1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
from __future__ import division, absolute_import, print_function
import sys
try:
# Accessing collections abstract classes from collections
# has been deprecated since Python 3.3
import collections.abc as collections_abc
except ImportError:
import collections as collections_abc
import textwrap
from os import path
import pytest
import numpy as np
from numpy.compat import Path
from numpy.testing import (
assert_, assert_equal, assert_array_equal, assert_array_almost_equal,
assert_raises, temppath
)
from numpy.core.numeric import pickle
class TestFromrecords(object):
def test_fromrecords(self):
r = np.rec.fromrecords([[456, 'dbe', 1.2], [2, 'de', 1.3]],
names='col1,col2,col3')
assert_equal(r[0].item(), (456, 'dbe', 1.2))
assert_equal(r['col1'].dtype.kind, 'i')
if sys.version_info[0] >= 3:
assert_equal(r['col2'].dtype.kind, 'U')
assert_equal(r['col2'].dtype.itemsize, 12)
else:
assert_equal(r['col2'].dtype.kind, 'S')
assert_equal(r['col2'].dtype.itemsize, 3)
assert_equal(r['col3'].dtype.kind, 'f')
def test_fromrecords_0len(self):
""" Verify fromrecords works with a 0-length input """
dtype = [('a', float), ('b', float)]
r = np.rec.fromrecords([], dtype=dtype)
assert_equal(r.shape, (0,))
def test_fromrecords_2d(self):
data = [
[(1, 2), (3, 4), (5, 6)],
[(6, 5), (4, 3), (2, 1)]
]
expected_a = [[1, 3, 5], [6, 4, 2]]
expected_b = [[2, 4, 6], [5, 3, 1]]
# try with dtype
r1 = np.rec.fromrecords(data, dtype=[('a', int), ('b', int)])
assert_equal(r1['a'], expected_a)
assert_equal(r1['b'], expected_b)
# try with names
r2 = np.rec.fromrecords(data, names=['a', 'b'])
assert_equal(r2['a'], expected_a)
assert_equal(r2['b'], expected_b)
assert_equal(r1, r2)
def test_method_array(self):
r = np.rec.array(b'abcdefg' * 100, formats='i2,a3,i4', shape=3, byteorder='big')
assert_equal(r[1].item(), (25444, b'efg', 1633837924))
def test_method_array2(self):
r = np.rec.array([(1, 11, 'a'), (2, 22, 'b'), (3, 33, 'c'), (4, 44, 'd'), (5, 55, 'ex'),
(6, 66, 'f'), (7, 77, 'g')], formats='u1,f4,a1')
assert_equal(r[1].item(), (2, 22.0, b'b'))
def test_recarray_slices(self):
r = np.rec.array([(1, 11, 'a'), (2, 22, 'b'), (3, 33, 'c'), (4, 44, 'd'), (5, 55, 'ex'),
(6, 66, 'f'), (7, 77, 'g')], formats='u1,f4,a1')
assert_equal(r[1::2][1].item(), (4, 44.0, b'd'))
def test_recarray_fromarrays(self):
x1 = np.array([1, 2, 3, 4])
x2 = np.array(['a', 'dd', 'xyz', '12'])
x3 = np.array([1.1, 2, 3, 4])
r = np.rec.fromarrays([x1, x2, x3], names='a,b,c')
assert_equal(r[1].item(), (2, 'dd', 2.0))
x1[1] = 34
assert_equal(r.a, np.array([1, 2, 3, 4]))
def test_recarray_fromfile(self):
data_dir = path.join(path.dirname(__file__), 'data')
filename = path.join(data_dir, 'recarray_from_file.fits')
fd = open(filename, 'rb')
fd.seek(2880 * 2)
r1 = np.rec.fromfile(fd, formats='f8,i4,a5', shape=3, byteorder='big')
fd.seek(2880 * 2)
r2 = np.rec.array(fd, formats='f8,i4,a5', shape=3, byteorder='big')
fd.close()
assert_equal(r1, r2)
def test_recarray_from_obj(self):
count = 10
a = np.zeros(count, dtype='O')
b = np.zeros(count, dtype='f8')
c = np.zeros(count, dtype='f8')
for i in range(len(a)):
a[i] = list(range(1, 10))
mine = np.rec.fromarrays([a, b, c], names='date,data1,data2')
for i in range(len(a)):
assert_((mine.date[i] == list(range(1, 10))))
assert_((mine.data1[i] == 0.0))
assert_((mine.data2[i] == 0.0))
def test_recarray_repr(self):
a = np.array([(1, 0.1), (2, 0.2)],
dtype=[('foo', '<i4'), ('bar', '<f8')])
a = np.rec.array(a)
assert_equal(
repr(a),
textwrap.dedent("""\
