1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
|
"""
Docstrings for generated ufuncs
The syntax is designed to look like the function add_newdoc is being
called from numpy.lib, but in this file add_newdoc puts the docstrings
in a dictionary. This dictionary is used in
numpy/core/code_generators/generate_umath.py to generate the docstrings
for the ufuncs in numpy.core at the C level when the ufuncs are created
at compile time.
"""
from __future__ import division, absolute_import, print_function
docdict = {}
def get(name):
return docdict.get(name)
def add_newdoc(place, name, doc):
docdict['.'.join((place, name))] = doc
add_newdoc('numpy.core.umath', 'absolute',
"""
Calculate the absolute value element-wise.
Parameters
----------
x : array_like
Input array.
Returns
-------
absolute : ndarray
An ndarray containing the absolute value of
each element in `x`. For complex input, ``a + ib``, the
absolute value is :math:`\\sqrt{ a^2 + b^2 }`.
Examples
--------
>>> x = np.array([-1.2, 1.2])
>>> np.absolute(x)
array([ 1.2, 1.2])
>>> np.absolute(1.2 + 1j)
1.5620499351813308
Plot the function over ``[-10, 10]``:
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(start=-10, stop=10, num=101)
>>> plt.plot(x, np.absolute(x))
>>> plt.show()
Plot the function over the complex plane:
>>> xx = x + 1j * x[:, np.newaxis]
>>> plt.imshow(np.abs(xx), extent=[-10, 10, -10, 10])
>>> plt.show()
""")
add_newdoc('numpy.core.umath', 'add',
"""
Add arguments element-wise.
Parameters
----------
x1, x2 : array_like
The arrays to be added. If ``x1.shape != x2.shape``, they must be
broadcastable to a common shape (which may be the shape of one or
the other).
Returns
-------
add : ndarray or scalar
The sum of `x1` and `x2`, element-wise. Returns a scalar if
both `x1` and `x2` are scalars.
Notes
-----
Equivalent to `x1` + `x2` in terms of array broadcasting.
Examples
--------
>>> np.add(1.0, 4.0)
5.0
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.add(x1, x2)
array([[ 0., 2., 4.],
[ 3., 5., 7.],
[ 6., 8., 10.]])
""")
add_newdoc('numpy.core.umath', 'arccos',
"""
Trigonometric inverse cosine, element-wise.
The inverse of `cos` so that, if ``y = cos(x)``, then ``x = arccos(y)``.
Parameters
----------
x : array_like
`x`-coordinate on the unit circle.
For real arguments, the domain is [-1, 1].
out : ndarray, optional
Array of the same shape as `a`, to store results in. See
`doc.ufuncs` (Section "Output arguments") for more details.
Returns
-------
angle : ndarray
The angle of the ray intersecting the unit circle at the given
`x`-coordinate in radians [0, pi]. If `x` is a scalar then a
scalar is returned, otherwise an array of the same shape as `x`
is returned.
See Also
--------
cos, arctan, arcsin, emath.arccos
Notes
-----
`arccos` is a multivalued function: for each `x` there are infinitely
many numbers `z` such that `cos(z) = x`. The convention is to return
the angle `z` whose real part lies in `[0, pi]`.
For real-valued input data types, `arccos` always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields ``nan`` and sets the `invalid` floating point error flag.
For complex-valued input, `arccos` is a complex analytic function that
has branch cuts `[-inf, -1]` and `[1, inf]` and is continuous from
above on the former and from below on the latter.
The inverse `cos` is also known as `acos` or cos^-1.
References
----------
M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
10th printing, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/
Examples
--------
We expect the arccos of 1 to be 0, and of -1 to be pi:
>>> np.arccos([1, -1])
array([ 0. , 3.14159265])
Plot arccos:
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-1, 1, num=100)
>>> plt.plot(x, np.arccos(x))
>>> plt.axis('tight')
>>> plt.show()
""")
add_newdoc('numpy.core.umath', 'arccosh',
"""
Inverse hyperbolic cosine, element-wise.
Parameters
----------
x : array_like
Input array.
out : ndarray, optional
Array of the same shape as `x`, to store results in.
See `doc.ufuncs` (Section "Output arguments") for details.
Returns
-------
arccosh : ndarray
Array of the same shape as `x`.
See Also
--------
cosh, arcsinh, sinh, arctanh, tanh
Notes
-----
`arccosh` is a multivalued function: for each `x` there are infinitely
many numbers `z` such that `cosh(z) = x`. The convention is to return the
`z` whose imaginary part lies in `[-pi, pi]` and the real part in
``[0, inf]``.
For real-valued input data types, `arccosh` always returns real output.
For each value that cannot be expressed as a real number or infinity, it
yields ``nan`` and sets the `invalid` floating point error flag.
For complex-valued input, `arccosh` is a complex analytical function that
has a branch cut `[-inf, 1]` and is continuous from above on it.
References
----------
.. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/
.. [2] Wikipedia, "Inverse hyperbolic function",
http://en.wikipedia.org/wiki/Arccosh
Examples
--------
>>> np.arccosh([np.e, 10.0])
array([ 1.65745445, 2.99322285])
>>> np.arccosh(1)
0.0
""")
add_newdoc('numpy.core.umath', 'arcsin',
"""
Inverse sine, element-wise.
Parameters
----------
x : array_like
`y`-coordinate on the unit circle.
out : ndarray, optional
Array of the same shape as `x`, in which to store the results.
See `doc.ufuncs` (Section "Output arguments") for more details.
Returns
-------
angle : ndarray
The inverse sine of each element in `x`, in radians and in the
closed interval ``[-pi/2, pi/2]``. If `x` is a scalar, a scalar
is returned, otherwise an array.
See Also
--------
sin, cos, arccos, tan, arctan, arctan2, emath.arcsin
Notes
-----
`arcsin` is a multivalued function: for each `x` there are infinitely
many numbers `z` such that :math:`sin(z) = x`. The convention is to
return the angle `z` whose real part lies in [-pi/2, pi/2].
For real-valued input data types, *arcsin* always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields ``nan`` and sets the `invalid` floating point error flag.
For complex-valued input, `arcsin` is a complex analytic function that
has, by convention, the branch cuts [-inf, -1] and [1, inf] and is
continuous from above on the former and from below on the latter.
The inverse sine is also known as `asin` or sin^{-1}.
References
----------
Abramowitz, M. and Stegun, I. A., *Handbook of Mathematical Functions*,
10th printing, New York: Dover, 1964, pp. 79ff.
http://www.math.sfu.ca/~cbm/aands/
Examples
--------
>>> np.arcsin(1) # pi/2
1.5707963267948966
>>> np.arcsin(-1) # -pi/2
-1.5707963267948966
>>> np.arcsin(0)
0.0
""")
add_newdoc('numpy.core.umath', 'arcsinh',
"""
Inverse hyperbolic sine element-wise.
Parameters
----------
x : array_like
Input array.
out : ndarray, optional
Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See `doc.ufuncs`.
Returns
-------
out : ndarray
Array of of the same shape as `x`.
Notes
-----
`arcsinh` is a multivalued function: for each `x` there are infinitely
many numbers `z` such that `sinh(z) = x`. The convention is to return the
`z` whose imaginary part lies in `[-pi/2, pi/2]`.
For real-valued input data types, `arcsinh` always returns real output.
For each value that cannot be expressed as a real number or infinity, it
returns ``nan`` and sets the `invalid` floating point error flag.
For complex-valued input, `arccos` is a complex analytical function that
has branch cuts `[1j, infj]` and `[-1j, -infj]` and is continuous from
the right on the former and from the left on the latter.
The inverse hyperbolic sine is also known as `asinh` or ``sinh^-1``.
References
----------
.. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/
.. [2] Wikipedia, "Inverse hyperbolic function",
http://en.wikipedia.org/wiki/Arcsinh
Examples
--------
>>> np.arcsinh(np.array([np.e, 10.0]))
array([ 1.72538256, 2.99822295])
""")
add_newdoc('numpy.core.umath', 'arctan',
"""
Trigonometric inverse tangent, element-wise.
The inverse of tan, so that if ``y = tan(x)`` then ``x = arctan(y)``.
Parameters
----------
x : array_like
Input values. `arctan` is applied to each element of `x`.
Returns
-------
out : ndarray
Out has the same shape as `x`. Its real part is in
``[-pi/2, pi/2]`` (``arctan(+/-inf)`` returns ``+/-pi/2``).
It is a scalar if `x` is a scalar.
See Also
--------
arctan2 : The "four quadrant" arctan of the angle formed by (`x`, `y`)
and the positive `x`-axis.
angle : Argument of complex values.
Notes
-----
`arctan` is a multi-valued function: for each `x` there are infinitely
many numbers `z` such that tan(`z`) = `x`. The convention is to return
the angle `z` whose real part lies in [-pi/2, pi/2].
For real-valued input data types, `arctan` always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields ``nan`` and sets the `invalid` floating point error flag.
For complex-valued input, `arctan` is a complex analytic function that
has [`1j, infj`] and [`-1j, -infj`] as branch cuts, and is continuous
from the left on the former and from the right on the latter.
The inverse tangent is also known as `atan` or tan^{-1}.
References
----------
Abramowitz, M. and Stegun, I. A., *Handbook of Mathematical Functions*,
10th printing, New York: Dover, 1964, pp. 79.
http://www.math.sfu.ca/~cbm/aands/
Examples
--------
We expect the arctan of 0 to be 0, and of 1 to be pi/4:
>>> np.arctan([0, 1])
array([ 0. , 0.78539816])
>>> np.pi/4
0.78539816339744828
Plot arctan:
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-10, 10)
>>> plt.plot(x, np.arctan(x))
>>> plt.axis('tight')
>>> plt.show()
""")
add_newdoc('numpy.core.umath', 'arctan2',
"""
Element-wise arc tangent of ``x1/x2`` choosing the quadrant correctly.
