwise_xor',
    """
    Compute the bit-wise XOR of two arrays element-wise.

    Computes the bit-wise XOR of the underlying binary representation of
    the integers in the input arrays. This ufunc implements the C/Python
    operator ``^``.

    Parameters
    ----------
    x1, x2 : array_like
        Only integer and boolean types are handled.

    Returns
    -------
    out : array_like
        Result.

    See Also
    --------
    logical_xor
    bitwise_and
    bitwise_or
    binary_repr :
        Return the binary representation of the input number as a string.

    Examples
    --------
    The number 13 is represented by ``00001101``. Likewise, 17 is
    represented by ``00010001``.  The bit-wise XOR of 13 and 17 is
    therefore ``00011100``, or 28:

    >>> np.bitwise_xor(13, 17)
    28
    >>> np.binary_repr(28)
    '11100'

    >>> np.bitwise_xor(31, 5)
    26
    >>> np.bitwise_xor([31,3], 5)
    array([26,  6])

    >>> np.bitwise_xor([31,3], [5,6])
    array([26,  5])
    >>> np.bitwise_xor([True, True], [False, True])
    array([ True, False], dtype=bool)

    """)

add_newdoc('numpy.core.umath', 'ceil',
    """
    Return the ceiling of the input, element-wise.

    The ceil of the scalar `x` is the smallest integer `i`, such that
    `i >= x`.  It is often denoted as :math:`\\lceil x \\rceil`.

    Parameters
    ----------
    x : array_like
        Input data.

    Returns
    -------
    y : ndarray or scalar
        The ceiling of each element in `x`, with `float` dtype.

    See Also
    --------
    floor, trunc, rint

    Examples
    --------
    >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
    >>> np.ceil(a)
    array([-1., -1., -0.,  1.,  2.,  2.,  2.])

    """)

add_newdoc('numpy.core.umath', 'trunc',
    """
    Return the truncated value of the input, element-wise.

    The truncated value of the scalar `x` is the nearest integer `i` which
    is closer to zero than `x` is. In short, the fractional part of the
    signed number `x` is discarded.

    Parameters
    ----------
    x : array_like
        Input data.

    Returns
    -------
    y : ndarray or scalar
        The truncated value of each element in `x`.

    See Also
    --------
    ceil, floor, rint

    Notes
    -----
    .. versionadded:: 1.3.0

    Examples
    --------
    >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
    >>> np.trunc(a)
    array([-1., -1., -0.,  0.,  1.,  1.,  2.])

    """)

add_newdoc('numpy.core.umath', 'conjugate',
    """
    Return the complex conjugate, element-wise.

    The complex conjugate of a complex number is obtained by changing the
    sign of its imaginary part.

    Parameters
    ----------
    x : array_like
        Input value.

    Returns
    -------
    y : ndarray
        The complex conjugate of `x`, with same dtype as `y`.

    Examples
    --------
    >>> np.conjugate(1+2j)
    (1-2j)

    >>> x = np.eye(2) + 1j * np.eye(2)
    >>> np.conjugate(x)
    array([[ 1.-1.j,  0.-0.j],
           [ 0.-0.j,  1.-1.j]])

    """)

add_newdoc('numpy.core.umath', 'cos',
    """
    Cosine element-wise.

    Parameters
    ----------
    x : array_like
        Input array in radians.
    out : ndarray, optional
        Output array of same shape as `x`.

    Returns
    -------
    y : ndarray
        The corresponding cosine values.

    Raises
    ------
    ValueError: invalid return array shape
        if `out` is provided and `out.shape` != `x.shape` (See Examples)

    Notes
    -----
    If `out` is provided, the function writes the result into it,
    and returns a reference to `out`.  (See Examples)

    References
    ----------
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
    New York, NY: Dover, 1972.

    Examples
    --------
    >>> np.cos(np.array([0, np.pi/2, np.pi]))
    array([  1.00000000e+00,   6.12303177e-17,  -1.00000000e+00])
    >>>
    >>> # Example of providing the optional output parameter
    >>> out2 = np.cos([0.1], out1)
    >>> out2 is out1
    True
    >>>
    >>> # Example of ValueError due to provision of shape mis-matched `out`
    >>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    ValueError: invalid return array shape

    """)

add_newdoc('numpy.core.umath', 'cosh',
    """
    Hyperbolic cosine, element-wise.

    Equivalent to ``1/2 * (np.exp(x) + np.exp(-x))`` and ``np.cos(1j*x)``.

    Parameters
    ----------
    x : array_like
        Input array.

    Returns
    -------
    out : ndarray
        Output array of same shape as `x`.

    Examples
    --------
    >>> np.cosh(0)
    1.0

    The hyperbolic cosine describes the shape of a hanging cable:

    >>> import matplotlib.pyplot as plt
    >>> x = np.linspace(-4, 4, 1000)
    >>> plt.plot(x, np.cosh(x))
    >>> plt.show()

    """)

add_newdoc('numpy.core.umath', 'degrees',
    """
    Convert angles from radians to degrees.

    Parameters
    ----------
    x : array_like
        Input array in radians.
    out : ndarray, optional
        Output array of same shape as x.

    Returns
    -------
    y : ndarray of floats
        The corresponding degree values; if `out` was supplied this is a
        reference to it.

    See Also
    --------
    rad2deg : equivalent function

    Examples
    --------
    Convert a radian array to degrees

    >>> rad = np.arange(12.)*np.pi/6
    >>> np.degrees(rad)
    array([   0.,   30.,   60.,   90.,  120.,  150.,  180.,  210.,  240.,
            270.,  300.,  330.])

    >>> out = np.zeros((rad.shape))
    >>> r = degrees(rad, out)
    >>> np.all(r == out)
    True

    """)

add_newdoc('numpy.core.umath', 'rad2deg',
    """
    Convert angles from radians to degrees.

    Parameters
    ----------
    x : array_like
        Angle in radians.
    out : ndarray, optional
        Array into which the output is placed. Its type is preserved and it
        must be of the right shape to hold the output. See doc.ufuncs.

    Returns
    -------
    y : ndarray
        The corresponding angle in degrees.

    See Also
    --------
    deg2rad : Convert angles from degrees to radians.
    unwrap : Remove large jumps in angle by wrapping.

    Notes
    -----
    .. versionadded:: 1.3.0

    rad2deg(x) is ``180 * x / pi``.

    Examples
    --------
    >>> np.rad2deg(np.pi/2)
    90.0

    """)

add_newdoc('numpy.core.umath', 'divide',
    """
    Divide arguments element-wise.

    Parameters
    ----------
    x1 : array_like
        Dividend array.
    x2 : array_like
        Divisor array.
    out : ndarray, optional
        Array into which the output is placed. Its type is preserved and it
        must be of the right shape to hold the output. See doc.ufuncs.

    Returns
    -------
    y : ndarray or scalar
        The quotient ``x1/x2``, element-wise. Returns a scalar if
        both ``x1`` and ``x2`` are scalars.

    See Also
    --------
    seterr : Set whether to raise or warn on overflow, underflow and
             division by zero.

    Notes
    -----
    Equivalent to ``x1`` / ``x2`` in terms of array-broadcasting.

    Behavior on division by zero can be changed using ``seterr``.

    In Python 2, when both ``x1`` and ``x2`` are of an integer type,
    ``divide`` will behave like ``floor_divide``. In Python 3, it behaves
    like ``true_divide``.

    Examples
    --------
    >>> np.divide(2.0, 4.0)
    0.5
    >>> x1 = np.arange(9.0).reshape((3, 3))
    >>> x2 = np.arange(3.0)
    >>> np.divide(x1, x2)
    array([[ NaN,  1. ,  1. ],
           [ Inf,  4. ,  2.5],
           [ Inf,  7. ,  4. ]])

    Note the behavior with integer types (Python 2 only):

    >>> np.divide(2, 4)
    0
    >>> np.divide(2, 4.)
    0.5

    Division by zero always yields zero in integer arithmetic (again,
    Python 2 only), and does not raise an exception or a warning:

    >>> np.divide(np.array([0, 1], dtype=int), np.array([0, 0], dtype=int))
    array([0, 0])

    Division by zero can, however, be caught using ``seterr``:

    >>> old_err_state = np.seterr(divide='raise')
    >>> np.divide(1, 0)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    FloatingPointError: divide by zero encountered in divide

    >>> ignored_states = np.seterr(**old_err_state)
    >>> np.divide(1, 0)
    0

    """)

add_newdoc('numpy.core.umath', 'equal',
    """
    Return (x1 == x2) element-wise.

    Parameters
    ----------
    x1, x2 : array_like
        Input arrays of the same shape.

    Returns
    -------
    out : ndarray or bool
        Output array of bools, or a single bool if x1 and x2 are scalars.

    See Also
    --------
    not_equal, greater_equal, less_equal, greater, less

    Examples
    --------
    >>> np.equal([0, 1, 3], np.arange(3))
    array([ True,  True, False], dtype=bool)

    What is compared are values, not types. So an int (1) and an array of
    length one can evaluate as True:

    >>> np.equal(1, np.ones(1))
    array([ True], dtype=bool)

    """)

add_newdoc('numpy.core.umath', 'exp',
    """
    Calculate the exponential of all elements in the input array.