rec.array([(1, 0.1), (2, 0.2)],
dtype=[('foo', '<i4'), ('bar', '<f8')])""")
)
# make sure non-structured dtypes also show up as rec.array
a = np.array(np.ones(4, dtype='f8'))
assert_(repr(np.rec.array(a)).startswith('rec.array'))
# check that the 'np.record' part of the dtype isn't shown
a = np.rec.array(np.ones(3, dtype='i4,i4'))
assert_equal(repr(a).find('numpy.record'), -1)
a = np.rec.array(np.ones(3, dtype='i4'))
assert_(repr(a).find('dtype=int32') != -1)
def test_0d_recarray_repr(self):
arr_0d = np.rec.array((1, 2.0, '2003'), dtype='<i4,<f8,<M8[Y]')
assert_equal(repr(arr_0d), textwrap.dedent("""\
rec.array((1, 2., '2003'),
dtype=[('f0', '<i4'), ('f1', '<f8'), ('f2', '<M8[Y]')])"""))
record = arr_0d[()]
assert_equal(repr(record), "(1, 2., '2003')")
# 1.13 converted to python scalars before the repr
try:
np.set_printoptions(legacy='1.13')
assert_equal(repr(record), '(1, 2.0, datetime.date(2003, 1, 1))')
finally:
np.set_printoptions(legacy=False)
def test_recarray_from_repr(self):
a = np.array([(1,'ABC'), (2, "DEF")],
dtype=[('foo', int), ('bar', 'S4')])
recordarr = np.rec.array(a)
recarr = a.view(np.recarray)
recordview = a.view(np.dtype((np.record, a.dtype)))
recordarr_r = eval("numpy." + repr(recordarr), {'numpy': np})
recarr_r = eval("numpy." + repr(recarr), {'numpy': np})
recordview_r = eval("numpy." + repr(recordview), {'numpy': np})
assert_equal(type(recordarr_r), np.recarray)
assert_equal(recordarr_r.dtype.type, np.record)
assert_equal(recordarr, recordarr_r)
assert_equal(type(recarr_r), np.recarray)
assert_equal(recarr_r.dtype.type, np.record)
assert_equal(recarr, recarr_r)
assert_equal(type(recordview_r), np.ndarray)
assert_equal(recordview.dtype.type, np.record)
assert_equal(recordview, recordview_r)
def test_recarray_views(self):
a = np.array([(1,'ABC'), (2, "DEF")],
dtype=[('foo', int), ('bar', 'S4')])
b = np.array([1,2,3,4,5], dtype=np.int64)
#check that np.rec.array gives right dtypes
assert_equal(np.rec.array(a).dtype.type, np.record)
assert_equal(type(np.rec.array(a)), np.recarray)
assert_equal(np.rec.array(b).dtype.type, np.int64)
assert_equal(type(np.rec.array(b)), np.recarray)
#check that viewing as recarray does the same
assert_equal(a.view(np.recarray).dtype.type, np.record)
assert_equal(type(a.view(np.recarray)), np.recarray)
assert_equal(b.view(np.recarray).dtype.type, np.int64)
assert_equal(type(b.view(np.recarray)), np.recarray)
#check that view to non-structured dtype preserves type=np.recarray
r = np.rec.array(np.ones(4, dtype="f4,i4"))
rv = r.view('f8').view('f4,i4')
assert_equal(type(rv), np.recarray)
assert_equal(rv.dtype.type, np.record)
#check that getitem also preserves np.recarray and np.record
r = np.rec.array(np.ones(4, dtype=[('a', 'i4'), ('b', 'i4'),
('c', 'i4,i4')]))
assert_equal(r['c'].dtype.type, np.record)
assert_equal(type(r['c']), np.recarray)
#and that it preserves subclasses (gh-6949)
class C(np.recarray):
pass
c = r.view(C)
assert_equal(type(c['c']), C)
# check that accessing nested structures keep record type, but
# not for subarrays, non-void structures, non-structured voids
test_dtype = [('a', 'f4,f4'), ('b', 'V8'), ('c', ('f4',2)),
('d', ('i8', 'i4,i4'))]
r = np.rec.array([((1,1), b'11111111', [1,1], 1),
((1,1), b'11111111', [1,1], 1)], dtype=test_dtype)
assert_equal(r.a.dtype.type, np.record)
assert_equal(r.b.dtype.type, np.void)
assert_equal(r.c.dtype.type, np.float32)
assert_equal(r.d.dtype.type, np.int64)
# check the same, but for views
r = np.rec.array(np.ones(4, dtype='i4,i4'))
assert_equal(r.view('f4,f4').dtype.type, np.record)