The quadrant (i.e., branch) is chosen so that ``arctan2(x1, x2)`` is
the signed angle in radians between the ray ending at the origin and
passing through the point (1,0), and the ray ending at the origin and
passing through the point (`x2`, `x1`). (Note the role reversal: the
"`y`-coordinate" is the first function parameter, the "`x`-coordinate"
is the second.) By IEEE convention, this function is defined for
`x2` = +/-0 and for either or both of `x1` and `x2` = +/-inf (see
Notes for specific values).
This function is not defined for complex-valued arguments; for the
so-called argument of complex values, use `angle`.
Parameters
----------
x1 : array_like, real-valued
`y`-coordinates.
x2 : array_like, real-valued
`x`-coordinates. `x2` must be broadcastable to match the shape of
`x1` or vice versa.
Returns
-------
angle : ndarray
Array of angles in radians, in the range ``[-pi, pi]``.
See Also
--------
arctan, tan, angle
Notes
-----
*arctan2* is identical to the `atan2` function of the underlying
C library. The following special values are defined in the C
standard: [1]_
====== ====== ================
`x1` `x2` `arctan2(x1,x2)`
====== ====== ================
+/- 0 +0 +/- 0
+/- 0 -0 +/- pi
> 0 +/-inf +0 / +pi
< 0 +/-inf -0 / -pi
+/-inf +inf +/- (pi/4)
+/-inf -inf +/- (3*pi/4)
====== ====== ================
Note that +0 and -0 are distinct floating point numbers, as are +inf
and -inf.
References
----------
.. [1] ISO/IEC standard 9899:1999, "Programming language C."
Examples
--------
Consider four points in different quadrants:
>>> x = np.array([-1, +1, +1, -1])
>>> y = np.array([-1, -1, +1, +1])
>>> np.arctan2(y, x) * 180 / np.pi
array([-135., -45., 45., 135.])
Note the order of the parameters. `arctan2` is defined also when `x2` = 0
and at several other special points, obtaining values in
the range ``[-pi, pi]``:
>>> np.arctan2([1., -1.], [0., 0.])
array([ 1.57079633, -1.57079633])
>>> np.arctan2([0., 0., np.inf], [+0., -0., np.inf])
array([ 0. , 3.14159265, 0.78539816])
""")
add_newdoc('numpy.core.umath', '_arg',
"""
DO NOT USE, ONLY FOR TESTING
""")
add_newdoc('numpy.core.umath', 'arctanh',
"""
Inverse hyperbolic tangent element-wise.
Parameters
----------
x : array_like
Input array.
Returns
-------
out : ndarray
Array of the same shape as `x`.
See Also
--------
emath.arctanh
Notes
-----
`arctanh` is a multivalued function: for each `x` there are infinitely
many numbers `z` such that `tanh(z) = x`. The convention is to return
the `z` whose imaginary part lies in `[-pi/2, pi/2]`.
For real-valued input data types, `arctanh` always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields ``nan`` and sets the `invalid` floating point error flag.
For complex-valued input, `arctanh` is a complex analytical function
that has branch cuts `[-1, -inf]` and `[1, inf]` and is continuous from
above on the former and from below on the latter.
The inverse hyperbolic tangent is also known as `atanh` or ``tanh^-1``.
References
----------
.. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/
.. [2] Wikipedia, "Inverse hyperbolic function",
http://en.wikipedia.org/wiki/Arctanh
Examples
--------
>>> np.arctanh([0, -0.5])
array([ 0. , -0.54930614])
""")
add_newdoc('numpy.core.umath', 'bitwise_and',
"""
Compute the bit-wise AND of two arrays element-wise.
Computes the bit-wise AND of the underlying binary representation of
the integers in the input arrays. This ufunc implements the C/Python
operator ``&``.
Parameters
----------
x1, x2 : array_like
Only integer and boolean types are handled.
Returns
-------
out : array_like
Result.
See Also
--------
logical_and
bitwise_or
bitwise_xor
binary_repr :
Return the binary representation of the input number as a string.
Examples
--------
The number 13 is represented by ``00001101``. Likewise, 17 is
represented by ``00010001``. The bit-wise AND of 13 and 17 is
therefore ``000000001``, or 1:
>>> np.bitwise_and(13, 17)
1
>>> np.bitwise_and(14, 13)
12
>>> np.binary_repr(12)
'1100'
>>> np.bitwise_and([14,3], 13)
array([12, 1])
>>> np.bitwise_and([11,7], [4,25])
array([0, 1])
>>> np.bitwise_and(np.array([2,5,255]), np.array([3,14,16]))
array([ 2, 4, 16])
>>> np.bitwise_and([True, True], [False, True])
array([False, True], dtype=bool)
""")
add_newdoc('numpy.core.umath', 'bitwise_or',
"""
Compute the bit-wise OR of two arrays element-wise.
Computes the bit-wise OR of the underlying binary representation of
the integers in the input arrays. This ufunc implements the C/Python
operator ``|``.
Parameters
----------
x1, x2 : array_like
Only integer and boolean types are handled.
out : ndarray, optional
Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.
Returns
-------
out : array_like
Result.
See Also
--------
logical_or
bitwise_and
bitwise_xor
binary_repr :
Return the binary representation of the input number as a string.
Examples
--------
The number 13 has the binaray representation ``00001101``. Likewise,
16 is represented by ``00010000``. The bit-wise OR of 13 and 16 is
then ``000111011``, or 29:
>>> np.bitwise_or(13, 16)
29
>>> np.binary_repr(29)
'11101'
>>> np.bitwise_or(32, 2)
34
>>> np.bitwise_or([33, 4], 1)
array([33, 5])
>>> np.bitwise_or([33, 4], [1, 2])
array([33, 6])
>>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4]))
array([ 6, 5, 255])
>>> np.array([2, 5, 255]) | np.array([4, 4, 4])
array([ 6, 5, 255])
>>> np.bitwise_or(np.array([2, 5, 255, 2147483647L], dtype=np.int32),
... np.array([4, 4, 4, 2147483647L], dtype=np.int32))
array([ 6, 5, 255, 2147483647])
>>> np.bitwise_or([True, True], [False, True])
array([ True, True], dtype=bool)
""")
add_newdoc('numpy.core.umath', 'bitwise_xor',
"""
Compute the bit-wise XOR of two arrays element-wise.
Computes the bit-wise XOR of the underlying binary representation of
the integers in the input arrays. This ufunc implements the C/Python
operator ``^``.
Parameters
----------
x1, x2 : array_like
Only integer and boolean types are handled.
Returns
-------
out : array_like
Result.
See Also
--------
logical_xor
bitwise_and
bitwise_or
binary_repr :
Return the binary representation of the input number as a string.
Examples
--------
The number 13 is represented by ``00001101``. Likewise, 17 is
represented by ``00010001``. The bit-wise XOR of 13 and 17 is
therefore ``00011100``, or 28:
>>> np.bitwise_xor(13, 17)
28
>>> np.binary_repr(28)
'11100'
>>> np.bitwise_xor(31, 5)
26
>>> np.bitwise_xor([31,3], 5)
array([26, 6])
>>> np.bitwise_xor([31,3], [5,6])
array([26, 5])
>>> np.bitwise_xor([True, True], [False, True])
array([ True, False], dtype=bool)
""")
add_newdoc('numpy.core.umath', 'ceil',
"""
Return the ceiling of the input, element-wise.
The ceil of the scalar `x` is the smallest integer `i`, such that
`i >= x`. It is often denoted as :math:`\\lceil x \\rceil`.
Parameters
----------
x : array_like
Input data.
Returns
-------
y : ndarray or scalar
The ceiling of each element in `x`, with `float` dtype.
See Also
--------
floor, trunc, rint
Examples
--------
>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.ceil(a)
array([-1., -1., -0., 1., 2., 2., 2.])
""")
add_newdoc('numpy.core.umath', 'trunc',
"""
Return the truncated value of the input, element-wise.
The truncated value of the scalar `x` is the nearest integer `i` which
is closer to zero than `x` is. In short, the fractional part of the
signed number `x` is discarded.
Parameters
----------
x : array_like
Input data.
Returns
-------
y : ndarray or scalar
The truncated value of each element in `x`.
See Also
--------
ceil, floor, rint
Notes
-----
.. versionadded:: 1.3.0
Examples
--------
>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.trunc(a)
array([-1., -1., -0., 0., 1., 1., 2.])
""")
add_newdoc('numpy.core.umath', 'conjugate',
"""
Return the complex conjugate, element-wise.
The complex conjugate of a complex number is obtained by changing the
sign of its imaginary part.
Parameters
----------
x : array_like
Input value.
Returns
-------
y : ndarray
The complex conjugate of `x`, with same dtype as `y`.
Examples
--------
>>> np.conjugate(1+2j)
(1-2j)
>>> x = np.eye(2) + 1j * np.eye(2)
>>> np.conjugate(x)
array([[ 1.-1.j, 0.-0.j],
[ 0.-0.j, 1.-1.j]])
""")
add_newdoc('numpy.core.umath', 'cos',
"""
Cosine element-wise.
Parameters
----------
x : array_like
Input array in radians.
out : ndarray, optional
Output array of same shape as `x`.
Returns
-------
y : ndarray
The corresponding cosine values.
Raises
------
ValueError: invalid return array shape
if `out` is provided and `out.shape` != `x.shape` (See Examples)
Notes
-----
If `out` is provided, the function writes the result into it,
and returns a reference to `out`. (See Examples)
References
----------
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972.
Examples
--------
>>> np.cos(np.array([0, np.pi/2, np.pi]))
array([ 1.00000000e+00, 6.12303177e-17, -1.00000000e+00])
>>>
>>> # Example of providing the optional output parameter
>>> out2 = np.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: invalid return array shape
""")
add_newdoc('numpy.core.umath', 'cosh',
"""
Hyperbolic cosine, element-wise.
Equivalent to ``1/2 * (np.exp(x) + np.exp(-x))`` and ``np.cos(1j*x)``.
Parameters
----------
x : array_like
Input array.
Returns
-------
out : ndarray
Output array of same shape as `x`.
Examples
--------
>>> np.cosh(0)
1.0
The hyperbolic cosine describes the shape of a hanging cable:
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-4, 4, 1000)
>>> plt.plot(x, np.cosh(x))
>>> plt.show()
""")
add_newdoc('numpy.core.umath', 'degrees',
"""
Convert angles from radians to degrees.