    Parameters
    ----------
    x : array_like
        Input values.

    Returns
    -------
    out : ndarray
        Output array, element-wise exponential of `x`.

    See Also
    --------
    expm1 : Calculate ``exp(x) - 1`` for all elements in the array.
    exp2  : Calculate ``2**x`` for all elements in the array.

    Notes
    -----
    The irrational number ``e`` is also known as Euler's number.  It is
    approximately 2.718281, and is the base of the natural logarithm,
    ``ln`` (this means that, if :math:`x = \\ln y = \\log_e y`,
    then :math:`e^x = y`. For real input, ``exp(x)`` is always positive.

    For complex arguments, ``x = a + ib``, we can write
    :math:`e^x = e^a e^{ib}`.  The first term, :math:`e^a`, is already
    known (it is the real argument, described above).  The second term,
    :math:`e^{ib}`, is :math:`\\cos b + i \\sin b`, a function with
    magnitude 1 and a periodic phase.

    References
    ----------
    .. [1] Wikipedia, "Exponential function",
           http://en.wikipedia.org/wiki/Exponential_function
    .. [2] M. Abramovitz and I. A. Stegun, "Handbook of Mathematical Functions
           with Formulas, Graphs, and Mathematical Tables," Dover, 1964, p. 69,
           http://www.math.sfu.ca/~cbm/aands/page_69.htm

    Examples
    --------
    Plot the magnitude and phase of ``exp(x)`` in the complex plane:

    >>> import matplotlib.pyplot as plt

    >>> x = np.linspace(-2*np.pi, 2*np.pi, 100)
    >>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane
    >>> out = np.exp(xx)

    >>> plt.subplot(121)
    >>> plt.imshow(np.abs(out),
    ...            extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi])
    >>> plt.title('Magnitude of exp(x)')

    >>> plt.subplot(122)
    >>> plt.imshow(np.angle(out),
    ...            extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi])
    >>> plt.title('Phase (angle) of exp(x)')
    >>> plt.show()

    """)

add_newdoc('numpy.core.umath', 'exp2',
    """
    Calculate `2**p` for all `p` in the input array.

    Parameters
    ----------
    x : array_like
        Input values.

    out : ndarray, optional
        Array to insert results into.

    Returns
    -------
    out : ndarray
        Element-wise 2 to the power `x`.

    See Also
    --------
    power

    Notes
    -----
    .. versionadded:: 1.3.0



    Examples
    --------
    >>> np.exp2([2, 3])
    array([ 4.,  8.])

    """)

add_newdoc('numpy.core.umath', 'expm1',
    """
    Calculate ``exp(x) - 1`` for all elements in the array.

    Parameters
    ----------
    x : array_like
       Input values.

    Returns
    -------
    out : ndarray
        Element-wise exponential minus one: ``out = exp(x) - 1``.

    See Also
    --------
    log1p : ``log(1 + x)``, the inverse of expm1.


    Notes
    -----
    This function provides greater precision than ``exp(x) - 1``
    for small values of ``x``.

    Examples
    --------
    The true value of ``exp(1e-10) - 1`` is ``1.00000000005e-10`` to
    about 32 significant digits. This example shows the superiority of
    expm1 in this case.

    >>> np.expm1(1e-10)
    1.00000000005e-10
    >>> np.exp(1e-10) - 1
    1.000000082740371e-10

    """)

add_newdoc('numpy.core.umath', 'fabs',
    """
    Compute the absolute values element-wise.

    This function returns the absolute values (positive magnitude) of the
    data in `x`. Complex values are not handled, use `absolute` to find the
    absolute values of complex data.

    Parameters
    ----------
    x : array_like
        The array of numbers for which the absolute values are required. If
        `x` is a scalar, the result `y` will also be a scalar.
    out : ndarray, optional
        Array into which the output is placed. Its type is preserved and it
        must be of the right shape to hold the output. See doc.ufuncs.

    Returns
    -------
    y : ndarray or scalar
        The absolute values of `x`, the returned values are always floats.

    See Also
    --------
    absolute : Absolute values including `complex` types.

    Examples
    --------
    >>> np.fabs(-1)
    1.0
    >>> np.fabs([-1.2, 1.2])
    array([ 1.2,  1.2])

    """)

add_newdoc('numpy.core.umath', 'floor',
    """
    Return the floor of the input, element-wise.

    The floor of the scalar `x` is the largest integer `i`, such that
    `i <= x`.  It is often denoted as :math:`\\lfloor x \\rfloor`.

    Parameters
    ----------
    x : array_like
        Input data.

    Returns
    -------
    y : ndarray or scalar
        The floor of each element in `x`.

    See Also
    --------
    ceil, trunc, rint

    Notes
    -----
    Some spreadsheet programs calculate the "floor-towards-zero", in other
    words ``floor(-2.5) == -2``.  NumPy instead uses the definition of
    `floor` where `floor(-2.5) == -3`.

    Examples
    --------
    >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
    >>> np.floor(a)
    array([-2., -2., -1.,  0.,  1.,  1.,  2.])

    """)

add_newdoc('numpy.core.umath', 'floor_divide',
    """
    Return the largest integer smaller or equal to the division of the inputs.
    It is equivalent to the Python ``//`` operator and pairs with the
    Python ``%`` (`remainder`), function so that ``b = a % b + b * (a // b)``
    up to roundoff.

    Parameters
    ----------
    x1 : array_like
        Numerator.
    x2 : array_like
        Denominator.

    Returns
    -------
    y : ndarray
        y = floor(`x1`/`x2`)


    See Also
    --------
    remainder : Remainder complementary to floor_divide.
    divide : Standard division.
    floor : Round a number to the nearest integer toward minus infinity.
    ceil : Round a number to the nearest integer toward infinity.

    Examples
    --------
    >>> np.floor_divide(7,3)
    2
    >>> np.floor_divide([1., 2., 3., 4.], 2.5)
    array([ 0.,  0.,  1.,  1.])

    """)

add_newdoc('numpy.core.umath', 'fmod',
    """
    Return the element-wise remainder of division.

    This is the NumPy implementation of the C library function fmod, the
    remainder has the same sign as the dividend `x1`. It is equivalent to
    the Matlab(TM) ``rem`` function and should not be confused with the
    Python modulus operator ``x1 % x2``.

    Parameters
    ----------
    x1 : array_like
      Dividend.
    x2 : array_like
      Divisor.

    Returns
    -------
    y : array_like
      The remainder of the division of `x1` by `x2`.

    See Also
    --------
    remainder : Equivalent to the Python ``%`` operator.
    divide

    Notes
    -----
    The result of the modulo operation for negative dividend and divisors
    is bound by conventions. For `fmod`, the sign of result is the sign of
    the dividend, while for `remainder` the sign of the result is the sign
    of the divisor. The `fmod` function is equivalent to the Matlab(TM)
    ``rem`` function.

    Examples
    --------
    >>> np.fmod([-3, -2, -1, 1, 2, 3], 2)
    array([-1,  0, -1,  1,  0,  1])
    >>> np.remainder([-3, -2, -1, 1, 2, 3], 2)
    array([1, 0, 1, 1, 0, 1])

    >>> np.fmod([5, 3], [2, 2.])
    array([ 1.,  1.])
    >>> a = np.arange(-3, 3).reshape(3, 2)
    >>> a
    array([[-3, -2],
           [-1,  0],
           [ 1,  2]])
    >>> np.fmod(a, [2,2])
    array([[-1,  0],
           [-1,  0],
           [ 1,  0]])

    """)

add_newdoc('numpy.core.umath', 'greater',
    """
    Return the truth value of (x1 > x2) element-wise.

    Parameters
    ----------
    x1, x2 : array_like
        Input arrays.  If ``x1.shape != x2.shape``, they must be
        broadcastable to a common shape (which may be the shape of one or
        the other).

    Returns
    -------
    out : bool or ndarray of bool
        Array of bools, or a single bool if `x1` and `x2` are scalars.


    See Also
    --------
    greater_equal, less, less_equal, equal, not_equal

    Examples
    --------
    >>> np.greater([4,2],[2,2])
    array([ True, False], dtype=bool)

    If the inputs are ndarrays, then np.greater is equivalent to '>'.

    >>> a = np.array([4,2])
    >>> b = np.array([2,2])
    >>> a > b
    array([ True, False], dtype=bool)

    """)

add_newdoc('numpy.core.umath', 'greater_equal',
    """
    Return the truth value of (x1 >= x2) element-wise.

    Parameters
    ----------
    x1, x2 : array_like
        Input arrays.  If ``x1.shape != x2.shape``, they must be
        broadcastable to a common shape (which may be the shape of one or
        the other).

    Returns
    -------
    out : bool or ndarray of bool
        Array of bools, or a single bool if `x1` and `x2` are scalars.

    See Also
    --------
    greater, less, less_equal, equal, not_equal

    Examples
    --------
    >>> np.greater_equal([4, 2, 1], [2, 2, 2])
    array([ True, True, False], dtype=bool)

    """)

add_newdoc('numpy.core.umath', 'hypot',
    """
    Given the "legs" of a right triangle, return its hypotenuse.