assert_equal(r.view(('i4',2)).dtype.type, np.int32)
assert_equal(r.view('V8').dtype.type, np.void)
assert_equal(r.view(('i8', 'i4,i4')).dtype.type, np.int64)
#check that we can undo the view
arrs = [np.ones(4, dtype='f4,i4'), np.ones(4, dtype='f8')]
for arr in arrs:
rec = np.rec.array(arr)
# recommended way to view as an ndarray:
arr2 = rec.view(rec.dtype.fields or rec.dtype, np.ndarray)
assert_equal(arr2.dtype.type, arr.dtype.type)
assert_equal(type(arr2), type(arr))
def test_recarray_from_names(self):
ra = np.rec.array([
(1, 'abc', 3.7000002861022949, 0),
(2, 'xy', 6.6999998092651367, 1),
(0, ' ', 0.40000000596046448, 0)],
names='c1, c2, c3, c4')
pa = np.rec.fromrecords([
(1, 'abc', 3.7000002861022949, 0),
(2, 'xy', 6.6999998092651367, 1),
(0, ' ', 0.40000000596046448, 0)],
names='c1, c2, c3, c4')
assert_(ra.dtype == pa.dtype)
assert_(ra.shape == pa.shape)
for k in range(len(ra)):
assert_(ra[k].item() == pa[k].item())
def test_recarray_conflict_fields(self):
ra = np.rec.array([(1, 'abc', 2.3), (2, 'xyz', 4.2),
(3, 'wrs', 1.3)],
names='field, shape, mean')
ra.mean = [1.1, 2.2, 3.3]
assert_array_almost_equal(ra['mean'], [1.1, 2.2, 3.3])
assert_(type(ra.mean) is type(ra.var))
ra.shape = (1, 3)
assert_(ra.shape == (1, 3))
ra.shape = ['A', 'B', 'C']
assert_array_equal(ra['shape'], [['A', 'B', 'C']])
ra.field = 5
assert_array_equal(ra['field'], [[5, 5, 5]])
assert_(isinstance(ra.field, collections_abc.Callable))
def test_fromrecords_with_explicit_dtype(self):
a = np.rec.fromrecords([(1, 'a'), (2, 'bbb')],
dtype=[('a', int), ('b', object)])
assert_equal(a.a, [1, 2])
assert_equal(a[0].a, 1)
assert_equal(a.b, ['a', 'bbb'])
assert_equal(a[-1].b, 'bbb')
#
ndtype = np.dtype([('a', int), ('b', object)])
a = np.rec.fromrecords([(1, 'a'), (2, 'bbb')], dtype=ndtype)
assert_equal(a.a, [1, 2])
assert_equal(a[0].a, 1)
assert_equal(a.b, ['a', 'bbb'])
assert_equal(a[-1].b, 'bbb')
def test_recarray_stringtypes(self):
# Issue #3993
a = np.array([('abc ', 1), ('abc', 2)],
dtype=[('foo', 'S4'), ('bar', int)])
a = a.view(np.recarray)
assert_equal(a.foo[0] == a.foo[1], False)
def test_recarray_returntypes(self):
qux_fields = {'C': (np.dtype('S5'), 0), 'D': (np.dtype('S5'), 6)}
a = np.rec.array([('abc ', (1,1), 1, ('abcde', 'fgehi')),
('abc', (2,3), 1, ('abcde', 'jklmn'))],
dtype=[('foo', 'S4'),
('bar', [('A', int), ('B', int)]),
('baz', int), ('qux', qux_fields)])
assert_equal(type(a.foo), np.ndarray)
assert_equal(type(a['foo']), np.ndarray)
assert_equal(type(a.bar), np.recarray)
assert_equal(type(a['bar']), np.recarray)
assert_equal(a.bar.dtype.type, np.record)
assert_equal(type(a['qux']), np.recarray)
assert_equal(a.qux.dtype.type, np.record)
assert_equal(dict(a.qux.dtype.fields), qux_fields)
assert_equal(type(a.baz), np.ndarray)
assert_equal(type(a['baz']), np.ndarray)
assert_equal(type(a[0].bar), np.record)
assert_equal(type(a[0]['bar']), np.record)
assert_equal(a[0].bar.A, 1)
assert_equal(a[0].bar['A'], 1)
assert_equal(a[0]['bar'].A, 1)
assert_equal(a[0]['bar']['A'], 1)
assert_equal(a[0].qux.D, b'fgehi')
assert_equal(a[0].qux['D'], b'fgehi')
assert_equal(a[0]['qux'].D, b'fgehi')
assert_equal(a[0]['qux']['D'], b'fgehi')
def test_zero_width_strings(self):
# Test for #6430, based on the test case from #1901
cols = [['test'] * 3, [''] * 3]
rec = np.rec.fromarrays(cols)
assert_equal(rec['f0'], ['test', 'test', 'test'])
assert_equal(rec['f1'], ['', '', ''])
dt = np.dtype([('f0', '|S4'), ('f1', '|S')])
rec = np.rec.fromarrays(cols, dtype=dt)
assert_equal(rec.itemsize, 4)