Parameters
----------
x : array_like
Input array in radians.
out : ndarray, optional
Output array of same shape as x.
Returns
-------
y : ndarray of floats
The corresponding degree values; if `out` was supplied this is a
reference to it.
See Also
--------
rad2deg : equivalent function
Examples
--------
Convert a radian array to degrees
>>> rad = np.arange(12.)*np.pi/6
>>> np.degrees(rad)
array([ 0., 30., 60., 90., 120., 150., 180., 210., 240.,
270., 300., 330.])
>>> out = np.zeros((rad.shape))
>>> r = degrees(rad, out)
>>> np.all(r == out)
True
""")
add_newdoc('numpy.core.umath', 'rad2deg',
"""
Convert angles from radians to degrees.
Parameters
----------
x : array_like
Angle in radians.
out : ndarray, optional
Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.
Returns
-------
y : ndarray
The corresponding angle in degrees.
See Also
--------
deg2rad : Convert angles from degrees to radians.
unwrap : Remove large jumps in angle by wrapping.
Notes
-----
.. versionadded:: 1.3.0
rad2deg(x) is ``180 * x / pi``.
Examples
--------
>>> np.rad2deg(np.pi/2)
90.0
""")
add_newdoc('numpy.core.umath', 'divide',
"""
Divide arguments element-wise.
Parameters
----------
x1 : array_like
Dividend array.
x2 : array_like
Divisor array.
out : ndarray, optional
Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.
Returns
-------
y : ndarray or scalar
The quotient ``x1/x2``, element-wise. Returns a scalar if
both ``x1`` and ``x2`` are scalars.
See Also
--------
seterr : Set whether to raise or warn on overflow, underflow and
division by zero.
Notes
-----
Equivalent to ``x1`` / ``x2`` in terms of array-broadcasting.
Behavior on division by zero can be changed using ``seterr``.
In Python 2, when both ``x1`` and ``x2`` are of an integer type,
``divide`` will behave like ``floor_divide``. In Python 3, it behaves
like ``true_divide``.
Examples
--------
>>> np.divide(2.0, 4.0)
0.5
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.divide(x1, x2)
array([[ NaN, 1. , 1. ],
[ Inf, 4. , 2.5],
[ Inf, 7. , 4. ]])
Note the behavior with integer types (Python 2 only):
>>> np.divide(2, 4)
0
>>> np.divide(2, 4.)
0.5
Division by zero always yields zero in integer arithmetic (again,
Python 2 only), and does not raise an exception or a warning:
>>> np.divide(np.array([0, 1], dtype=int), np.array([0, 0], dtype=int))
array([0, 0])
Division by zero can, however, be caught using ``seterr``:
>>> old_err_state = np.seterr(divide='raise')
>>> np.divide(1, 0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
FloatingPointError: divide by zero encountered in divide
>>> ignored_states = np.seterr(**old_err_state)
>>> np.divide(1, 0)
0
""")
add_newdoc('numpy.core.umath', 'equal',
"""
Return (x1 == x2) element-wise.
Parameters
----------
x1, x2 : array_like
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
not_equal, greater_equal, less_equal, greater, less
Examples
--------
>>> np.equal([0, 1, 3], np.arange(3))
array([ True, True, False], dtype=bool)
What is compared are values, not types. So an int (1) and an array of
length one can evaluate as True:
>>> np.equal(1, np.ones(1))
array([ True], dtype=bool)
""")
add_newdoc('numpy.core.umath', 'exp',
"""
Calculate the exponential of all elements in the input array.
Parameters
----------
x : array_like
Input values.
Returns
-------
out : ndarray
Output array, element-wise exponential of `x`.
See Also
--------
expm1 : Calculate ``exp(x) - 1`` for all elements in the array.
exp2 : Calculate ``2**x`` for all elements in the array.
Notes
-----
The irrational number ``e`` is also known as Euler's number. It is
approximately 2.718281, and is the base of the natural logarithm,
``ln`` (this means that, if :math:`x = \\ln y = \\log_e y`,
then :math:`e^x = y`. For real input, ``exp(x)`` is always positive.
For complex arguments, ``x = a + ib``, we can write
:math:`e^x = e^a e^{ib}`. The first term, :math:`e^a`, is already
known (it is the real argument, described above). The second term,
:math:`e^{ib}`, is :math:`\\cos b + i \\sin b`, a function with
magnitude 1 and a periodic phase.
References
----------
.. [1] Wikipedia, "Exponential function",
http://en.wikipedia.org/wiki/Exponential_function
.. [2] M. Abramovitz and I. A. Stegun, "Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables," Dover, 1964, p. 69,
http://www.math.sfu.ca/~cbm/aands/page_69.htm
Examples
--------
Plot the magnitude and phase of ``exp(x)`` in the complex plane:
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-2*np.pi, 2*np.pi, 100)
>>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane
>>> out = np.exp(xx)
>>> plt.subplot(121)
>>> plt.imshow(np.abs(out),
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi])
>>> plt.title('Magnitude of exp(x)')
>>> plt.subplot(122)
>>> plt.imshow(np.angle(out),
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi])
>>> plt.title('Phase (angle) of exp(x)')
>>> plt.show()
""")
add_newdoc('numpy.core.umath', 'exp2',
"""
Calculate `2**p` for all `p` in the input array.
Parameters
----------
x : array_like
Input values.
out : ndarray, optional
Array to insert results into.
Returns
-------
out : ndarray
Element-wise 2 to the power `x`.
See Also
--------
power
Notes
-----
.. versionadded:: 1.3.0
Examples
--------
>>> np.exp2([2, 3])
array([ 4., 8.])
""")
add_newdoc('numpy.core.umath', 'expm1',
"""
Calculate ``exp(x) - 1`` for all elements in the array.
Parameters
----------
x : array_like
Input values.
Returns
-------
out : ndarray
Element-wise exponential minus one: ``out = exp(x) - 1``.
See Also
--------
log1p : ``log(1 + x)``, the inverse of expm1.
Notes
-----
This function provides greater precision than ``exp(x) - 1``
for small values of ``x``.
Examples
--------
The true value of ``exp(1e-10) - 1`` is ``1.00000000005e-10`` to
about 32 significant digits. This example shows the superiority of
expm1 in this case.
>>> np.expm1(1e-10)
1.00000000005e-10
>>> np.exp(1e-10) - 1
1.000000082740371e-10
""")
add_newdoc('numpy.core.umath', 'fabs',
"""
Compute the absolute values element-wise.
This function returns the absolute values (positive magnitude) of the
data in `x`. Complex values are not handled, use `absolute` to find the
absolute values of complex data.
Parameters
----------
x : array_like
The array of numbers for which the absolute values are required. If
`x` is a scalar, the result `y` will also be a scalar.
out : ndarray, optional
Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.
Returns
-------
y : ndarray or scalar
The absolute values of `x`, the returned values are always floats.
See Also
--------
absolute : Absolute values including `complex` types.
Examples
--------
>>> np.fabs(-1)
1.0
>>> np.fabs([-1.2, 1.2])
array([ 1.2, 1.2])
""")
add_newdoc('numpy.core.umath', 'floor',
"""
Return the floor of the input, element-wise.
The floor of the scalar `x` is the largest integer `i`, such that
`i <= x`. It is often denoted as :math:`\\lfloor x \\rfloor`.
Parameters
----------
x : array_like
Input data.
Returns
-------
y : ndarray or scalar
The floor of each element in `x`.
See Also
--------
ceil, trunc, rint
Notes
-----
Some spreadsheet programs calculate the "floor-towards-zero", in other
words ``floor(-2.5) == -2``. NumPy instead uses the definition of
`floor` where `floor(-2.5) == -3`.
Examples
--------
>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.floor(a)
array([-2., -2., -1., 0., 1., 1., 2.])
""")
add_newdoc('numpy.core.umath', 'floor_divide',
"""
Return the largest integer smaller or equal to the division of the inputs.
It is equivalent to the Python ``//`` operator and pairs with the
Python ``%`` (`remainder`), function so that ``b = a % b + b * (a // b)``
up to roundoff.
Parameters
----------
x1 : array_like
Numerator.
x2 : array_like
Denominator.
Returns
-------
y : ndarray
y = floor(`x1`/`x2`)
See Also
--------
remainder : Remainder complementary to floor_divide.
divide : Standard division.
floor : Round a number to the nearest integer toward minus infinity.
ceil : Round a number to the nearest integer toward infinity.
Examples
--------
>>> np.floor_divide(7,3)
2
>>> np.floor_divide([1., 2., 3., 4.], 2.5)
array([ 0., 0., 1., 1.])
""")
add_newdoc('numpy.core.umath', 'fmod',
"""
Return the element-wise remainder of division.
This is the NumPy implementation of the C library function fmod, the
remainder has the same sign as the dividend `x1`. It is equivalent to
the Matlab(TM) ``rem`` function and should not be confused with the
Python modulus operator ``x1 % x2``.
Parameters
----------
x1 : array_like
Dividend.
x2 : array_like
Divisor.
Returns
-------
y : array_like
The remainder of the division of `x1` by `x2`.
See Also
--------
remainder : Equivalent to the Python ``%`` operator.
divide
Notes
-----
The result of the modulo operation for negative dividend and divisors
is bound by conventions. For `fmod`, the sign of result is the sign of
the dividend, while for `remainder` the sign of the result is the sign
of the divisor. The `fmod` function is equivalent to the Matlab(TM)
``rem`` function.
Examples
--------
>>> np.fmod([-3, -2, -1, 1, 2, 3], 2)
array([-1, 0, -1, 1, 0, 1])
>>> np.remainder([-3, -2, -1, 1, 2, 3], 2)
array([1, 0, 1, 1, 0, 1])
>>> np.fmod([5, 3], [2, 2.])
array([ 1., 1.])