    Equivalent to ``sqrt(x1**2 + x2**2)``, element-wise.  If `x1` or
    `x2` is scalar_like (i.e., unambiguously cast-able to a scalar type),
    it is broadcast for use with each element of the other argument.
    (See Examples)

    Parameters
    ----------
    x1, x2 : array_like
        Leg of the triangle(s).
    out : ndarray, optional
        Array into which the output is placed. Its type is preserved and it
        must be of the right shape to hold the output. See doc.ufuncs.

    Returns
    -------
    z : ndarray
        The hypotenuse of the triangle(s).

    Examples
    --------
    >>> np.hypot(3*np.ones((3, 3)), 4*np.ones((3, 3)))
    array([[ 5.,  5.,  5.],
           [ 5.,  5.,  5.],
           [ 5.,  5.,  5.]])

    Example showing broadcast of scalar_like argument:

    >>> np.hypot(3*np.ones((3, 3)), [4])
    array([[ 5.,  5.,  5.],
           [ 5.,  5.,  5.],
           [ 5.,  5.,  5.]])

    """)

add_newdoc('numpy.core.umath', 'invert',
    """
    Compute bit-wise inversion, or bit-wise NOT, element-wise.

    Computes the bit-wise NOT of the underlying binary representation of
    the integers in the input arrays. This ufunc implements the C/Python
    operator ``~``.

    For signed integer inputs, the two's complement is returned.  In a
    two's-complement system negative numbers are represented by the two's
    complement of the absolute value. This is the most common method of
    representing signed integers on computers [1]_. A N-bit
    two's-complement system can represent every integer in the range
    :math:`-2^{N-1}` to :math:`+2^{N-1}-1`.

    Parameters
    ----------
    x1 : array_like
        Only integer and boolean types are handled.

    Returns
    -------
    out : array_like
        Result.

    See Also
    --------
    bitwise_and, bitwise_or, bitwise_xor
    logical_not
    binary_repr :
        Return the binary representation of the input number as a string.

    Notes
    -----
    `bitwise_not` is an alias for `invert`:

    >>> np.bitwise_not is np.invert
    True

    References
    ----------
    .. [1] Wikipedia, "Two's complement",
        http://en.wikipedia.org/wiki/Two's_complement

    Examples
    --------
    We've seen that 13 is represented by ``00001101``.
    The invert or bit-wise NOT of 13 is then:

    >>> np.invert(np.array([13], dtype=uint8))
    array([242], dtype=uint8)
    >>> np.binary_repr(x, width=8)
    '00001101'
    >>> np.binary_repr(242, width=8)
    '11110010'

    The result depends on the bit-width:

    >>> np.invert(np.array([13], dtype=uint16))
    array([65522], dtype=uint16)
    >>> np.binary_repr(x, width=16)
    '0000000000001101'
    >>> np.binary_repr(65522, width=16)
    '1111111111110010'

    When using signed integer types the result is the two's complement of
    the result for the unsigned type:

    >>> np.invert(np.array([13], dtype=int8))
    array([-14], dtype=int8)
    >>> np.binary_repr(-14, width=8)
    '11110010'

    Booleans are accepted as well:

    >>> np.invert(array([True, False]))
    array([False,  True], dtype=bool)

    """)

add_newdoc('numpy.core.umath', 'isfinite',
    """
    Test element-wise for finiteness (not infinity or not Not a Number).

    The result is returned as a boolean array.

    Parameters
    ----------
    x : array_like
        Input values.
    out : ndarray, optional
        Array into which the output is placed. Its type is preserved and it
        must be of the right shape to hold the output. See `doc.ufuncs`.

    Returns
    -------
    y : ndarray, bool
        For scalar input, the result is a new boolean with value True
        if the input is finite; otherwise the value is False (input is
        either positive infinity, negative infinity or Not a Number).

        For array input, the result is a boolean array with the same
        dimensions as the input and the values are True if the
        corresponding element of the input is finite; otherwise the values
        are False (element is either positive infinity, negative infinity
        or Not a Number).

    See Also
    --------
    isinf, isneginf, isposinf, isnan

    Notes
    -----
    Not a Number, positive infinity and negative infinity are considered
    to be non-finite.

    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754). This means that Not a Number is not equivalent to infinity.
    Also that positive infinity is not equivalent to negative infinity. But
    infinity is equivalent to positive infinity.  Errors result if the
    second argument is also supplied when `x` is a scalar input, or if
    first and second arguments have different shapes.

    Examples
    --------
    >>> np.isfinite(1)
    True
    >>> np.isfinite(0)
    True
    >>> np.isfinite(np.nan)
    False
    >>> np.isfinite(np.inf)
    False
    >>> np.isfinite(np.NINF)
    False
    >>> np.isfinite([np.log(-1.),1.,np.log(0)])
    array([False,  True, False], dtype=bool)

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isfinite(x, y)
    array([0, 1, 0])
    >>> y
    array([0, 1, 0])

    """)

add_newdoc('numpy.core.umath', 'isinf',
    """
    Test element-wise for positive or negative infinity.

    Returns a boolean array of the same shape as `x`, True where ``x ==
    +/-inf``, otherwise False.

    Parameters
    ----------
    x : array_like
        Input values
    out : array_like, optional
        An array with the same shape as `x` to store the result.

    Returns
    -------
    y : bool (scalar) or boolean ndarray
        For scalar input, the result is a new boolean with value True if
        the input is positive or negative infinity; otherwise the value is
        False.

        For array input, the result is a boolean array with the same shape
        as the input and the values are True where the corresponding
        element of the input is positive or negative infinity; elsewhere
        the values are False.  If a second argument was supplied the result
        is stored there.  If the type of that array is a numeric type the
        result is represented as zeros and ones, if the type is boolean
        then as False and True, respectively.  The return value `y` is then
        a reference to that array.

    See Also
    --------
    isneginf, isposinf, isnan, isfinite

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is supplied when the first
    argument is a scalar, or if the first and second arguments have
    different shapes.

    Examples
    --------
    >>> np.isinf(np.inf)
    True
    >>> np.isinf(np.nan)
    False
    >>> np.isinf(np.NINF)
    True
    >>> np.isinf([np.inf, -np.inf, 1.0, np.nan])
    array([ True,  True, False, False], dtype=bool)

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isinf(x, y)
    array([1, 0, 1])
    >>> y
    array([1, 0, 1])

    """)

add_newdoc('numpy.core.umath', 'isnan',
    """
    Test element-wise for NaN and return result as a boolean array.

    Parameters
    ----------
    x : array_like
        Input array.

    Returns
    -------
    y : ndarray or bool
        For scalar input, the result is a new boolean with value True if
        the input is NaN; otherwise the value is False.

        For array input, the result is a boolean array of the same
        dimensions as the input and the values are True if the
        corresponding element of the input is NaN; otherwise the values are
        False.

    See Also
    --------
    isinf, isneginf, isposinf, isfinite

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754). This means that Not a Number is not equivalent to infinity.

    Examples
    --------
    >>> np.isnan(np.nan)
    True
    >>> np.isnan(np.inf)
    False
    >>> np.isnan([np.log(-1.),1.,np.log(0)])
    array([ True, False, False], dtype=bool)

    """)

add_newdoc('numpy.core.umath', 'left_shift',
    """
    Shift the bits of an integer to the left.

    Bits are shifted to the left by appending `x2` 0s at the right of `x1`.
    Since the internal representation of numbers is in binary format, this
    operation is equivalent to multiplying `x1` by ``2**x2``.

    Parameters
    ----------
    x1 : array_like of integer type
        Input values.
    x2 : array_like of integer type
        Number of zeros to append to `x1`. Has to be non-negative.

    Returns
    -------
    out : array of integer type
        Return `x1` with bits shifted `x2` times to the left.

    See Also
    --------
    right_shift : Shift the bits of an integer to the right.
    binary_repr : Return the binary representation of the input number
        as a string.

    Examples
    --------
    >>> np.binary_repr(5)
    '101'
    >>> np.left_shift(5, 2)
    20
    >>> np.binary_repr(20)
    '10100'

    >>> np.left_shift(5, [1,2,3])
    array([10, 20, 40])

    """)

add_newdoc('numpy.core.umath', 'less',
    """
    Return the truth value of (x1 < x2) element-wise.

    Parameters
    ----------
    x1, x2 : array_like
        Input arrays.  If ``x1.shape != x2.shape``, they must be
        broadcastable to a common shape (which may be the shape of one or
        the other).

    Returns
    -------
    out : bool or ndarray of bool
        Array of bools, or a single bool if `x1` and `x2` are scalars.

    See Also
    --------
    greater, less_equal, greater_equal, equal, not_equal

    Examples
    --------
    >>> np.less([1, 2], [2, 2])
    array([ True, False], dtype=bool)

    """)

add_newdoc('numpy.core.umath', 'less_equal',
    """
    Return the truth value of (x1 =< x2) element-wise.

    Parameters
    ----------
    x1, x2 : array_like
        Input arrays.  If ``x1.shape != x2.shape``, they must be
        broadcastable to a common shape (which may be the shape of one or
        the other).

