1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
|
"""
============================
``ctypes`` Utility Functions
============================
See Also
---------
load_library : Load a C library.
ndpointer : Array restype/argtype with verification.
as_ctypes : Create a ctypes array from an ndarray.
as_array : Create an ndarray from a ctypes array.
References
----------
.. [1] "SciPy Cookbook: ctypes", https://scipy-cookbook.readthedocs.io/items/Ctypes.html
Examples
--------
Load the C library:
>>> _lib = np.ctypeslib.load_library('libmystuff', '.') #doctest: +SKIP
Our result type, an ndarray that must be of type double, be 1-dimensional
and is C-contiguous in memory:
>>> array_1d_double = np.ctypeslib.ndpointer(
... dtype=np.double,
... ndim=1, flags='CONTIGUOUS') #doctest: +SKIP
Our C-function typically takes an array and updates its values
in-place. For example::
void foo_func(double* x, int length)
{
int i;
for (i = 0; i < length; i++) {
x[i] = i*i;
}
}
We wrap it using:
>>> _lib.foo_func.restype = None #doctest: +SKIP
>>> _lib.foo_func.argtypes = [array_1d_double, c_int] #doctest: +SKIP
Then, we're ready to call ``foo_func``:
>>> out = np.empty(15, dtype=np.double)
>>> _lib.foo_func(out, len(out)) #doctest: +SKIP
"""
from __future__ import division, absolute_import, print_function
__all__ = ['load_library', 'ndpointer', 'test', 'ctypes_load_library',
'c_intp', 'as_ctypes', 'as_array']
import os
from numpy import (
integer, ndarray, dtype as _dtype, deprecate, array, frombuffer
)
from numpy.core.multiarray import _flagdict, flagsobj
try:
import ctypes
except ImportError:
ctypes = None
if ctypes is None:
def _dummy(*args, **kwds):
"""
Dummy object that raises an ImportError if ctypes is not available.
Raises
------
ImportError
If ctypes is not available.
"""
raise ImportError("ctypes is not available.")
ctypes_load_library = _dummy
load_library = _dummy
as_ctypes = _dummy
as_array = _dummy
from numpy import intp as c_intp
_ndptr_base = object
else:
import numpy.core._internal as nic
c_intp = nic._getintp_ctype()
del nic
_ndptr_base = ctypes.c_void_p
# Adapted from Albert Strasheim
def load_library(libname, loader_path):
"""
It is possible to load a library using
>>> lib = ctypes.cdll[<full_path_name>]
But there are cross-platform considerations, such as library file extensions,
plus the fact Windows will just load the first library it finds with that name.
NumPy supplies the load_library function as a convenience.
Parameters
----------
libname : str
Name of the library, which can have 'lib' as a prefix,
but without an extension.
loader_path : str
Where the library can be found.
Returns
-------
ctypes.cdll[libpath] : library object
A ctypes library object
Raises
------
OSError
If there is no library with the expected extension, or the
library is defective and cannot be loaded.
"""
if ctypes.__version__ < '1.0.1':
import warnings
warnings.warn("All features of ctypes interface may not work " \
"with ctypes < 1.0.1", stacklevel=2)
ext = os.path.splitext(libname)[1]
if not ext:
# Try to load library with platform-specific name, otherwise
# default to libname.[so|pyd]. Sometimes, these files are built
# erroneously on non-linux platforms.
from numpy.distutils.misc_util import get_shared_lib_extension
so_ext = get_shared_lib_extension()
libname_ext = [libname + so_ext]
# mac, windows and linux >= py3.2 shared library and loadable
# module have different extensions so try both
so_ext2 = get_shared_lib_extension(is_python_ext=True)
if not so_ext2 == so_ext:
libname_ext.insert(0, libname + so_ext2)
try:
import sysconfig
so_ext3 = '.%s-%s.so' % (sysconfig.get_config_var('SOABI'),
sysconfig.get_config_var('MULTIARCH'))
libname_ext.insert(0, libname + so_ext3)
except (KeyError, ImportError):
pass
else:
libname_ext = [libname]
loader_path = os.path.abspath(loader_path)
if not os.path.isdir(loader_path):
libdir = os.path.dirname(loader_path)
else:
libdir = loader_path
for ln in libname_ext:
libpath = os.path.join(libdir, ln)
if os.path.exists(libpath):
try:
return ctypes.cdll[libpath]
except OSError:
## defective lib file
raise
## if no successful return in the libname_ext loop:
raise OSError("no file with expected extension")
ctypes_load_library = deprecate(load_library, 'ctypes_load_library',
'load_library')
def _num_fromflags(flaglist):
num = 0
for val in flaglist:
num += _flagdict[val]
return num
_flagnames = ['C_CONTIGUOUS', 'F_CONTIGUOUS', 'ALIGNED', 'WRITEABLE',
'OWNDATA', 'UPDATEIFCOPY', 'WRITEBACKIFCOPY']
def _flags_fromnum(num):
res = []
for key in _flagnames:
value = _flagdict[key]
if (num & value):
res.append(key)
return res
class _ndptr(_ndptr_base):
@classmethod
def from_param(cls, obj):
if not isinstance(obj, ndarray):
raise TypeError("argument must be an ndarray")
if cls._dtype_ is not None \
and obj.dtype != cls._dtype_:
raise TypeError("array must have data type %s" % cls._dtype_)
if cls._ndim_ is not None \
and obj.ndim != cls._ndim_:
raise TypeError("array must have %d dimension(s)" % cls._ndim_)
if cls._shape_ is not None \
and obj.shape != cls._shape_:
raise TypeError("array must have shape %s" % str(cls._shape_))
if cls._flags_ is not None \
and ((obj.flags.num & cls._flags_) != cls._flags_):
raise TypeError("array must have flags %s" %
_flags_fromnum(cls._flags_))
return obj.ctypes
class _concrete_ndptr(_ndptr):
"""
Like _ndptr, but with `_shape_` and `_dtype_` specified.