>>> a = np.arange(-3, 3).reshape(3, 2)
>>> a
array([[-3, -2],
[-1, 0],
[ 1, 2]])
>>> np.fmod(a, [2,2])
array([[-1, 0],
[-1, 0],
[ 1, 0]])
""")
add_newdoc('numpy.core.umath', 'greater',
"""
Return the truth value of (x1 > x2) element-wise.
Parameters
----------
x1, x2 : array_like
Input arrays. If ``x1.shape != x2.shape``, they must be
broadcastable to a common shape (which may be the shape of one or
the other).
Returns
-------
out : bool or ndarray of bool
Array of bools, or a single bool if `x1` and `x2` are scalars.
See Also
--------
greater_equal, less, less_equal, equal, not_equal
Examples
--------
>>> np.greater([4,2],[2,2])
array([ True, False], dtype=bool)
If the inputs are ndarrays, then np.greater is equivalent to '>'.
>>> a = np.array([4,2])
>>> b = np.array([2,2])
>>> a > b
array([ True, False], dtype=bool)
""")
add_newdoc('numpy.core.umath', 'greater_equal',
"""
Return the truth value of (x1 >= x2) element-wise.
Parameters
----------
x1, x2 : array_like
Input arrays. If ``x1.shape != x2.shape``, they must be
broadcastable to a common shape (which may be the shape of one or
the other).
Returns
-------
out : bool or ndarray of bool
Array of bools, or a single bool if `x1` and `x2` are scalars.
See Also
--------
greater, less, less_equal, equal, not_equal
Examples
--------
>>> np.greater_equal([4, 2, 1], [2, 2, 2])
array([ True, True, False], dtype=bool)
""")
add_newdoc('numpy.core.umath', 'hypot',
"""
Given the "legs" of a right triangle, return its hypotenuse.
Equivalent to ``sqrt(x1**2 + x2**2)``, element-wise. If `x1` or
`x2` is scalar_like (i.e., unambiguously cast-able to a scalar type),
it is broadcast for use with each element of the other argument.
(See Examples)
Parameters
----------
x1, x2 : array_like
Leg of the triangle(s).
out : ndarray, optional
Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.
Returns
-------
z : ndarray
The hypotenuse of the triangle(s).
Examples
--------
>>> np.hypot(3*np.ones((3, 3)), 4*np.ones((3, 3)))
array([[ 5., 5., 5.],
[ 5., 5., 5.],
[ 5., 5., 5.]])
Example showing broadcast of scalar_like argument:
>>> np.hypot(3*np.ones((3, 3)), [4])
array([[ 5., 5., 5.],
[ 5., 5., 5.],
[ 5., 5., 5.]])
""")
add_newdoc('numpy.core.umath', 'invert',
"""
Compute bit-wise inversion, or bit-wise NOT, element-wise.
Computes the bit-wise NOT of the underlying binary representation of
the integers in the input arrays. This ufunc implements the C/Python
operator ``~``.
For signed integer inputs, the two's complement is returned. In a
two's-complement system negative numbers are represented by the two's
complement of the absolute value. This is the most common method of
representing signed integers on computers [1]_. A N-bit
two's-complement system can represent every integer in the range
:math:`-2^{N-1}` to :math:`+2^{N-1}-1`.
Parameters
----------
x1 : array_like
Only integer and boolean types are handled.
Returns
-------
out : array_like
Result.
See Also
--------
bitwise_and, bitwise_or, bitwise_xor
logical_not
binary_repr :
Return the binary representation of the input number as a string.
Notes
-----
`bitwise_not` is an alias for `invert`:
>>> np.bitwise_not is np.invert
True
References
----------
.. [1] Wikipedia, "Two's complement",
http://en.wikipedia.org/wiki/Two's_complement
Examples
--------
We've seen that 13 is represented by ``00001101``.
The invert or bit-wise NOT of 13 is then:
>>> np.invert(np.array([13], dtype=uint8))
array([242], dtype=uint8)
>>> np.binary_repr(x, width=8)
'00001101'
>>> np.binary_repr(242, width=8)
'11110010'
The result depends on the bit-width:
>>> np.invert(np.array([13], dtype=uint16))
array([65522], dtype=uint16)
>>> np.binary_repr(x, width=16)
'0000000000001101'
>>> np.binary_repr(65522, width=16)
'1111111111110010'
When using signed integer types the result is the two's complement of
the result for the unsigned type:
>>> np.invert(np.array([13], dtype=int8))
array([-14], dtype=int8)
>>> np.binary_repr(-14, width=8)
'11110010'
Booleans are accepted as well:
>>> np.invert(array([True, False]))
array([False, True], dtype=bool)
""")
add_newdoc('numpy.core.umath', 'isfinite',
"""
Test element-wise for finiteness (not infinity or not Not a Number).
The result is returned as a boolean array.
Parameters
----------
x : array_like
Input values.
out : ndarray, optional
Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See `doc.ufuncs`.
Returns
-------
y : ndarray, bool
For scalar input, the result is a new boolean with value True
if the input is finite; otherwise the value is False (input is
either positive infinity, negative infinity or Not a Number).
For array input, the result is a boolean array with the same
dimensions as the input and the values are True if the
corresponding element of the input is finite; otherwise the values
are False (element is either positive infinity, negative infinity
or Not a Number).
See Also
--------
isinf, isneginf, isposinf, isnan
Notes
-----
Not a Number, positive infinity and negative infinity are considered
to be non-finite.
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Also that positive infinity is not equivalent to negative infinity. But
infinity is equivalent to positive infinity. Errors result if the
second argument is also supplied when `x` is a scalar input, or if
first and second arguments have different shapes.
Examples
--------
>>> np.isfinite(1)
True
>>> np.isfinite(0)
True
>>> np.isfinite(np.nan)
False
>>> np.isfinite(np.inf)
False
>>> np.isfinite(np.NINF)
False
>>> np.isfinite([np.log(-1.),1.,np.log(0)])
array([False, True, False], dtype=bool)
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isfinite(x, y)
array([0, 1, 0])
>>> y
array([0, 1, 0])
""")
add_newdoc('numpy.core.umath', 'isinf',
"""
Test element-wise for positive or negative infinity.
Returns a boolean array of the same shape as `x`, True where ``x ==
+/-inf``, otherwise False.
Parameters
----------
x : array_like
Input values
out : array_like, optional
An array with the same shape as `x` to store the result.
Returns
-------
y : bool (scalar) or boolean ndarray
For scalar input, the result is a new boolean with value True if
the input is positive or negative infinity; otherwise the value is
False.
For array input, the result is a boolean array with the same shape
as the input and the values are True where the corresponding
element of the input is positive or negative infinity; elsewhere
the values are False. If a second argument was supplied the result
is stored there. If the type of that array is a numeric type the
result is represented as zeros and ones, if the type is boolean
then as False and True, respectively. The return value `y` is then
a reference to that array.
See Also
--------
isneginf, isposinf, isnan, isfinite
Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754).
Errors result if the second argument is supplied when the first
argument is a scalar, or if the first and second arguments have
different shapes.
Examples
--------
>>> np.isinf(np.inf)
True
>>> np.isinf(np.nan)
False
>>> np.isinf(np.NINF)
True
>>> np.isinf([np.inf, -np.inf, 1.0, np.nan])
array([ True, True, False, False], dtype=bool)
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isinf(x, y)
array([1, 0, 1])
>>> y
array([1, 0, 1])
""")
add_newdoc('numpy.core.umath', 'isnan',
"""
Test element-wise for NaN and return result as a boolean array.
Parameters
----------
x : array_like
Input array.
Returns
-------
y : ndarray or bool
For scalar input, the result is a new boolean with value True if
the input is NaN; otherwise the value is False.
For array input, the result is a boolean array of the same
dimensions as the input and the values are True if the
corresponding element of the input is NaN; otherwise the values are
False.
See Also
--------
isinf, isneginf, isposinf, isfinite
Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Examples
--------
>>> np.isnan(np.nan)
True
>>> np.isnan(np.inf)
False
>>> np.isnan([np.log(-1.),1.,np.log(0)])
array([ True, False, False], dtype=bool)
""")
add_newdoc('numpy.core.umath', 'left_shift',
"""
Shift the bits of an integer to the left.
Bits are shifted to the left by appending `x2` 0s at the right of `x1`.
Since the internal representation of numbers is in binary format, this
operation is equivalent to multiplying `x1` by ``2**x2``.
Parameters
----------
x1 : array_like of integer type
Input values.
x2 : array_like of integer type
Number of zeros to append to `x1`. Has to be non-negative.
Returns
-------
out : array of integer type
Return `x1` with bits shifted `x2` times to the left.
See Also
--------
right_shift : Shift the bits of an integer to the right.
binary_repr : Return the binary representation of the input number
as a string.
Examples
--------
>>> np.binary_repr(5)
'101'
>>> np.left_shift(5, 2)
20
>>> np.binary_repr(20)
'10100'
>>> np.left_shift(5, [1,2,3])
array([10, 20, 40])
""")
add_newdoc('numpy.core.umath', 'less',
"""
Return the truth value of (x1 < x2) element-wise.
Parameters
----------
x1, x2 : array_like
Input arrays. If ``x1.shape != x2.shape``, they must be
broadcastable to a common shape (which may be the shape of one or
the other).
Returns
-------
out : bool or ndarray of bool
Array of bools, or a single bool if `x1` and `x2` are scalars.
See Also
--------
greater, less_equal, greater_equal, equal, not_equal
Examples
--------
>>> np.less([1, 2], [2, 2])
array([ True, False], dtype=bool)
""")
add_newdoc('numpy.core.umath', 'less_equal',
"""
Return the truth value of (x1 =< x2) element-wise.
Parameters
----------
x1, x2 : array_like
Input arrays. If ``x1.shape != x2.shape``, they must be
broadcastable to a common shape (which may be the shape of one or
the other).
Returns
-------
out : bool or ndarray of bool
Array of bools, or a single bool if `x1` and `x2` are scalars.
See Also
--------
greater, less, greater_equal, equal, not_equal
Examples
--------
>>> np.less_equal([4, 2, 1], [2, 2, 2])
array([False, True, True], dtype=bool)
""")
add_newdoc('numpy.core.umath', 'log',
"""
Natural logarithm, element-wise.