    Returns
    -------
    out : bool or ndarray of bool
        Array of bools, or a single bool if `x1` and `x2` are scalars.

    See Also
    --------
    greater, less, greater_equal, equal, not_equal

    Examples
    --------
    >>> np.less_equal([4, 2, 1], [2, 2, 2])
    array([False,  True,  True], dtype=bool)

    """)

add_newdoc('numpy.core.umath', 'log',
    """
    Natural logarithm, element-wise.

    The natural logarithm `log` is the inverse of the exponential function,
    so that `log(exp(x)) = x`. The natural logarithm is logarithm in base
    `e`.

    Parameters
    ----------
    x : array_like
        Input value.

    Returns
    -------
    y : ndarray
        The natural logarithm of `x`, element-wise.

    See Also
    --------
    log10, log2, log1p, emath.log

    Notes
    -----
    Logarithm is a multivalued function: for each `x` there is an infinite
    number of `z` such that `exp(z) = x`. The convention is to return the
    `z` whose imaginary part lies in `[-pi, pi]`.

    For real-valued input data types, `log` always returns real output. For
    each value that cannot be expressed as a real number or infinity, it
    yields ``nan`` and sets the `invalid` floating point error flag.

    For complex-valued input, `log` is a complex analytical function that
    has a branch cut `[-inf, 0]` and is continuous from above on it. `log`
    handles the floating-point negative zero as an infinitesimal negative
    number, conforming to the C99 standard.

    References
    ----------
    .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
           10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/
    .. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm

    Examples
    --------
    >>> np.log([1, np.e, np.e**2, 0])
    array([  0.,   1.,   2., -Inf])

    """)

add_newdoc('numpy.core.umath', 'log10',
    """
    Return the base 10 logarithm of the input array, element-wise.

    Parameters
    ----------
    x : array_like
        Input values.

    Returns
    -------
    y : ndarray
        The logarithm to the base 10 of `x`, element-wise. NaNs are
        returned where x is negative.

    See Also
    --------
    emath.log10

    Notes
    -----
    Logarithm is a multivalued function: for each `x` there is an infinite
    number of `z` such that `10**z = x`. The convention is to return the
    `z` whose imaginary part lies in `[-pi, pi]`.

    For real-valued input data types, `log10` always returns real output.
    For each value that cannot be expressed as a real number or infinity,
    it yields ``nan`` and sets the `invalid` floating point error flag.

    For complex-valued input, `log10` is a complex analytical function that
    has a branch cut `[-inf, 0]` and is continuous from above on it.
    `log10` handles the floating-point negative zero as an infinitesimal
    negative number, conforming to the C99 standard.

    References
    ----------
    .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
           10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/
    .. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm

    Examples
    --------
    >>> np.log10([1e-15, -3.])
    array([-15.,  NaN])

    """)

add_newdoc('numpy.core.umath', 'log2',
    """
    Base-2 logarithm of `x`.

    Parameters
    ----------
    x : array_like
        Input values.

    Returns
    -------
    y : ndarray
        Base-2 logarithm of `x`.

    See Also
    --------
    log, log10, log1p, emath.log2

    Notes
    -----
    .. versionadded:: 1.3.0

    Logarithm is a multivalued function: for each `x` there is an infinite
    number of `z` such that `2**z = x`. The convention is to return the `z`
    whose imaginary part lies in `[-pi, pi]`.

    For real-valued input data types, `log2` always returns real output.
    For each value that cannot be expressed as a real number or infinity,
    it yields ``nan`` and sets the `invalid` floating point error flag.

    For complex-valued input, `log2` is a complex analytical function that
    has a branch cut `[-inf, 0]` and is continuous from above on it. `log2`
    handles the floating-point negative zero as an infinitesimal negative
    number, conforming to the C99 standard.

    Examples
    --------
    >>> x = np.array([0, 1, 2, 2**4])
    >>> np.log2(x)
    array([-Inf,   0.,   1.,   4.])

    >>> xi = np.array([0+1.j, 1, 2+0.j, 4.j])
    >>> np.log2(xi)
    array([ 0.+2.26618007j,  0.+0.j        ,  1.+0.j        ,  2.+2.26618007j])

    """)

add_newdoc('numpy.core.umath', 'logaddexp',
    """
    Logarithm of the sum of exponentiations of the inputs.

    Calculates ``log(exp(x1) + exp(x2))``. This function is useful in
    statistics where the calculated probabilities of events may be so small
    as to exceed the range of normal floating point numbers.  In such cases
    the logarithm of the calculated probability is stored. This function
    allows adding probabilities stored in such a fashion.

    Parameters
    ----------
    x1, x2 : array_like
        Input values.

    Returns
    -------
    result : ndarray
        Logarithm of ``exp(x1) + exp(x2)``.

    See Also
    --------
    logaddexp2: Logarithm of the sum of exponentiations of inputs in base 2.

    Notes
    -----
    .. versionadded:: 1.3.0

    Examples
    --------
    >>> prob1 = np.log(1e-50)
    >>> prob2 = np.log(2.5e-50)
    >>> prob12 = np.logaddexp(prob1, prob2)
    >>> prob12
    -113.87649168120691
    >>> np.exp(prob12)
    3.5000000000000057e-50

    """)

add_newdoc('numpy.core.umath', 'logaddexp2',
    """
    Logarithm of the sum of exponentiations of the inputs in base-2.

    Calculates ``log2(2**x1 + 2**x2)``. This function is useful in machine
    learning when the calculated probabilities of events may be so small as
    to exceed the range of normal floating point numbers.  In such cases
    the base-2 logarithm of the calculated probability can be used instead.
    This function allows adding probabilities stored in such a fashion.

    Parameters
    ----------
    x1, x2 : array_like
        Input values.
    out : ndarray, optional
        Array to store results in.

    Returns
    -------
    result : ndarray
        Base-2 logarithm of ``2**x1 + 2**x2``.

    See Also
    --------
    logaddexp: Logarithm of the sum of exponentiations of the inputs.

    Notes
    -----
    .. versionadded:: 1.3.0

    Examples
    --------
    >>> prob1 = np.log2(1e-50)
    >>> prob2 = np.log2(2.5e-50)
    >>> prob12 = np.logaddexp2(prob1, prob2)
    >>> prob1, prob2, prob12
    (-166.09640474436813, -164.77447664948076, -164.28904982231052)
    >>> 2**prob12
    3.4999999999999914e-50

    """)

add_newdoc('numpy.core.umath', 'log1p',
    """
    Return the natural logarithm of one plus the input array, element-wise.

    Calculates ``log(1 + x)``.

    Parameters
    ----------
    x : array_like
        Input values.

    Returns
    -------
    y : ndarray
        Natural logarithm of `1 + x`, element-wise.

    See Also
    --------
    expm1 : ``exp(x) - 1``, the inverse of `log1p`.

    Notes
    -----
    For real-valued input, `log1p` is accurate also for `x` so small
    that `1 + x == 1` in floating-point accuracy.

    Logarithm is a multivalued function: for each `x` there is an infinite
    number of `z` such that `exp(z) = 1 + x`. The convention is to return
    the `z` whose imaginary part lies in `[-pi, pi]`.

    For real-valued input data types, `log1p` always returns real output.
    For each value that cannot be expressed as a real number or infinity,
    it yields ``nan`` and sets the `invalid` floating point error flag.

    For complex-valued input, `log1p` is a complex analytical function that
    has a branch cut `[-inf, -1]` and is continuous from above on it.
    `log1p` handles the floating-point negative zero as an infinitesimal
    negative number, conforming to the C99 standard.

    References
    ----------
    .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
           10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/
    .. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm

    Examples
    --------
    >>> np.log1p(1e-99)
    1e-99
    >>> np.log(1 + 1e-99)
    0.0

    """)

add_newdoc('numpy.core.umath', 'logical_and',
    """
    Compute the truth value of x1 AND x2 element-wise.

    Parameters
    ----------
    x1, x2 : array_like
        Input arrays. `x1` and `x2` must be of the same shape.


    Returns
    -------
    y : ndarray or bool
        Boolean result with the same shape as `x1` and `x2` of the logical
        AND operation on corresponding elements of `x1` and `x2`.

    See Also
    --------
    logical_or, logical_not, logical_xor
    bitwise_and

    Examples
    --------
    >>> np.logical_and(True, False)
    False
    >>> np.logical_and([True, False], [False, False])
    array([False, False], dtype=bool)

    >>> x = np.arange(5)
    >>> np.logical_and(x>1, x<4)
    array([False, False,  True,  True, False], dtype=bool)

    """)

add_newdoc('numpy.core.umath', 'logical_not',
    """
    Compute the truth value of NOT x element-wise.

    Parameters
    ----------
    x : array_like
        Logical NOT is applied to the elements of `x`.

    Returns
    -------
    y : bool or ndarray of bool
        Boolean result with the same shape as `x` of the NOT operation
        on elements of `x`.

    See Also
    --------
    logical_and, logical_or, logical_xor

    Examples
    --------
    >>> np.logical_not(3)
    False
    >>> np.logical_not([True, False, 0, 1])
    array([False,  True,  True, False], dtype=bool)

    >>> x = np.arange(5)
    >>> np.logical_not(x<3)
    array([False, False, False,  True,  True], dtype=bool)

    """)

add_newdoc('numpy.core.umath', 'logical_or',
    """
    Compute the truth value of x1 OR x2 element-wise.