assert_equal(rec['f0'], [b'test', b'test', b'test'])
assert_equal(rec['f1'], [b'', b'', b''])
@pytest.mark.skipif(Path is None, reason="No pathlib.Path")
class TestPathUsage(object):
# Test that pathlib.Path can be used
def test_tofile_fromfile(self):
with temppath(suffix='.bin') as path:
path = Path(path)
np.random.seed(123)
a = np.random.rand(10).astype('f8,i4,a5')
a[5] = (0.5,10,'abcde')
with path.open("wb") as fd:
a.tofile(fd)
x = np.core.records.fromfile(path,
formats='f8,i4,a5',
shape=10)
assert_array_equal(x, a)
class TestRecord(object):
def setup(self):
self.data = np.rec.fromrecords([(1, 2, 3), (4, 5, 6)],
dtype=[("col1", "<i4"),
("col2", "<i4"),
("col3", "<i4")])
def test_assignment1(self):
a = self.data
assert_equal(a.col1[0], 1)
a[0].col1 = 0
assert_equal(a.col1[0], 0)
def test_assignment2(self):
a = self.data
assert_equal(a.col1[0], 1)
a.col1[0] = 0
assert_equal(a.col1[0], 0)
def test_invalid_assignment(self):
a = self.data
def assign_invalid_column(x):
x[0].col5 = 1
assert_raises(AttributeError, assign_invalid_column, a)
def test_nonwriteable_setfield(self):
# gh-8171
r = np.rec.array([(0,), (1,)], dtype=[('f', 'i4')])
r.flags.writeable = False
with assert_raises(ValueError):
r.f = [2, 3]
with assert_raises(ValueError):
r.setfield([2,3], *r.dtype.fields['f'])
def test_out_of_order_fields(self):
# names in the same order, padding added to descr
x = self.data[['col1', 'col2']]
assert_equal(x.dtype.names, ('col1', 'col2'))
assert_equal(x.dtype.descr,
[('col1', '<i4'), ('col2', '<i4'), ('', '|V4')])
# names change order to match indexing, as of 1.14 - descr can't
# represent that
y = self.data[['col2', 'col1']]
assert_equal(y.dtype.names, ('col2', 'col1'))
assert_raises(ValueError, lambda: y.dtype.descr)
def test_pickle_1(self):
# Issue #1529
a = np.array([(1, [])], dtype=[('a', np.int32), ('b', np.int32, 0)])
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
assert_equal(a, pickle.loads(pickle.dumps(a, protocol=proto)))
assert_equal(a[0], pickle.loads(pickle.dumps(a[0],
protocol=proto)))
def test_pickle_2(self):
a = self.data
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
assert_equal(a, pickle.loads(pickle.dumps(a, protocol=proto)))
assert_equal(a[0], pickle.loads(pickle.dumps(a[0],
protocol=proto)))
def test_pickle_3(self):
# Issue #7140
a = self.data
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
pa = pickle.loads(pickle.dumps(a[0], protocol=proto))
assert_(pa.flags.c_contiguous)
assert_(pa.flags.f_contiguous)
assert_(pa.flags.writeable)
assert_(pa.flags.aligned)
def test_objview_record(self):
# https://github.com/numpy/numpy/issues/2599
dt = np.dtype([('foo', 'i8'), ('bar', 'O')])
r = np.zeros((1,3), dtype=dt).view(np.recarray)
r.foo = np.array([1, 2, 3]) # TypeError?
# https://github.com/numpy/numpy/issues/3256
ra = np.recarray((2,), dtype=[('x', object), ('y', float), ('z', int)])
ra[['x','y']] # TypeError?
def test_record_scalar_setitem(self):
# https://github.com/numpy/numpy/issues/3561
rec = np.recarray(1, dtype=[('x', float, 5)])
rec[0].x = 1
assert_equal(rec[0].x, np.ones(5))
def test_missing_field(self):
# https://github.com/numpy/numpy/issues/4806
arr = np.zeros((3,), dtype=[('x', int), ('y', int)])
assert_raises(ValueError, lambda: arr[['nofield']])
def test_find_duplicate():
l1 = [1, 2, 3, 4, 5, 6]
assert_(np.rec.find_duplicate(l1) == [])
l2 = [1, 2, 1, 4, 5, 6]
assert_(np.rec.find_duplicate(l2) == [1])
l3 = [1, 2, 1, 4, 1, 6, 2, 3]
assert_(np.rec.find_duplicate(l3) == [1, 2])
l3 = [2, 2, 1, 4, 1, 6, 2, 3]
assert_(np.rec.find_duplicate(l3) == [2, 1])
|