The natural logarithm `log` is the inverse of the exponential function,
so that `log(exp(x)) = x`. The natural logarithm is logarithm in base
`e`.
Parameters
----------
x : array_like
Input value.
Returns
-------
y : ndarray
The natural logarithm of `x`, element-wise.
See Also
--------
log10, log2, log1p, emath.log
Notes
-----
Logarithm is a multivalued function: for each `x` there is an infinite
number of `z` such that `exp(z) = x`. The convention is to return the
`z` whose imaginary part lies in `[-pi, pi]`.
For real-valued input data types, `log` always returns real output. For
each value that cannot be expressed as a real number or infinity, it
yields ``nan`` and sets the `invalid` floating point error flag.
For complex-valued input, `log` is a complex analytical function that
has a branch cut `[-inf, 0]` and is continuous from above on it. `log`
handles the floating-point negative zero as an infinitesimal negative
number, conforming to the C99 standard.
References
----------
.. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/
.. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm
Examples
--------
>>> np.log([1, np.e, np.e**2, 0])
array([ 0., 1., 2., -Inf])
""")
add_newdoc('numpy.core.umath', 'log10',
"""
Return the base 10 logarithm of the input array, element-wise.
Parameters
----------
x : array_like
Input values.
Returns
-------
y : ndarray
The logarithm to the base 10 of `x`, element-wise. NaNs are
returned where x is negative.
See Also
--------
emath.log10
Notes
-----
Logarithm is a multivalued function: for each `x` there is an infinite
number of `z` such that `10**z = x`. The convention is to return the
`z` whose imaginary part lies in `[-pi, pi]`.
For real-valued input data types, `log10` always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields ``nan`` and sets the `invalid` floating point error flag.
For complex-valued input, `log10` is a complex analytical function that
has a branch cut `[-inf, 0]` and is continuous from above on it.
`log10` handles the floating-point negative zero as an infinitesimal
negative number, conforming to the C99 standard.
References
----------
.. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/
.. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm
Examples
--------
>>> np.log10([1e-15, -3.])
array([-15., NaN])
""")
add_newdoc('numpy.core.umath', 'log2',
"""
Base-2 logarithm of `x`.
Parameters
----------
x : array_like
Input values.
Returns
-------
y : ndarray
Base-2 logarithm of `x`.
See Also
--------
log, log10, log1p, emath.log2
Notes
-----
.. versionadded:: 1.3.0
Logarithm is a multivalued function: for each `x` there is an infinite
number of `z` such that `2**z = x`. The convention is to return the `z`
whose imaginary part lies in `[-pi, pi]`.
For real-valued input data types, `log2` always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields ``nan`` and sets the `invalid` floating point error flag.
For complex-valued input, `log2` is a complex analytical function that
has a branch cut `[-inf, 0]` and is continuous from above on it. `log2`
handles the floating-point negative zero as an infinitesimal negative
number, conforming to the C99 standard.
Examples
--------
>>> x = np.array([0, 1, 2, 2**4])
>>> np.log2(x)
array([-Inf, 0., 1., 4.])
>>> xi = np.array([0+1.j, 1, 2+0.j, 4.j])
>>> np.log2(xi)
array([ 0.+2.26618007j, 0.+0.j , 1.+0.j , 2.+2.26618007j])
""")
add_newdoc('numpy.core.umath', 'logaddexp',
"""
Logarithm of the sum of exponentiations of the inputs.
Calculates ``log(exp(x1) + exp(x2))``. This function is useful in
statistics where the calculated probabilities of events may be so small
as to exceed the range of normal floating point numbers. In such cases
the logarithm of the calculated probability is stored. This function
allows adding probabilities stored in such a fashion.
Parameters
----------
x1, x2 : array_like
Input values.
Returns
-------
result : ndarray
Logarithm of ``exp(x1) + exp(x2)``.
See Also
--------
logaddexp2: Logarithm of the sum of exponentiations of inputs in base 2.
Notes
-----
.. versionadded:: 1.3.0
Examples
--------
>>> prob1 = np.log(1e-50)
>>> prob2 = np.log(2.5e-50)
>>> prob12 = np.logaddexp(prob1, prob2)
>>> prob12
-113.87649168120691
>>> np.exp(prob12)
3.5000000000000057e-50
""")
add_newdoc('numpy.core.umath', 'logaddexp2',
"""
Logarithm of the sum of exponentiations of the inputs in base-2.
Calculates ``log2(2**x1 + 2**x2)``. This function is useful in machine
learning when the calculated probabilities of events may be so small as
to exceed the range of normal floating point numbers. In such cases
the base-2 logarithm of the calculated probability can be used instead.
This function allows adding probabilities stored in such a fashion.
Parameters
----------
x1, x2 : array_like
Input values.
out : ndarray, optional
Array to store results in.
Returns
-------
result : ndarray
Base-2 logarithm of ``2**x1 + 2**x2``.
See Also
--------
logaddexp: Logarithm of the sum of exponentiations of the inputs.
Notes
-----
.. versionadded:: 1.3.0
Examples
--------
>>> prob1 = np.log2(1e-50)
>>> prob2 = np.log2(2.5e-50)
>>> prob12 = np.logaddexp2(prob1, prob2)
>>> prob1, prob2, prob12
(-166.09640474436813, -164.77447664948076, -164.28904982231052)
>>> 2**prob12
3.4999999999999914e-50
""")
add_newdoc('numpy.core.umath', 'log1p',
"""
Return the natural logarithm of one plus the input array, element-wise.
Calculates ``log(1 + x)``.
Parameters
----------
x : array_like
Input values.
Returns
-------
y : ndarray
Natural logarithm of `1 + x`, element-wise.
See Also
--------
expm1 : ``exp(x) - 1``, the inverse of `log1p`.
Notes
-----
For real-valued input, `log1p` is accurate also for `x` so small
that `1 + x == 1` in floating-point accuracy.
Logarithm is a multivalued function: for each `x` there is an infinite
number of `z` such that `exp(z) = 1 + x`. The convention is to return
the `z` whose imaginary part lies in `[-pi, pi]`.
For real-valued input data types, `log1p` always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields ``nan`` and sets the `invalid` floating point error flag.
For complex-valued input, `log1p` is a complex analytical function that
has a branch cut `[-inf, -1]` and is continuous from above on it.
`log1p` handles the floating-point negative zero as an infinitesimal
negative number, conforming to the C99 standard.
References
----------
.. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/
.. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm
Examples
--------
>>> np.log1p(1e-99)
1e-99
>>> np.log(1 + 1e-99)
0.0
""")
add_newdoc('numpy.core.umath', 'logical_and',
"""
Compute the truth value of x1 AND x2 element-wise.
Parameters
----------
x1, x2 : array_like
Input arrays. `x1` and `x2` must be of the same shape.
Returns
-------
y : ndarray or bool
Boolean result with the same shape as `x1` and `x2` of the logical
AND operation on corresponding elements of `x1` and `x2`.
See Also
--------
logical_or, logical_not, logical_xor
bitwise_and
Examples
--------
>>> np.logical_and(True, False)
False
>>> np.logical_and([True, False], [False, False])
array([False, False], dtype=bool)
>>> x = np.arange(5)
>>> np.logical_and(x>1, x<4)
array([False, False, True, True, False], dtype=bool)
""")
add_newdoc('numpy.core.umath', 'logical_not',
"""
Compute the truth value of NOT x element-wise.
Parameters
----------
x : array_like
Logical NOT is applied to the elements of `x`.
Returns
-------
y : bool or ndarray of bool
Boolean result with the same shape as `x` of the NOT operation
on elements of `x`.
See Also
--------
logical_and, logical_or, logical_xor
Examples
--------
>>> np.logical_not(3)
False
>>> np.logical_not([True, False, 0, 1])
array([False, True, True, False], dtype=bool)
>>> x = np.arange(5)
>>> np.logical_not(x<3)
array([False, False, False, True, True], dtype=bool)
""")
add_newdoc('numpy.core.umath', 'logical_or',
"""
Compute the truth value of x1 OR x2 element-wise.
Parameters
----------
x1, x2 : array_like
Logical OR is applied to the elements of `x1` and `x2`.
They have to be of the same shape.
Returns
-------
y : ndarray or bool
Boolean result with the same shape as `x1` and `x2` of the logical
OR operation on elements of `x1` and `x2`.
See Also
--------
logical_and, logical_not, logical_xor
bitwise_or
Examples
--------
>>> np.logical_or(True, False)
True
>>> np.logical_or([True, False], [False, False])
array([ True, False], dtype=bool)
>>> x = np.arange(5)
>>> np.logical_or(x < 1, x > 3)
array([ True, False, False, False, True], dtype=bool)
""")
add_newdoc('numpy.core.umath', 'logical_xor',
"""
Compute the truth value of x1 XOR x2, element-wise.
Parameters
----------
x1, x2 : array_like
Logical XOR is applied to the elements of `x1` and `x2`. They must
be broadcastable to the same shape.
Returns
-------
y : bool or ndarray of bool
Boolean result of the logical XOR operation applied to the elements
of `x1` and `x2`; the shape is determined by whether or not
broadcasting of one or both arrays was required.
See Also
--------
logical_and, logical_or, logical_not, bitwise_xor
Examples
--------
>>> np.logical_xor(True, False)
True
>>> np.logical_xor([True, True, False, False], [True, False, True, False])
array([False, True, True, False], dtype=bool)
>>> x = np.arange(5)
>>> np.logical_xor(x < 1, x > 3)
array([ True, False, False, False, True], dtype=bool)
Simple example showing support of broadcasting
>>> np.logical_xor(0, np.eye(2))
array([[ True, False],
[False, True]], dtype=bool)
""")
add_newdoc('numpy.core.umath', 'maximum',
"""
Element-wise maximum of array elements.
Compare two arrays and returns a new array containing the element-wise
maxima. If one of the elements being compared is a NaN, then that
element is returned. If both elements are NaNs then the first is
returned. The latter distinction is important for complex NaNs, which
are defined as at least one of the real or imaginary parts being a NaN.
The net effect is that NaNs are propagated.