    Parameters
    ----------
    x1, x2 : array_like
        Logical OR is applied to the elements of `x1` and `x2`.
        They have to be of the same shape.

    Returns
    -------
    y : ndarray or bool
        Boolean result with the same shape as `x1` and `x2` of the logical
        OR operation on elements of `x1` and `x2`.

    See Also
    --------
    logical_and, logical_not, logical_xor
    bitwise_or

    Examples
    --------
    >>> np.logical_or(True, False)
    True
    >>> np.logical_or([True, False], [False, False])
    array([ True, False], dtype=bool)

    >>> x = np.arange(5)
    >>> np.logical_or(x < 1, x > 3)
    array([ True, False, False, False,  True], dtype=bool)

    """)

add_newdoc('numpy.core.umath', 'logical_xor',
    """
    Compute the truth value of x1 XOR x2, element-wise.

    Parameters
    ----------
    x1, x2 : array_like
        Logical XOR is applied to the elements of `x1` and `x2`.  They must
        be broadcastable to the same shape.

    Returns
    -------
    y : bool or ndarray of bool
        Boolean result of the logical XOR operation applied to the elements
        of `x1` and `x2`; the shape is determined by whether or not
        broadcasting of one or both arrays was required.

    See Also
    --------
    logical_and, logical_or, logical_not, bitwise_xor

    Examples
    --------
    >>> np.logical_xor(True, False)
    True
    >>> np.logical_xor([True, True, False, False], [True, False, True, False])
    array([False,  True,  True, False], dtype=bool)

    >>> x = np.arange(5)
    >>> np.logical_xor(x < 1, x > 3)
    array([ True, False, False, False,  True], dtype=bool)

    Simple example showing support of broadcasting

    >>> np.logical_xor(0, np.eye(2))
    array([[ True, False],
           [False,  True]], dtype=bool)

    """)

add_newdoc('numpy.core.umath', 'maximum',
    """
    Element-wise maximum of array elements.

    Compare two arrays and returns a new array containing the element-wise
    maxima. If one of the elements being compared is a NaN, then that
    element is returned. If both elements are NaNs then the first is
    returned. The latter distinction is important for complex NaNs, which
    are defined as at least one of the real or imaginary parts being a NaN.
    The net effect is that NaNs are propagated.

    Parameters
    ----------
    x1, x2 : array_like
        The arrays holding the elements to be compared. They must have
        the same shape, or shapes that can be broadcast to a single shape.

    Returns
    -------
    y : ndarray or scalar
        The maximum of `x1` and `x2`, element-wise.  Returns scalar if
        both  `x1` and `x2` are scalars.

    See Also
    --------
    minimum :
        Element-wise minimum of two arrays, propagates NaNs.
    fmax :
        Element-wise maximum of two arrays, ignores NaNs.
    amax :
        The maximum value of an array along a given axis, propagates NaNs.
    nanmax :
        The maximum value of an array along a given axis, ignores NaNs.

    fmin, amin, nanmin

    Notes
    -----
    The maximum is equivalent to ``np.where(x1 >= x2, x1, x2)`` when
    neither x1 nor x2 are nans, but it is faster and does proper
    broadcasting.

    Examples
    --------
    >>> np.maximum([2, 3, 4], [1, 5, 2])
    array([2, 5, 4])

    >>> np.maximum(np.eye(2), [0.5, 2]) # broadcasting
    array([[ 1. ,  2. ],
           [ 0.5,  2. ]])

    >>> np.maximum([np.nan, 0, np.nan], [0, np.nan, np.nan])
    array([ NaN,  NaN,  NaN])
    >>> np.maximum(np.Inf, 1)
    inf

    """)

add_newdoc('numpy.core.umath', 'minimum',
    """
    Element-wise minimum of array elements.

    Compare two arrays and returns a new array containing the element-wise
    minima. If one of the elements being compared is a NaN, then that
    element is returned. If both elements are NaNs then the first is
    returned. The latter distinction is important for complex NaNs, which
    are defined as at least one of the real or imaginary parts being a NaN.
    The net effect is that NaNs are propagated.

    Parameters
    ----------
    x1, x2 : array_like
        The arrays holding the elements to be compared. They must have
        the same shape, or shapes that can be broadcast to a single shape.

    Returns
    -------
    y : ndarray or scalar
        The minimum of `x1` and `x2`, element-wise.  Returns scalar if
        both  `x1` and `x2` are scalars.

    See Also
    --------
    maximum :
        Element-wise maximum of two arrays, propagates NaNs.
    fmin :
        Element-wise minimum of two arrays, ignores NaNs.
    amin :
        The minimum value of an array along a given axis, propagates NaNs.
    nanmin :
        The minimum value of an array along a given axis, ignores NaNs.

    fmax, amax, nanmax

    Notes
    -----
    The minimum is equivalent to ``np.where(x1 <= x2, x1, x2)`` when
    neither x1 nor x2 are NaNs, but it is faster and does proper
    broadcasting.

    Examples
    --------
    >>> np.minimum([2, 3, 4], [1, 5, 2])
    array([1, 3, 2])

    >>> np.minimum(np.eye(2), [0.5, 2]) # broadcasting
    array([[ 0.5,  0. ],
           [ 0. ,  1. ]])

    >>> np.minimum([np.nan, 0, np.nan],[0, np.nan, np.nan])
    array([ NaN,  NaN,  NaN])
    >>> np.minimum(-np.Inf, 1)
    -inf

    """)

add_newdoc('numpy.core.umath', 'fmax',
    """
    Element-wise maximum of array elements.

    Compare two arrays and returns a new array containing the element-wise
    maxima. If one of the elements being compared is a NaN, then the
    non-nan element is returned. If both elements are NaNs then the first
    is returned.  The latter distinction is important for complex NaNs,
    which are defined as at least one of the real or imaginary parts being
    a NaN. The net effect is that NaNs are ignored when possible.

    Parameters
    ----------
    x1, x2 : array_like
        The arrays holding the elements to be compared. They must have
        the same shape.

    Returns
    -------
    y : ndarray or scalar
        The maximum of `x1` and `x2`, element-wise.  Returns scalar if
        both  `x1` and `x2` are scalars.

    See Also
    --------
    fmin :
        Element-wise minimum of two arrays, ignores NaNs.
    maximum :
        Element-wise maximum of two arrays, propagates NaNs.
    amax :
        The maximum value of an array along a given axis, propagates NaNs.
    nanmax :
        The maximum value of an array along a given axis, ignores NaNs.

    minimum, amin, nanmin

    Notes
    -----
    .. versionadded:: 1.3.0

    The fmax is equivalent to ``np.where(x1 >= x2, x1, x2)`` when neither
    x1 nor x2 are NaNs, but it is faster and does proper broadcasting.

    Examples
    --------
    >>> np.fmax([2, 3, 4], [1, 5, 2])
    array([ 2.,  5.,  4.])

    >>> np.fmax(np.eye(2), [0.5, 2])
    array([[ 1. ,  2. ],
           [ 0.5,  2. ]])

    >>> np.fmax([np.nan, 0, np.nan],[0, np.nan, np.nan])
    array([  0.,   0.,  NaN])

    """)

add_newdoc('numpy.core.umath', 'fmin',
    """
    Element-wise minimum of array elements.

    Compare two arrays and returns a new array containing the element-wise
    minima. If one of the elements being compared is a NaN, then the
    non-nan element is returned. If both elements are NaNs then the first
    is returned.  The latter distinction is important for complex NaNs,
    which are defined as at least one of the real or imaginary parts being
    a NaN. The net effect is that NaNs are ignored when possible.

    Parameters
    ----------
    x1, x2 : array_like
        The arrays holding the elements to be compared. They must have
        the same shape.

    Returns
    -------
    y : ndarray or scalar
        The minimum of `x1` and `x2`, element-wise.  Returns scalar if
        both  `x1` and `x2` are scalars.

    See Also
    --------
    fmax :
        Element-wise maximum of two arrays, ignores NaNs.
    minimum :
        Element-wise minimum of two arrays, propagates NaNs.
    amin :
        The minimum value of an array along a given axis, propagates NaNs.
    nanmin :
        The minimum value of an array along a given axis, ignores NaNs.

    maximum, amax, nanmax

    Notes
    -----
    .. versionadded:: 1.3.0

    The fmin is equivalent to ``np.where(x1 <= x2, x1, x2)`` when neither
    x1 nor x2 are NaNs, but it is faster and does proper broadcasting.

    Examples
    --------
    >>> np.fmin([2, 3, 4], [1, 5, 2])
    array([1, 3, 2])

    >>> np.fmin(np.eye(2), [0.5, 2])
    array([[ 0.5,  0. ],
           [ 0. ,  1. ]])

    >>> np.fmin([np.nan, 0, np.nan],[0, np.nan, np.nan])
    array([  0.,   0.,  NaN])

    """)

add_newdoc('numpy.core.umath', 'modf',
    """
    Return the fractional and integral parts of an array, element-wise.