Notably, this means the pointer has enough information to reconstruct
the array, which is not generally true.
"""
def _check_retval_(self):
"""
This method is called when this class is used as the .restype
attribute for a shared-library function, to automatically wrap the
pointer into an array.
"""
return self.contents
@property
def contents(self):
"""
Get an ndarray viewing the data pointed to by this pointer.
This mirrors the `contents` attribute of a normal ctypes pointer
"""
full_dtype = _dtype((self._dtype_, self._shape_))
full_ctype = ctypes.c_char * full_dtype.itemsize
buffer = ctypes.cast(self, ctypes.POINTER(full_ctype)).contents
return frombuffer(buffer, dtype=full_dtype).squeeze(axis=0)
# Factory for an array-checking class with from_param defined for
# use with ctypes argtypes mechanism
_pointer_type_cache = {}
def ndpointer(dtype=None, ndim=None, shape=None, flags=None):
"""
Array-checking restype/argtypes.
An ndpointer instance is used to describe an ndarray in restypes
and argtypes specifications. This approach is more flexible than
using, for example, ``POINTER(c_double)``, since several restrictions
can be specified, which are verified upon calling the ctypes function.
These include data type, number of dimensions, shape and flags. If a
given array does not satisfy the specified restrictions,
a ``TypeError`` is raised.
Parameters
----------
dtype : data-type, optional
Array data-type.
ndim : int, optional
Number of array dimensions.
shape : tuple of ints, optional
Array shape.
flags : str or tuple of str
Array flags; may be one or more of:
- C_CONTIGUOUS / C / CONTIGUOUS
- F_CONTIGUOUS / F / FORTRAN
- OWNDATA / O
- WRITEABLE / W
- ALIGNED / A
- WRITEBACKIFCOPY / X
- UPDATEIFCOPY / U
Returns
-------
klass : ndpointer type object
A type object, which is an ``_ndtpr`` instance containing
dtype, ndim, shape and flags information.
Raises
------
TypeError
If a given array does not satisfy the specified restrictions.
Examples
--------
>>> clib.somefunc.argtypes = [np.ctypeslib.ndpointer(dtype=np.float64,
... ndim=1,
... flags='C_CONTIGUOUS')]
... #doctest: +SKIP
>>> clib.somefunc(np.array([1, 2, 3], dtype=np.float64))
... #doctest: +SKIP
"""
# normalize dtype to an Optional[dtype]
if dtype is not None:
dtype = _dtype(dtype)
# normalize flags to an Optional[int]
num = None
if flags is not None:
if isinstance(flags, str):
flags = flags.split(',')
elif isinstance(flags, (int, integer)):
num = flags
flags = _flags_fromnum(num)
elif isinstance(flags, flagsobj):
num = flags.num
flags = _flags_fromnum(num)
if num is None:
try:
flags = [x.strip().upper() for x in flags]
except Exception:
raise TypeError("invalid flags specification")
num = _num_fromflags(flags)
# normalize shape to an Optional[tuple]
if shape is not None:
try:
shape = tuple(shape)
except TypeError:
# single integer -> 1-tuple
shape = (shape,)
cache_key = (dtype, ndim, shape, num)
try:
return _pointer_type_cache[cache_key]
except KeyError:
pass
# produce a name for the new type
if dtype is None:
name = 'any'
elif dtype.names:
name = str(id(dtype))
else:
name = dtype.str
if ndim is not None:
name += "_%dd" % ndim
if shape is not None:
name += "_"+"x".join(str(x) for x in shape)
if flags is not None:
name += "_"+"_".join(flags)
if dtype is not None and shape is not None:
base = _concrete_ndptr
else:
base = _ndptr
klass = type("ndpointer_%s"%name, (base,),
{"_dtype_": dtype,
"_shape_" : shape,
"_ndim_" : ndim,
"_flags_" : num})
_pointer_type_cache[cache_key] = klass
return klass
if ctypes is not None:
def _ctype_ndarray(element_type, shape):
""" Create an ndarray of the given element type and shape """
for dim in shape[::-1]:
element_type = dim * element_type
# prevent the type name include np.ctypeslib
element_type.__module__ = None
return element_type
def _get_scalar_type_map():
"""
Return a dictionary mapping native endian scalar dtype to ctypes types
"""
ct = ctypes
simple_types = [
ct.c_byte, ct.c_short, ct.c_int, ct.c_long, ct.c_longlong,
ct.c_ubyte, ct.c_ushort, ct.c_uint, ct.c_ulong, ct.c_ulonglong,
ct.c_float, ct.c_double,
ct.c_bool,
]
return {_dtype(ctype): ctype for ctype in simple_types}