Parameters
----------
x1, x2 : array_like
The arrays holding the elements to be compared. They must have
the same shape, or shapes that can be broadcast to a single shape.
Returns
-------
y : ndarray or scalar
The maximum of `x1` and `x2`, element-wise. Returns scalar if
both `x1` and `x2` are scalars.
See Also
--------
minimum :
Element-wise minimum of two arrays, propagates NaNs.
fmax :
Element-wise maximum of two arrays, ignores NaNs.
amax :
The maximum value of an array along a given axis, propagates NaNs.
nanmax :
The maximum value of an array along a given axis, ignores NaNs.
fmin, amin, nanmin
Notes
-----
The maximum is equivalent to ``np.where(x1 >= x2, x1, x2)`` when
neither x1 nor x2 are nans, but it is faster and does proper
broadcasting.
Examples
--------
>>> np.maximum([2, 3, 4], [1, 5, 2])
array([2, 5, 4])
>>> np.maximum(np.eye(2), [0.5, 2]) # broadcasting
array([[ 1. , 2. ],
[ 0.5, 2. ]])
>>> np.maximum([np.nan, 0, np.nan], [0, np.nan, np.nan])
array([ NaN, NaN, NaN])
>>> np.maximum(np.Inf, 1)
inf
""")
add_newdoc('numpy.core.umath', 'minimum',
"""
Element-wise minimum of array elements.
Compare two arrays and returns a new array containing the element-wise
minima. If one of the elements being compared is a NaN, then that
element is returned. If both elements are NaNs then the first is
returned. The latter distinction is important for complex NaNs, which
are defined as at least one of the real or imaginary parts being a NaN.
The net effect is that NaNs are propagated.
Parameters
----------
x1, x2 : array_like
The arrays holding the elements to be compared. They must have
the same shape, or shapes that can be broadcast to a single shape.
Returns
-------
y : ndarray or scalar
The minimum of `x1` and `x2`, element-wise. Returns scalar if
both `x1` and `x2` are scalars.
See Also
--------
maximum :
Element-wise maximum of two arrays, propagates NaNs.
fmin :
Element-wise minimum of two arrays, ignores NaNs.
amin :
The minimum value of an array along a given axis, propagates NaNs.
nanmin :
The minimum value of an array along a given axis, ignores NaNs.
fmax, amax, nanmax
Notes
-----
The minimum is equivalent to ``np.where(x1 <= x2, x1, x2)`` when
neither x1 nor x2 are NaNs, but it is faster and does proper
broadcasting.
Examples
--------
>>> np.minimum([2, 3, 4], [1, 5, 2])
array([1, 3, 2])
>>> np.minimum(np.eye(2), [0.5, 2]) # broadcasting
array([[ 0.5, 0. ],
[ 0. , 1. ]])
>>> np.minimum([np.nan, 0, np.nan],[0, np.nan, np.nan])
array([ NaN, NaN, NaN])
>>> np.minimum(-np.Inf, 1)
-inf
""")
add_newdoc('numpy.core.umath', 'fmax',
"""
Element-wise maximum of array elements.
Compare two arrays and returns a new array containing the element-wise
maxima. If one of the elements being compared is a NaN, then the
non-nan element is returned. If both elements are NaNs then the first
is returned. The latter distinction is important for complex NaNs,
which are defined as at least one of the real or imaginary parts being
a NaN. The net effect is that NaNs are ignored when possible.
Parameters
----------
x1, x2 : array_like
The arrays holding the elements to be compared. They must have
the same shape.
Returns
-------
y : ndarray or scalar
The maximum of `x1` and `x2`, element-wise. Returns scalar if
both `x1` and `x2` are scalars.
See Also
--------
fmin :
Element-wise minimum of two arrays, ignores NaNs.
maximum :
Element-wise maximum of two arrays, propagates NaNs.
amax :
The maximum value of an array along a given axis, propagates NaNs.
nanmax :
The maximum value of an array along a given axis, ignores NaNs.
minimum, amin, nanmin
Notes
-----
.. versionadded:: 1.3.0
The fmax is equivalent to ``np.where(x1 >= x2, x1, x2)`` when neither
x1 nor x2 are NaNs, but it is faster and does proper broadcasting.
Examples
--------
>>> np.fmax([2, 3, 4], [1, 5, 2])
array([ 2., 5., 4.])
>>> np.fmax(np.eye(2), [0.5, 2])
array([[ 1. , 2. ],
[ 0.5, 2. ]])
>>> np.fmax([np.nan, 0, np.nan],[0, np.nan, np.nan])
array([ 0., 0., NaN])
""")
add_newdoc('numpy.core.umath', 'fmin',
"""
Element-wise minimum of array elements.
Compare two arrays and returns a new array containing the element-wise
minima. If one of the elements being compared is a NaN, then the
non-nan element is returned. If both elements are NaNs then the first
is returned. The latter distinction is important for complex NaNs,
which are defined as at least one of the real or imaginary parts being
a NaN. The net effect is that NaNs are ignored when possible.
Parameters
----------
x1, x2 : array_like
The arrays holding the elements to be compared. They must have
the same shape.
Returns
-------
y : ndarray or scalar
The minimum of `x1` and `x2`, element-wise. Returns scalar if
both `x1` and `x2` are scalars.
See Also
--------
fmax :
Element-wise maximum of two arrays, ignores NaNs.
minimum :
Element-wise minimum of two arrays, propagates NaNs.
amin :
The minimum value of an array along a given axis, propagates NaNs.
nanmin :
The minimum value of an array along a given axis, ignores NaNs.
maximum, amax, nanmax
Notes
-----
.. versionadded:: 1.3.0
The fmin is equivalent to ``np.where(x1 <= x2, x1, x2)`` when neither
x1 nor x2 are NaNs, but it is faster and does proper broadcasting.
Examples
--------
>>> np.fmin([2, 3, 4], [1, 5, 2])
array([1, 3, 2])
>>> np.fmin(np.eye(2), [0.5, 2])
array([[ 0.5, 0. ],
[ 0. , 1. ]])
>>> np.fmin([np.nan, 0, np.nan],[0, np.nan, np.nan])
array([ 0., 0., NaN])
""")
add_newdoc('numpy.core.umath', 'modf',
"""
Return the fractional and integral parts of an array, element-wise.
The fractional and integral parts are negative if the given number is
negative.
Parameters
----------
x : array_like
Input array.
Returns
-------
y1 : ndarray
Fractional part of `x`.
y2 : ndarray
Integral part of `x`.
Notes
-----
For integer input the return values are floats.
Examples
--------
>>> np.modf([0, 3.5])
(array([ 0. , 0.5]), array([ 0., 3.]))
>>> np.modf(-0.5)
(-0.5, -0)
""")
add_newdoc('numpy.core.umath', 'multiply',
"""
Multiply arguments element-wise.
Parameters
----------
x1, x2 : array_like
Input arrays to be multiplied.
Returns
-------
y : ndarray
The product of `x1` and `x2`, element-wise. Returns a scalar if
both `x1` and `x2` are scalars.
Notes
-----
Equivalent to `x1` * `x2` in terms of array broadcasting.
Examples
--------
>>> np.multiply(2.0, 4.0)
8.0
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.multiply(x1, x2)
array([[ 0., 1., 4.],
[ 0., 4., 10.],
[ 0., 7., 16.]])
""")
add_newdoc('numpy.core.umath', 'negative',
"""
Numerical negative, element-wise.
Parameters
----------
x : array_like or scalar
Input array.
Returns
-------
y : ndarray or scalar
Returned array or scalar: `y = -x`.
Examples
--------
>>> np.negative([1.,-1.])
array([-1., 1.])
""")
add_newdoc('numpy.core.umath', 'not_equal',
"""
Return (x1 != x2) element-wise.
Parameters
----------
x1, x2 : array_like
Input arrays.
out : ndarray, optional
A placeholder the same shape as `x1` to store the result.
See `doc.ufuncs` (Section "Output arguments") for more details.
Returns
-------
not_equal : ndarray bool, scalar bool
For each element in `x1, x2`, return True if `x1` is not equal
to `x2` and False otherwise.
See Also
--------
equal, greater, greater_equal, less, less_equal
Examples
--------
>>> np.not_equal([1.,2.], [1., 3.])
array([False, True], dtype=bool)
>>> np.not_equal([1, 2], [[1, 3],[1, 4]])
array([[False, True],
[False, True]], dtype=bool)
""")
add_newdoc('numpy.core.umath', '_ones_like',
"""
This function used to be the numpy.ones_like, but now a specific
function for that has been written for consistency with the other
*_like functions. It is only used internally in a limited fashion now.
See Also
--------
ones_like
""")
add_newdoc('numpy.core.umath', 'power',
"""
First array elements raised to powers from second array, element-wise.
Raise each base in `x1` to the positionally-corresponding power in
`x2`. `x1` and `x2` must be broadcastable to the same shape. Note that an
integer type raised to a negative integer power will raise a ValueError.
Parameters
----------
x1 : array_like
The bases.
x2 : array_like
The exponents.
Returns
-------
y : ndarray
The bases in `x1` raised to the exponents in `x2`.
See Also
--------
float_power : power function that promotes integers to float
Examples
--------
Cube each element in a list.
>>> x1 = range(6)
>>> x1
[0, 1, 2, 3, 4, 5]
>>> np.power(x1, 3)
array([ 0, 1, 8, 27, 64, 125])
Raise the bases to different exponents.
>>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
>>> np.power(x1, x2)
array([ 0., 1., 8., 27., 16., 5.])
The effect of broadcasting.
>>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
>>> x2
array([[1, 2, 3, 3, 2, 1],
[1, 2, 3, 3, 2, 1]])
>>> np.power(x1, x2)
array([[ 0, 1, 8, 27, 16, 5],
[ 0, 1, 8, 27, 16, 5]])
""")
add_newdoc('numpy.core.umath', 'float_power',
"""
First array elements raised to powers from second array, element-wise.
Raise each base in `x1` to the positionally-corresponding power in `x2`.