    The fractional and integral parts are negative if the given number is
    negative.

    Parameters
    ----------
    x : array_like
        Input array.

    Returns
    -------
    y1 : ndarray
        Fractional part of `x`.
    y2 : ndarray
        Integral part of `x`.

    Notes
    -----
    For integer input the return values are floats.

    Examples
    --------
    >>> np.modf([0, 3.5])
    (array([ 0. ,  0.5]), array([ 0.,  3.]))
    >>> np.modf(-0.5)
    (-0.5, -0)

    """)

add_newdoc('numpy.core.umath', 'multiply',
    """
    Multiply arguments element-wise.

    Parameters
    ----------
    x1, x2 : array_like
        Input arrays to be multiplied.

    Returns
    -------
    y : ndarray
        The product of `x1` and `x2`, element-wise. Returns a scalar if
        both  `x1` and `x2` are scalars.

    Notes
    -----
    Equivalent to `x1` * `x2` in terms of array broadcasting.

    Examples
    --------
    >>> np.multiply(2.0, 4.0)
    8.0

    >>> x1 = np.arange(9.0).reshape((3, 3))
    >>> x2 = np.arange(3.0)
    >>> np.multiply(x1, x2)
    array([[  0.,   1.,   4.],
           [  0.,   4.,  10.],
           [  0.,   7.,  16.]])

    """)

add_newdoc('numpy.core.umath', 'negative',
    """
    Numerical negative, element-wise.

    Parameters
    ----------
    x : array_like or scalar
        Input array.

    Returns
    -------
    y : ndarray or scalar
        Returned array or scalar: `y = -x`.

    Examples
    --------
    >>> np.negative([1.,-1.])
    array([-1.,  1.])

    """)

add_newdoc('numpy.core.umath', 'not_equal',
    """
    Return (x1 != x2) element-wise.

    Parameters
    ----------
    x1, x2 : array_like
      Input arrays.
    out : ndarray, optional
      A placeholder the same shape as `x1` to store the result.
      See `doc.ufuncs` (Section "Output arguments") for more details.

    Returns
    -------
    not_equal : ndarray bool, scalar bool
      For each element in `x1, x2`, return True if `x1` is not equal
      to `x2` and False otherwise.


    See Also
    --------
    equal, greater, greater_equal, less, less_equal

    Examples
    --------
    >>> np.not_equal([1.,2.], [1., 3.])
    array([False,  True], dtype=bool)
    >>> np.not_equal([1, 2], [[1, 3],[1, 4]])
    array([[False,  True],
           [False,  True]], dtype=bool)

    """)

add_newdoc('numpy.core.umath', '_ones_like',
    """
    This function used to be the numpy.ones_like, but now a specific
    function for that has been written for consistency with the other
    *_like functions. It is only used internally in a limited fashion now.

    See Also
    --------
    ones_like

    """)

add_newdoc('numpy.core.umath', 'power',
    """
    First array elements raised to powers from second array, element-wise.

    Raise each base in `x1` to the positionally-corresponding power in
    `x2`.  `x1` and `x2` must be broadcastable to the same shape. Note that an
    integer type raised to a negative integer power will raise a ValueError.

    Parameters
    ----------
    x1 : array_like
        The bases.
    x2 : array_like
        The exponents.

    Returns
    -------
    y : ndarray
        The bases in `x1` raised to the exponents in `x2`.

    See Also
    --------
    float_power : power function that promotes integers to float

    Examples
    --------
    Cube each element in a list.

    >>> x1 = range(6)
    >>> x1
    [0, 1, 2, 3, 4, 5]
    >>> np.power(x1, 3)
    array([  0,   1,   8,  27,  64, 125])

    Raise the bases to different exponents.

    >>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
    >>> np.power(x1, x2)
    array([  0.,   1.,   8.,  27.,  16.,   5.])

    The effect of broadcasting.

    >>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
    >>> x2
    array([[1, 2, 3, 3, 2, 1],
           [1, 2, 3, 3, 2, 1]])
    >>> np.power(x1, x2)
    array([[ 0,  1,  8, 27, 16,  5],
           [ 0,  1,  8, 27, 16,  5]])

    """)

add_newdoc('numpy.core.umath', 'float_power',
    """
    First array elements raised to powers from second array, element-wise.

    Raise each base in `x1` to the positionally-corresponding power in `x2`.
    `x1` and `x2` must be broadcastable to the same shape. This differs from
    the power function in that integers, float16, and float32  are promoted to
    floats with a minimum precision of float64 so that the result is always
    inexact.  The intent is that the function will return a usable result for
    negative powers and seldom overflow for positive powers.

    .. versionadded:: 1.12.0

    Parameters
    ----------
    x1 : array_like
        The bases.
    x2 : array_like
        The exponents.

    Returns
    -------
    y : ndarray
        The bases in `x1` raised to the exponents in `x2`.

    See Also
    --------
    power : power function that preserves type

    Examples
    --------
    Cube each element in a list.

    >>> x1 = range(6)
    >>> x1
    [0, 1, 2, 3, 4, 5]
    >>> np.float_power(x1, 3)
    array([   0.,    1.,    8.,   27.,   64.,  125.])

    Raise the bases to different exponents.

    >>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
    >>> np.float_power(x1, x2)
    array([  0.,   1.,   8.,  27.,  16.,   5.])

    The effect of broadcasting.

    >>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
    >>> x2
    array([[1, 2, 3, 3, 2, 1],
           [1, 2, 3, 3, 2, 1]])
    >>> np.float_power(x1, x2)
    array([[  0.,   1.,   8.,  27.,  16.,   5.],
           [  0.,   1.,   8.,  27.,  16.,   5.]])

    """)

add_newdoc('numpy.core.umath', 'radians',
    """
    Convert angles from degrees to radians.

    Parameters
    ----------
    x : array_like
        Input array in degrees.
    out : ndarray, optional
        Output array of same shape as `x`.

    Returns
    -------
    y : ndarray
        The corresponding radian values.

    See Also
    --------
    deg2rad : equivalent function

    Examples
    --------
    Convert a degree array to radians

    >>> deg = np.arange(12.) * 30.
    >>> np.radians(deg)
    array([ 0.        ,  0.52359878,  1.04719755,  1.57079633,  2.0943951 ,
            2.61799388,  3.14159265,  3.66519143,  4.1887902 ,  4.71238898,
            5.23598776,  5.75958653])

    >>> out = np.zeros((deg.shape))
    >>> ret = np.radians(deg, out)
    >>> ret is out
    True

    """)

add_newdoc('numpy.core.umath', 'deg2rad',
    """
    Convert angles from degrees to radians.

    Parameters
    ----------
    x : array_like
        Angles in degrees.

    Returns
    -------
    y : ndarray
        The corresponding angle in radians.

    See Also
    --------
    rad2deg : Convert angles from radians to degrees.
    unwrap : Remove large jumps in angle by wrapping.

    Notes
    -----
    .. versionadded:: 1.3.0

    ``deg2rad(x)`` is ``x * pi / 180``.

    Examples
    --------
    >>> np.deg2rad(180)
    3.1415926535897931

    """)

add_newdoc('numpy.core.umath', 'reciprocal',
    """
    Return the reciprocal of the argument, element-wise.

    Calculates ``1/x``.

    Parameters
    ----------
    x : array_like
        Input array.

    Returns
    -------
    y : ndarray
        Return array.

    Notes
    -----
    .. note::
        This function is not designed to work with integers.

    For integer arguments with absolute value larger than 1 the result is
    always zero because of the way Python handles integer division.  For
    integer zero the result is an overflow.

    Examples
    --------
    >>> np.reciprocal(2.)
    0.5
    >>> np.reciprocal([1, 2., 3.33])
    array([ 1.       ,  0.5      ,  0.3003003])

    """)

add_newdoc('numpy.core.umath', 'remainder',
    """
    Return element-wise remainder of division.

    Computes the remainder complementary to the `floor_divide` function.  It is
    equivalent to the Python modulus operator``x1 % x2`` and has the same sign
    as the divisor `x2`. It should not be confused with the Matlab(TM) ``rem``
    function.

    Parameters
    ----------
    x1 : array_like
        Dividend array.
    x2 : array_like
        Divisor array.
    out : ndarray, optional
        Array into which the output is placed. Its type is preserved and it
        must be of the right shape to hold the output. See doc.ufuncs.

    Returns
    -------
    y : ndarray
        The element-wise remainder of the quotient ``floor_divide(x1, x2)``.
        Returns a scalar if both  `x1` and `x2` are scalars.

    See Also
    --------
    floor_divide : Equivalent of Python ``//`` operator.
    fmod : Equivalent of the Matlab(TM) ``rem`` function.
    divide, floor

    Notes
    -----
    Returns 0 when `x2` is 0 and both `x1` and `x2` are (arrays of)
    integers.

    Examples
    --------
    >>> np.remainder([4, 7], [2, 3])
    array([0, 1])
    >>> np.remainder(np.arange(7), 5)
    array([0, 1, 2, 3, 4, 0, 1])

    """)

add_newdoc('numpy.core.umath', 'right_shift',
    """
    Shift the bits of an integer to the right.