_scalar_type_map = _get_scalar_type_map()
def _ctype_from_dtype_scalar(dtype):
# swapping twice ensure that `=` is promoted to <, >, or |
dtype_with_endian = dtype.newbyteorder('S').newbyteorder('S')
dtype_native = dtype.newbyteorder('=')
try:
ctype = _scalar_type_map[dtype_native]
except KeyError:
raise NotImplementedError(
"Converting {!r} to a ctypes type".format(dtype)
)
if dtype_with_endian.byteorder == '>':
ctype = ctype.__ctype_be__
elif dtype_with_endian.byteorder == '<':
ctype = ctype.__ctype_le__
return ctype
def _ctype_from_dtype_subarray(dtype):
element_dtype, shape = dtype.subdtype
ctype = _ctype_from_dtype(element_dtype)
return _ctype_ndarray(ctype, shape)
def _ctype_from_dtype_structured(dtype):
# extract offsets of each field
field_data = []
for name in dtype.names:
field_dtype, offset = dtype.fields[name][:2]
field_data.append((offset, name, _ctype_from_dtype(field_dtype)))
# ctypes doesn't care about field order
field_data = sorted(field_data, key=lambda f: f[0])
if len(field_data) > 1 and all(offset == 0 for offset, name, ctype in field_data):
# union, if multiple fields all at address 0
size = 0
_fields_ = []
for offset, name, ctype in field_data:
_fields_.append((name, ctype))
size = max(size, ctypes.sizeof(ctype))
# pad to the right size
if dtype.itemsize != size:
_fields_.append(('', ctypes.c_char * dtype.itemsize))
# we inserted manual padding, so always `_pack_`
return type('union', (ctypes.Union,), dict(
_fields_=_fields_,
_pack_=1,
__module__=None,
))
else:
last_offset = 0
_fields_ = []
for offset, name, ctype in field_data:
padding = offset - last_offset
if padding < 0:
raise NotImplementedError("Overlapping fields")
if padding > 0:
_fields_.append(('', ctypes.c_char * padding))
_fields_.append((name, ctype))
last_offset = offset + ctypes.sizeof(ctype)
padding = dtype.itemsize - last_offset
if padding > 0:
_fields_.append(('', ctypes.c_char * padding))
# we inserted manual padding, so always `_pack_`
return type('struct', (ctypes.Structure,), dict(
_fields_=_fields_,
_pack_=1,
__module__=None,
))
def _ctype_from_dtype(dtype):
if dtype.fields is not None:
return _ctype_from_dtype_structured(dtype)
elif dtype.subdtype is not None:
return _ctype_from_dtype_subarray(dtype)
else:
return _ctype_from_dtype_scalar(dtype)
def as_ctypes_type(dtype):
"""
Convert a dtype into a ctypes type.
Parameters
----------
dtype : dtype
The dtype to convert
Returns
-------
ctypes
A ctype scalar, union, array, or struct
Raises
------
NotImplementedError
If the conversion is not possible
Notes
-----
This function does not losslessly round-trip in either direction.
``np.dtype(as_ctypes_type(dt))`` will:
- insert padding fields
- reorder fields to be sorted by offset
- discard field titles
``as_ctypes_type(np.dtype(ctype))`` will:
- discard the class names of ``Structure``s and ``Union``s
- convert single-element ``Union``s into single-element ``Structure``s
- insert padding fields
"""
return _ctype_from_dtype(_dtype(dtype))
def as_array(obj, shape=None):
"""
Create a numpy array from a ctypes array or POINTER.
The numpy array shares the memory with the ctypes object.
The shape parameter must be given if converting from a ctypes POINTER.
The shape parameter is ignored if converting from a ctypes array
"""
if isinstance(obj, ctypes._Pointer):
# convert pointers to an array of the desired shape
if shape is None:
raise TypeError(
'as_array() requires a shape argument when called on a '
'pointer')
p_arr_type = ctypes.POINTER(_ctype_ndarray(obj._type_, shape))
obj = ctypes.cast(obj, p_arr_type).contents
return array(obj, copy=False)
def as_ctypes(obj):
"""Create and return a ctypes object from a numpy array. Actually
anything that exposes the __array_interface__ is accepted."""
ai = obj.__array_interface__
if ai["strides"]:
raise TypeError("strided arrays not supported")
if ai["version"] != 3:
raise TypeError("only __array_interface__ version 3 supported")
addr, readonly = ai["data"]
if readonly:
raise TypeError("readonly arrays unsupported")
dtype = _dtype((ai["typestr"], ai["shape"]))
result = as_ctypes_type(dtype).from_address(addr)
result.__keep = obj
return result
|