`x1` and `x2` must be broadcastable to the same shape. This differs from
the power function in that integers, float16, and float32 are promoted to
floats with a minimum precision of float64 so that the result is always
inexact. The intent is that the function will return a usable result for
negative powers and seldom overflow for positive powers.
.. versionadded:: 1.12.0
Parameters
----------
x1 : array_like
The bases.
x2 : array_like
The exponents.
Returns
-------
y : ndarray
The bases in `x1` raised to the exponents in `x2`.
See Also
--------
power : power function that preserves type
Examples
--------
Cube each element in a list.
>>> x1 = range(6)
>>> x1
[0, 1, 2, 3, 4, 5]
>>> np.float_power(x1, 3)
array([ 0., 1., 8., 27., 64., 125.])
Raise the bases to different exponents.
>>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
>>> np.float_power(x1, x2)
array([ 0., 1., 8., 27., 16., 5.])
The effect of broadcasting.
>>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
>>> x2
array([[1, 2, 3, 3, 2, 1],
[1, 2, 3, 3, 2, 1]])
>>> np.float_power(x1, x2)
array([[ 0., 1., 8., 27., 16., 5.],
[ 0., 1., 8., 27., 16., 5.]])
""")
add_newdoc('numpy.core.umath', 'radians',
"""
Convert angles from degrees to radians.
Parameters
----------
x : array_like
Input array in degrees.
out : ndarray, optional
Output array of same shape as `x`.
Returns
-------
y : ndarray
The corresponding radian values.
See Also
--------
deg2rad : equivalent function
Examples
--------
Convert a degree array to radians
>>> deg = np.arange(12.) * 30.
>>> np.radians(deg)
array([ 0. , 0.52359878, 1.04719755, 1.57079633, 2.0943951 ,
2.61799388, 3.14159265, 3.66519143, 4.1887902 , 4.71238898,
5.23598776, 5.75958653])
>>> out = np.zeros((deg.shape))
>>> ret = np.radians(deg, out)
>>> ret is out
True
""")
add_newdoc('numpy.core.umath', 'deg2rad',
"""
Convert angles from degrees to radians.
Parameters
----------
x : array_like
Angles in degrees.
Returns
-------
y : ndarray
The corresponding angle in radians.
See Also
--------
rad2deg : Convert angles from radians to degrees.
unwrap : Remove large jumps in angle by wrapping.
Notes
-----
.. versionadded:: 1.3.0
``deg2rad(x)`` is ``x * pi / 180``.
Examples
--------
>>> np.deg2rad(180)
3.1415926535897931
""")
add_newdoc('numpy.core.umath', 'reciprocal',
"""
Return the reciprocal of the argument, element-wise.
Calculates ``1/x``.
Parameters
----------
x : array_like
Input array.
Returns
-------
y : ndarray
Return array.
Notes
-----
.. note::
This function is not designed to work with integers.
For integer arguments with absolute value larger than 1 the result is
always zero because of the way Python handles integer division. For
integer zero the result is an overflow.
Examples
--------
>>> np.reciprocal(2.)
0.5
>>> np.reciprocal([1, 2., 3.33])
array([ 1. , 0.5 , 0.3003003])
""")
add_newdoc('numpy.core.umath', 'remainder',
"""
Return element-wise remainder of division.
Computes the remainder complementary to the `floor_divide` function. It is
equivalent to the Python modulus operator``x1 % x2`` and has the same sign
as the divisor `x2`. It should not be confused with the Matlab(TM) ``rem``
function.
Parameters
----------
x1 : array_like
Dividend array.
x2 : array_like
Divisor array.
out : ndarray, optional
Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.
Returns
-------
y : ndarray
The element-wise remainder of the quotient ``floor_divide(x1, x2)``.
Returns a scalar if both `x1` and `x2` are scalars.
See Also
--------
floor_divide : Equivalent of Python ``//`` operator.
fmod : Equivalent of the Matlab(TM) ``rem`` function.
divide, floor
Notes
-----
Returns 0 when `x2` is 0 and both `x1` and `x2` are (arrays of)
integers.
Examples
--------
>>> np.remainder([4, 7], [2, 3])
array([0, 1])
>>> np.remainder(np.arange(7), 5)
array([0, 1, 2, 3, 4, 0, 1])
""")
add_newdoc('numpy.core.umath', 'right_shift',
"""
Shift the bits of an integer to the right.
Bits are shifted to the right `x2`. Because the internal
representation of numbers is in binary format, this operation is
equivalent to dividing `x1` by ``2**x2``.
Parameters
----------
x1 : array_like, int
Input values.
x2 : array_like, int
Number of bits to remove at the right of `x1`.
Returns
-------
out : ndarray, int
Return `x1` with bits shifted `x2` times to the right.
See Also
--------
left_shift : Shift the bits of an integer to the left.
binary_repr : Return the binary representation of the input number
as a string.
Examples
--------
>>> np.binary_repr(10)
'1010'
>>> np.right_shift(10, 1)
5
>>> np.binary_repr(5)
'101'
>>> np.right_shift(10, [1,2,3])
array([5, 2, 1])
""")
add_newdoc('numpy.core.umath', 'rint',
"""
Round elements of the array to the nearest integer.
Parameters
----------
x : array_like
Input array.
Returns
-------
out : ndarray or scalar
Output array is same shape and type as `x`.
See Also
--------
ceil, floor, trunc
Examples
--------
>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.rint(a)
array([-2., -2., -0., 0., 2., 2., 2.])
""")
add_newdoc('numpy.core.umath', 'sign',
"""
Returns an element-wise indication of the sign of a number.
The `sign` function returns ``-1 if x < 0, 0 if x==0, 1 if x > 0``. nan
is returned for nan inputs.
For complex inputs, the `sign` function returns
``sign(x.real) + 0j if x.real != 0 else sign(x.imag) + 0j``.
complex(nan, 0) is returned for complex nan inputs.
Parameters
----------
x : array_like
Input values.
Returns
-------
y : ndarray
The sign of `x`.
Notes
-----
There is more than one definition of sign in common use for complex
numbers. The definition used here is equivalent to :math:`x/\\sqrt{x*x}`
which is different from a common alternative, :math:`x/|x|`.
Examples
--------
>>> np.sign([-5., 4.5])
array([-1., 1.])
>>> np.sign(0)
0
>>> np.sign(5-2j)
(1+0j)
""")
add_newdoc('numpy.core.umath', 'signbit',
"""
Returns element-wise True where signbit is set (less than zero).
Parameters
----------
x : array_like
The input value(s).
out : ndarray, optional
Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See `doc.ufuncs`.
Returns
-------
result : ndarray of bool
Output array, or reference to `out` if that was supplied.
Examples
--------
>>> np.signbit(-1.2)
True
>>> np.signbit(np.array([1, -2.3, 2.1]))
array([False, True, False], dtype=bool)
""")
add_newdoc('numpy.core.umath', 'copysign',
"""
Change the sign of x1 to that of x2, element-wise.
If both arguments are arrays or sequences, they have to be of the same
length. If `x2` is a scalar, its sign will be copied to all elements of
`x1`.
Parameters
----------
x1 : array_like
Values to change the sign of.
x2 : array_like
The sign of `x2` is copied to `x1`.
out : ndarray, optional
Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See doc.ufuncs.
Returns
-------
out : array_like
The values of `x1` with the sign of `x2`.
Examples
--------
>>> np.copysign(1.3, -1)
-1.3
>>> 1/np.copysign(0, 1)
inf
>>> 1/np.copysign(0, -1)
-inf
>>> np.copysign([-1, 0, 1], -1.1)
array([-1., -0., -1.])
>>> np.copysign([-1, 0, 1], np.arange(3)-1)
array([-1., 0., 1.])
""")
add_newdoc('numpy.core.umath', 'nextafter',
"""
Return the next floating-point value after x1 towards x2, element-wise.
Parameters
----------
x1 : array_like
Values to find the next representable value of.
x2 : array_like
The direction where to look for the next representable value of `x1`.
out : ndarray, optional
Array into which the output is placed. Its type is preserved and it
must be of the right shape to hold the output. See `doc.ufuncs`.
Returns
-------
out : array_like
The next representable values of `x1` in the direction of `x2`.
Examples
--------
>>> eps = np.finfo(np.float64).eps
>>> np.nextafter(1, 2) == eps + 1
True
>>> np.nextafter([1, 2], [2, 1]) == [eps + 1, 2 - eps]
array([ True, True], dtype=bool)
""")
add_newdoc('numpy.core.umath', 'spacing',
"""
Return the distance between x and the nearest adjacent number.
Parameters
----------
x1 : array_like
Values to find the spacing of.
Returns
-------
out : array_like
The spacing of values of `x1`.
Notes
-----
It can be considered as a generalization of EPS:
``spacing(np.float64(1)) == np.finfo(np.float64).eps``, and there
should not be any representable number between ``x + spacing(x)`` and
x for any finite x.
Spacing of +- inf and NaN is NaN.
Examples
--------
>>> np.spacing(1) == np.finfo(np.float64).eps
True
""")
add_newdoc('numpy.core.umath', 'sin',
"""
Trigonometric sine, element-wise.
Parameters
----------
x : array_like
Angle, in radians (:math:`2 \\pi` rad equals 360 degrees).
Returns
-------
y : array_like
The sine of each element of x.
See Also
--------
arcsin, sinh, cos
Notes
-----
The sine is one of the fundamental functions of trigonometry (the
mathematical study of triangles). Consider a circle of radius 1
centered on the origin. A ray comes in from the :math:`+x` axis, makes
an angle at the origin (measured counter-clockwise from that axis), and
departs from the origin. The :math:`y` coordinate of the outgoing
ray's intersection with the unit circle is the sine of that angle. It
ranges from -1 for :math:`x=3\\pi / 2` to +1 for :math:`\\pi / 2.` The
function has zeroes where the angle is a multiple of :math:`\\pi`.
Sines of angles between :math:`\\pi` and :math:`2\\pi` are negative.
The numerous properties of the sine and related functions are included
in any standard trigonometry text.
Examples
--------
Print sine of one angle:
>>> np.sin(np.pi/2.)