    Bits are shifted to the right `x2`.  Because the internal
    representation of numbers is in binary format, this operation is
    equivalent to dividing `x1` by ``2**x2``.

    Parameters
    ----------
    x1 : array_like, int
        Input values.
    x2 : array_like, int
        Number of bits to remove at the right of `x1`.

    Returns
    -------
    out : ndarray, int
        Return `x1` with bits shifted `x2` times to the right.

    See Also
    --------
    left_shift : Shift the bits of an integer to the left.
    binary_repr : Return the binary representation of the input number
        as a string.

    Examples
    --------
    >>> np.binary_repr(10)
    '1010'
    >>> np.right_shift(10, 1)
    5
    >>> np.binary_repr(5)
    '101'

    >>> np.right_shift(10, [1,2,3])
    array([5, 2, 1])

    """)

add_newdoc('numpy.core.umath', 'rint',
    """
    Round elements of the array to the nearest integer.

    Parameters
    ----------
    x : array_like
        Input array.

    Returns
    -------
    out : ndarray or scalar
        Output array is same shape and type as `x`.

    See Also
    --------
    ceil, floor, trunc

    Examples
    --------
    >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
    >>> np.rint(a)
    array([-2., -2., -0.,  0.,  2.,  2.,  2.])

    """)

add_newdoc('numpy.core.umath', 'sign',
    """
    Returns an element-wise indication of the sign of a number.

    The `sign` function returns ``-1 if x < 0, 0 if x==0, 1 if x > 0``.  nan
    is returned for nan inputs.

    For complex inputs, the `sign` function returns
    ``sign(x.real) + 0j if x.real != 0 else sign(x.imag) + 0j``.

    complex(nan, 0) is returned for complex nan inputs.

    Parameters
    ----------
    x : array_like
      Input values.

    Returns
    -------
    y : ndarray
      The sign of `x`.

    Notes
    -----
    There is more than one definition of sign in common use for complex
    numbers.  The definition used here is equivalent to :math:`x/\\sqrt{x*x}`
    which is different from a common alternative, :math:`x/|x|`.

    Examples
    --------
    >>> np.sign([-5., 4.5])
    array([-1.,  1.])
    >>> np.sign(0)
    0
    >>> np.sign(5-2j)
    (1+0j)

    """)

add_newdoc('numpy.core.umath', 'signbit',
    """
    Returns element-wise True where signbit is set (less than zero).

    Parameters
    ----------
    x : array_like
        The input value(s).
    out : ndarray, optional
        Array into which the output is placed. Its type is preserved and it
        must be of the right shape to hold the output.  See `doc.ufuncs`.

    Returns
    -------
    result : ndarray of bool
        Output array, or reference to `out` if that was supplied.

    Examples
    --------
    >>> np.signbit(-1.2)
    True
    >>> np.signbit(np.array([1, -2.3, 2.1]))
    array([False,  True, False], dtype=bool)

    """)

add_newdoc('numpy.core.umath', 'copysign',
    """
    Change the sign of x1 to that of x2, element-wise.

    If both arguments are arrays or sequences, they have to be of the same
    length. If `x2` is a scalar, its sign will be copied to all elements of
    `x1`.

    Parameters
    ----------
    x1 : array_like
        Values to change the sign of.
    x2 : array_like
        The sign of `x2` is copied to `x1`.
    out : ndarray, optional
        Array into which the output is placed. Its type is preserved and it
        must be of the right shape to hold the output. See doc.ufuncs.

    Returns
    -------
    out : array_like
        The values of `x1` with the sign of `x2`.

    Examples
    --------
    >>> np.copysign(1.3, -1)
    -1.3
    >>> 1/np.copysign(0, 1)
    inf
    >>> 1/np.copysign(0, -1)
    -inf

    >>> np.copysign([-1, 0, 1], -1.1)
    array([-1., -0., -1.])
    >>> np.copysign([-1, 0, 1], np.arange(3)-1)
    array([-1.,  0.,  1.])

    """)

add_newdoc('numpy.core.umath', 'nextafter',
    """
    Return the next floating-point value after x1 towards x2, element-wise.

    Parameters
    ----------
    x1 : array_like
        Values to find the next representable value of.
    x2 : array_like
        The direction where to look for the next representable value of `x1`.
    out : ndarray, optional
        Array into which the output is placed. Its type is preserved and it
        must be of the right shape to hold the output. See `doc.ufuncs`.

    Returns
    -------
    out : array_like
        The next representable values of `x1` in the direction of `x2`.

    Examples
    --------
    >>> eps = np.finfo(np.float64).eps
    >>> np.nextafter(1, 2) == eps + 1
    True
    >>> np.nextafter([1, 2], [2, 1]) == [eps + 1, 2 - eps]
    array([ True,  True], dtype=bool)

    """)

add_newdoc('numpy.core.umath', 'spacing',
    """
    Return the distance between x and the nearest adjacent number.

    Parameters
    ----------
    x1 : array_like
        Values to find the spacing of.

    Returns
    -------
    out : array_like
        The spacing of values of `x1`.

    Notes
    -----
    It can be considered as a generalization of EPS:
    ``spacing(np.float64(1)) == np.finfo(np.float64).eps``, and there
    should not be any representable number between ``x + spacing(x)`` and
    x for any finite x.

    Spacing of +- inf and NaN is NaN.

    Examples
    --------
    >>> np.spacing(1) == np.finfo(np.float64).eps
    True

    """)

add_newdoc('numpy.core.umath', 'sin',
    """
    Trigonometric sine, element-wise.

    Parameters
    ----------
    x : array_like
        Angle, in radians (:math:`2 \\pi` rad equals 360 degrees).

    Returns
    -------
    y : array_like
        The sine of each element of x.

    See Also
    --------
    arcsin, sinh, cos

    Notes
    -----
    The sine is one of the fundamental functions of trigonometry (the
    mathematical study of triangles).  Consider a circle of radius 1
    centered on the origin.  A ray comes in from the :math:`+x` axis, makes
    an angle at the origin (measured counter-clockwise from that axis), and
    departs from the origin.  The :math:`y` coordinate of the outgoing
    ray's intersection with the unit circle is the sine of that angle.  It
    ranges from -1 for :math:`x=3\\pi / 2` to +1 for :math:`\\pi / 2.`  The
    function has zeroes where the angle is a multiple of :math:`\\pi`.
    Sines of angles between :math:`\\pi` and :math:`2\\pi` are negative.
    The numerous properties of the sine and related functions are included
    in any standard trigonometry text.

    Examples
    --------
    Print sine of one angle:

    >>> np.sin(np.pi/2.)
    1.0

    Print sines of an array of angles given in degrees:

    >>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180. )
    array([ 0.        ,  0.5       ,  0.70710678,  0.8660254 ,  1.        ])

    Plot the sine function:

    >>> import matplotlib.pylab as plt
    >>> x = np.linspace(-np.pi, np.pi, 201)
    >>> plt.plot(x, np.sin(x))
    >>> plt.xlabel('Angle [rad]')
    >>> plt.ylabel('sin(x)')
    >>> plt.axis('tight')
    >>> plt.show()

    """)

add_newdoc('numpy.core.umath', 'sinh',
    """
    Hyperbolic sine, element-wise.

    Equivalent to ``1/2 * (np.exp(x) - np.exp(-x))`` or
    ``-1j * np.sin(1j*x)``.

    Parameters
    ----------
    x : array_like
        Input array.
    out : ndarray, optional
        Output array of same shape as `x`.

    Returns
    -------
    y : ndarray
        The corresponding hyperbolic sine values.

    Raises
    ------
    ValueError: invalid return array shape
        if `out` is provided and `out.shape` != `x.shape` (See Examples)

    Notes
    -----
    If `out` is provided, the function writes the result into it,
    and returns a reference to `out`.  (See Examples)

    References
    ----------
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
    New York, NY: Dover, 1972, pg. 83.

    Examples
    --------
    >>> np.sinh(0)
    0.0
    >>> np.sinh(np.pi*1j/2)
    1j
    >>> np.sinh(np.pi*1j) # (exact value is 0)
    1.2246063538223773e-016j
    >>> # Discrepancy due to vagaries of floating point arithmetic.

    >>> # Example of providing the optional output parameter
    >>> out2 = np.sinh([0.1], out1)
    >>> out2 is out1
    True

    >>> # Example of ValueError due to provision of shape mis-matched `out`
    >>> np.sinh(np.zeros((3,3)),np.zeros((2,2)))
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    ValueError: invalid return array shape

    """)

add_newdoc('numpy.core.umath', 'sqrt',
    """
    Return the positive square-root of an array, element-wise.

    Parameters
    ----------
    x : array_like
        The values whose square-roots are required.
    out : ndarray, optional
        Alternate array object in which to put the result; if provided, it
        must have the same shape as `x`

    Returns
    -------
    y : ndarray
        An array of the same shape as `x`, containing the positive
        square-root of each element in `x`.  If any element in `x` is
        complex, a complex array is returned (and the square-roots of
        negative reals are calculated).  If all of the elements in `x`
        are real, so is `y`, with negative elements returning ``nan``.
        If `out` was provided, `y` is a reference to it.

    See Also
    --------
    lib.scimath.sqrt
        A version which returns complex numbers when given negative reals.

