File: info.py

package info (click to toggle)
python-numpy 1%3A1.12.1-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 23,732 kB
  • ctags: 19,262
  • sloc: ansic: 146,995; python: 98,088; cpp: 1,112; makefile: 425; f90: 307; sh: 173; fortran: 169; perl: 58
file content (37 lines) | stat: -rw-r--r-- 1,198 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
"""\
Core Linear Algebra Tools
-------------------------
Linear algebra basics:

- norm            Vector or matrix norm
- inv             Inverse of a square matrix
- solve           Solve a linear system of equations
- det             Determinant of a square matrix
- lstsq           Solve linear least-squares problem
- pinv            Pseudo-inverse (Moore-Penrose) calculated using a singular
                  value decomposition
- matrix_power    Integer power of a square matrix

Eigenvalues and decompositions:

- eig             Eigenvalues and vectors of a square matrix
- eigh            Eigenvalues and eigenvectors of a Hermitian matrix
- eigvals         Eigenvalues of a square matrix
- eigvalsh        Eigenvalues of a Hermitian matrix
- qr              QR decomposition of a matrix
- svd             Singular value decomposition of a matrix
- cholesky        Cholesky decomposition of a matrix

Tensor operations:

- tensorsolve     Solve a linear tensor equation
- tensorinv       Calculate an inverse of a tensor

Exceptions:

- LinAlgError     Indicates a failed linear algebra operation

"""
from __future__ import division, absolute_import, print_function

depends = ['core']