1.0
Print sines of an array of angles given in degrees:
>>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180. )
array([ 0. , 0.5 , 0.70710678, 0.8660254 , 1. ])
Plot the sine function:
>>> import matplotlib.pylab as plt
>>> x = np.linspace(-np.pi, np.pi, 201)
>>> plt.plot(x, np.sin(x))
>>> plt.xlabel('Angle [rad]')
>>> plt.ylabel('sin(x)')
>>> plt.axis('tight')
>>> plt.show()
""")
add_newdoc('numpy.core.umath', 'sinh',
"""
Hyperbolic sine, element-wise.
Equivalent to ``1/2 * (np.exp(x) - np.exp(-x))`` or
``-1j * np.sin(1j*x)``.
Parameters
----------
x : array_like
Input array.
out : ndarray, optional
Output array of same shape as `x`.
Returns
-------
y : ndarray
The corresponding hyperbolic sine values.
Raises
------
ValueError: invalid return array shape
if `out` is provided and `out.shape` != `x.shape` (See Examples)
Notes
-----
If `out` is provided, the function writes the result into it,
and returns a reference to `out`. (See Examples)
References
----------
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972, pg. 83.
Examples
--------
>>> np.sinh(0)
0.0
>>> np.sinh(np.pi*1j/2)
1j
>>> np.sinh(np.pi*1j) # (exact value is 0)
1.2246063538223773e-016j
>>> # Discrepancy due to vagaries of floating point arithmetic.
>>> # Example of providing the optional output parameter
>>> out2 = np.sinh([0.1], out1)
>>> out2 is out1
True
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.sinh(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: invalid return array shape
""")
add_newdoc('numpy.core.umath', 'sqrt',
"""
Return the positive square-root of an array, element-wise.
Parameters
----------
x : array_like
The values whose square-roots are required.
out : ndarray, optional
Alternate array object in which to put the result; if provided, it
must have the same shape as `x`
Returns
-------
y : ndarray
An array of the same shape as `x`, containing the positive
square-root of each element in `x`. If any element in `x` is
complex, a complex array is returned (and the square-roots of
negative reals are calculated). If all of the elements in `x`
are real, so is `y`, with negative elements returning ``nan``.
If `out` was provided, `y` is a reference to it.
See Also
--------
lib.scimath.sqrt
A version which returns complex numbers when given negative reals.
Notes
-----
*sqrt* has--consistent with common convention--as its branch cut the
real "interval" [`-inf`, 0), and is continuous from above on it.
A branch cut is a curve in the complex plane across which a given
complex function fails to be continuous.
Examples
--------
>>> np.sqrt([1,4,9])
array([ 1., 2., 3.])
>>> np.sqrt([4, -1, -3+4J])
array([ 2.+0.j, 0.+1.j, 1.+2.j])
>>> np.sqrt([4, -1, numpy.inf])
array([ 2., NaN, Inf])
""")
add_newdoc('numpy.core.umath', 'cbrt',
"""
Return the cube-root of an array, element-wise.
.. versionadded:: 1.10.0
Parameters
----------
x : array_like
The values whose cube-roots are required.
out : ndarray, optional
Alternate array object in which to put the result; if provided, it
must have the same shape as `x`
Returns
-------
y : ndarray
An array of the same shape as `x`, containing the cube
cube-root of each element in `x`.
If `out` was provided, `y` is a reference to it.
Examples
--------
>>> np.cbrt([1,8,27])
array([ 1., 2., 3.])
""")
add_newdoc('numpy.core.umath', 'square',
"""
Return the element-wise square of the input.
Parameters
----------
x : array_like
Input data.
Returns
-------
out : ndarray
Element-wise `x*x`, of the same shape and dtype as `x`.
Returns scalar if `x` is a scalar.
See Also
--------
numpy.linalg.matrix_power
sqrt
power
Examples
--------
>>> np.square([-1j, 1])
array([-1.-0.j, 1.+0.j])
""")
add_newdoc('numpy.core.umath', 'subtract',
"""
Subtract arguments, element-wise.
Parameters
----------
x1, x2 : array_like
The arrays to be subtracted from each other.
Returns
-------
y : ndarray
The difference of `x1` and `x2`, element-wise. Returns a scalar if
both `x1` and `x2` are scalars.
Notes
-----
Equivalent to ``x1 - x2`` in terms of array broadcasting.
Examples
--------
>>> np.subtract(1.0, 4.0)
-3.0
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.subtract(x1, x2)
array([[ 0., 0., 0.],
[ 3., 3., 3.],
[ 6., 6., 6.]])
""")
add_newdoc('numpy.core.umath', 'tan',
"""
Compute tangent element-wise.
Equivalent to ``np.sin(x)/np.cos(x)`` element-wise.
Parameters
----------
x : array_like
Input array.
out : ndarray, optional
Output array of same shape as `x`.
Returns
-------
y : ndarray
The corresponding tangent values.
Raises
------
ValueError: invalid return array shape
if `out` is provided and `out.shape` != `x.shape` (See Examples)
Notes
-----
If `out` is provided, the function writes the result into it,
and returns a reference to `out`. (See Examples)
References
----------
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972.
Examples
--------
>>> from math import pi
>>> np.tan(np.array([-pi,pi/2,pi]))
array([ 1.22460635e-16, 1.63317787e+16, -1.22460635e-16])
>>>
>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out2 = np.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: invalid return array shape
""")
add_newdoc('numpy.core.umath', 'tanh',
"""
Compute hyperbolic tangent element-wise.
Equivalent to ``np.sinh(x)/np.cosh(x)`` or ``-1j * np.tan(1j*x)``.
Parameters
----------
x : array_like
Input array.
out : ndarray, optional
Output array of same shape as `x`.
Returns
-------
y : ndarray
The corresponding hyperbolic tangent values.
Raises
------
ValueError: invalid return array shape
if `out` is provided and `out.shape` != `x.shape` (See Examples)
Notes
-----
If `out` is provided, the function writes the result into it,
and returns a reference to `out`. (See Examples)
References
----------
.. [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, NY: Dover, 1972, pg. 83.
http://www.math.sfu.ca/~cbm/aands/
.. [2] Wikipedia, "Hyperbolic function",
http://en.wikipedia.org/wiki/Hyperbolic_function
Examples
--------
>>> np.tanh((0, np.pi*1j, np.pi*1j/2))
array([ 0. +0.00000000e+00j, 0. -1.22460635e-16j, 0. +1.63317787e+16j])
>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out2 = np.tanh([0.1], out1)
>>> out2 is out1
True
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.tanh(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: invalid return array shape
""")
add_newdoc('numpy.core.umath', 'true_divide',
"""
Returns a true division of the inputs, element-wise.
Instead of the Python traditional 'floor division', this returns a true
division. True division adjusts the output type to present the best
answer, regardless of input types.
Parameters
----------
x1 : array_like
Dividend array.
x2 : array_like
Divisor array.
Returns
-------
out : ndarray
Result is scalar if both inputs are scalar, ndarray otherwise.
Notes
-----
The floor division operator ``//`` was added in Python 2.2 making
``//`` and ``/`` equivalent operators. The default floor division
operation of ``/`` can be replaced by true division with ``from
__future__ import division``.
In Python 3.0, ``//`` is the floor division operator and ``/`` the
true division operator. The ``true_divide(x1, x2)`` function is
equivalent to true division in Python.
Examples
--------
>>> x = np.arange(5)
>>> np.true_divide(x, 4)
array([ 0. , 0.25, 0.5 , 0.75, 1. ])
>>> x/4
array([0, 0, 0, 0, 1])
>>> x//4
array([0, 0, 0, 0, 1])
>>> from __future__ import division
>>> x/4
array([ 0. , 0.25, 0.5 , 0.75, 1. ])
>>> x//4
array([0, 0, 0, 0, 1])
""")
add_newdoc('numpy.core.umath', 'frexp',
"""
Decompose the elements of x into mantissa and twos exponent.
Returns (`mantissa`, `exponent`), where `x = mantissa * 2**exponent``.
The mantissa is lies in the open interval(-1, 1), while the twos
exponent is a signed integer.
Parameters
----------
x : array_like
Array of numbers to be decomposed.
out1 : ndarray, optional
Output array for the mantissa. Must have the same shape as `x`.
out2 : ndarray, optional
Output array for the exponent. Must have the same shape as `x`.
Returns
-------
(mantissa, exponent) : tuple of ndarrays, (float, int)
`mantissa` is a float array with values between -1 and 1.
`exponent` is an int array which represents the exponent of 2.
See Also
--------
ldexp : Compute ``y = x1 * 2**x2``, the inverse of `frexp`.
Notes
-----
Complex dtypes are not supported, they will raise a TypeError.
Examples
--------
>>> x = np.arange(9)
>>> y1, y2 = np.frexp(x)
>>> y1
array([ 0. , 0.5 , 0.5 , 0.75 , 0.5 , 0.625, 0.75 , 0.875,
0.5 ])
>>> y2
array([0, 1, 2, 2, 3, 3, 3, 3, 4])
>>> y1 * 2**y2
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8.])
""")
add_newdoc('numpy.core.umath', 'ldexp',
"""
Returns x1 * 2**x2, element-wise.
The mantissas `x1` and twos exponents `x2` are used to construct
floating point numbers ``x1 * 2**x2``.
Parameters
----------
x1 : array_like
Array of multipliers.
x2 : array_like, int
Array of twos exponents.
out : ndarray, optional
Output array for the result.
Returns
-------
y : ndarray or scalar
The result of ``x1 * 2**x2``.
See Also
--------
frexp : Return (y1, y2) from ``x = y1 * 2**y2``, inverse to `ldexp`.
Notes
-----
Complex dtypes are not supported, they will raise a TypeError.
`ldexp` is useful as the inverse of `frexp`, if used by itself it is
more clear to simply use the expression ``x1 * 2**x2``.
Examples
--------
>>> np.ldexp(5, np.arange(4))
array([ 5., 10., 20., 40.], dtype=float32)
>>> x = np.arange(6)
>>> np.ldexp(*np.frexp(x))
array([ 0., 1., 2., 3., 4., 5.])
""")
|