    Notes
    -----
    *sqrt* has--consistent with common convention--as its branch cut the
    real "interval" [`-inf`, 0), and is continuous from above on it.
    A branch cut is a curve in the complex plane across which a given
    complex function fails to be continuous.

    Examples
    --------
    >>> np.sqrt([1,4,9])
    array([ 1.,  2.,  3.])

    >>> np.sqrt([4, -1, -3+4J])
    array([ 2.+0.j,  0.+1.j,  1.+2.j])

    >>> np.sqrt([4, -1, numpy.inf])
    array([  2.,  NaN,  Inf])

    """)

add_newdoc('numpy.core.umath', 'cbrt',
    """
    Return the cube-root of an array, element-wise.

    .. versionadded:: 1.10.0

    Parameters
    ----------
    x : array_like
        The values whose cube-roots are required.
    out : ndarray, optional
        Alternate array object in which to put the result; if provided, it
        must have the same shape as `x`

    Returns
    -------
    y : ndarray
        An array of the same shape as `x`, containing the cube
        cube-root of each element in `x`.
        If `out` was provided, `y` is a reference to it.


    Examples
    --------
    >>> np.cbrt([1,8,27])
    array([ 1.,  2.,  3.])

    """)

add_newdoc('numpy.core.umath', 'square',
    """
    Return the element-wise square of the input.

    Parameters
    ----------
    x : array_like
        Input data.

    Returns
    -------
    out : ndarray
        Element-wise `x*x`, of the same shape and dtype as `x`.
        Returns scalar if `x` is a scalar.

    See Also
    --------
    numpy.linalg.matrix_power
    sqrt
    power

    Examples
    --------
    >>> np.square([-1j, 1])
    array([-1.-0.j,  1.+0.j])

    """)

add_newdoc('numpy.core.umath', 'subtract',
    """
    Subtract arguments, element-wise.

    Parameters
    ----------
    x1, x2 : array_like
        The arrays to be subtracted from each other.

    Returns
    -------
    y : ndarray
        The difference of `x1` and `x2`, element-wise.  Returns a scalar if
        both  `x1` and `x2` are scalars.

    Notes
    -----
    Equivalent to ``x1 - x2`` in terms of array broadcasting.

    Examples
    --------
    >>> np.subtract(1.0, 4.0)
    -3.0

    >>> x1 = np.arange(9.0).reshape((3, 3))
    >>> x2 = np.arange(3.0)
    >>> np.subtract(x1, x2)
    array([[ 0.,  0.,  0.],
           [ 3.,  3.,  3.],
           [ 6.,  6.,  6.]])

    """)

add_newdoc('numpy.core.umath', 'tan',
    """
    Compute tangent element-wise.

    Equivalent to ``np.sin(x)/np.cos(x)`` element-wise.

    Parameters
    ----------
    x : array_like
      Input array.
    out : ndarray, optional
        Output array of same shape as `x`.

    Returns
    -------
    y : ndarray
      The corresponding tangent values.

    Raises
    ------
    ValueError: invalid return array shape
        if `out` is provided and `out.shape` != `x.shape` (See Examples)

    Notes
    -----
    If `out` is provided, the function writes the result into it,
    and returns a reference to `out`.  (See Examples)

    References
    ----------
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
    New York, NY: Dover, 1972.

    Examples
    --------
    >>> from math import pi
    >>> np.tan(np.array([-pi,pi/2,pi]))
    array([  1.22460635e-16,   1.63317787e+16,  -1.22460635e-16])
    >>>
    >>> # Example of providing the optional output parameter illustrating
    >>> # that what is returned is a reference to said parameter
    >>> out2 = np.cos([0.1], out1)
    >>> out2 is out1
    True
    >>>
    >>> # Example of ValueError due to provision of shape mis-matched `out`
    >>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    ValueError: invalid return array shape

    """)

add_newdoc('numpy.core.umath', 'tanh',
    """
    Compute hyperbolic tangent element-wise.

    Equivalent to ``np.sinh(x)/np.cosh(x)`` or ``-1j * np.tan(1j*x)``.

    Parameters
    ----------
    x : array_like
        Input array.
    out : ndarray, optional
        Output array of same shape as `x`.

    Returns
    -------
    y : ndarray
        The corresponding hyperbolic tangent values.

    Raises
    ------
    ValueError: invalid return array shape
        if `out` is provided and `out.shape` != `x.shape` (See Examples)

    Notes
    -----
    If `out` is provided, the function writes the result into it,
    and returns a reference to `out`.  (See Examples)

    References
    ----------
    .. [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
           New York, NY: Dover, 1972, pg. 83.
           http://www.math.sfu.ca/~cbm/aands/

    .. [2] Wikipedia, "Hyperbolic function",
           http://en.wikipedia.org/wiki/Hyperbolic_function

    Examples
    --------
    >>> np.tanh((0, np.pi*1j, np.pi*1j/2))
    array([ 0. +0.00000000e+00j,  0. -1.22460635e-16j,  0. +1.63317787e+16j])

    >>> # Example of providing the optional output parameter illustrating
    >>> # that what is returned is a reference to said parameter
    >>> out2 = np.tanh([0.1], out1)
    >>> out2 is out1
    True

    >>> # Example of ValueError due to provision of shape mis-matched `out`
    >>> np.tanh(np.zeros((3,3)),np.zeros((2,2)))
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    ValueError: invalid return array shape

    """)

add_newdoc('numpy.core.umath', 'true_divide',
    """
    Returns a true division of the inputs, element-wise.

    Instead of the Python traditional 'floor division', this returns a true
    division.  True division adjusts the output type to present the best
    answer, regardless of input types.

    Parameters
    ----------
    x1 : array_like
        Dividend array.
    x2 : array_like
        Divisor array.

    Returns
    -------
    out : ndarray
        Result is scalar if both inputs are scalar, ndarray otherwise.

    Notes
    -----
    The floor division operator ``//`` was added in Python 2.2 making
    ``//`` and ``/`` equivalent operators.  The default floor division
    operation of ``/`` can be replaced by true division with ``from
    __future__ import division``.

    In Python 3.0, ``//`` is the floor division operator and ``/`` the
    true division operator.  The ``true_divide(x1, x2)`` function is
    equivalent to true division in Python.

    Examples
    --------
    >>> x = np.arange(5)
    >>> np.true_divide(x, 4)
    array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ])

    >>> x/4
    array([0, 0, 0, 0, 1])
    >>> x//4
    array([0, 0, 0, 0, 1])

    >>> from __future__ import division
    >>> x/4
    array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ])
    >>> x//4
    array([0, 0, 0, 0, 1])

    """)

add_newdoc('numpy.core.umath', 'frexp',
    """
    Decompose the elements of x into mantissa and twos exponent.

    Returns (`mantissa`, `exponent`), where `x = mantissa * 2**exponent``.
    The mantissa is lies in the open interval(-1, 1), while the twos
    exponent is a signed integer.

    Parameters
    ----------
    x : array_like
        Array of numbers to be decomposed.
    out1 : ndarray, optional
        Output array for the mantissa. Must have the same shape as `x`.
    out2 : ndarray, optional
        Output array for the exponent. Must have the same shape as `x`.

    Returns
    -------
    (mantissa, exponent) : tuple of ndarrays, (float, int)
        `mantissa` is a float array with values between -1 and 1.
        `exponent` is an int array which represents the exponent of 2.

    See Also
    --------
    ldexp : Compute ``y = x1 * 2**x2``, the inverse of `frexp`.

    Notes
    -----
    Complex dtypes are not supported, they will raise a TypeError.

    Examples
    --------
    >>> x = np.arange(9)
    >>> y1, y2 = np.frexp(x)
    >>> y1
    array([ 0.   ,  0.5  ,  0.5  ,  0.75 ,  0.5  ,  0.625,  0.75 ,  0.875,
            0.5  ])
    >>> y2
    array([0, 1, 2, 2, 3, 3, 3, 3, 4])
    >>> y1 * 2**y2
    array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.])

    """)

add_newdoc('numpy.core.umath', 'ldexp',
    """
    Returns x1 * 2**x2, element-wise.

    The mantissas `x1` and twos exponents `x2` are used to construct
    floating point numbers ``x1 * 2**x2``.

    Parameters
    ----------
    x1 : array_like
        Array of multipliers.
    x2 : array_like, int
        Array of twos exponents.
    out : ndarray, optional
        Output array for the result.

    Returns
    -------
    y : ndarray or scalar
        The result of ``x1 * 2**x2``.

    See Also
    --------
    frexp : Return (y1, y2) from ``x = y1 * 2**y2``, inverse to `ldexp`.

    Notes
    -----
    Complex dtypes are not supported, they will raise a TypeError.

    `ldexp` is useful as the inverse of `frexp`, if used by itself it is
    more clear to simply use the expression ``x1 * 2**x2``.

    Examples
    --------
    >>> np.ldexp(5, np.arange(4))
    array([  5.,  10.,  20.,  40.], dtype=float32)

    >>> x = np.arange(6)
    >>> np.ldexp(*np.frexp(x))
    array([ 0.,  1.,  2.,  3.,  4.,  5.])

    """)