File: randint_helpers.pxi

package info (click to toggle)
python-numpy 1%3A1.16.2-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 25,116 kB
  • sloc: ansic: 158,812; python: 115,039; cpp: 1,112; makefile: 502; sh: 314; f90: 289; sed: 140; fortran: 121; perl: 68
file content (462 lines) | stat: -rw-r--r-- 16,851 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
"""
Template for each `dtype` helper function in `np.random.randint`.
"""

def _rand_bool(npy_bool low, npy_bool high, size, rngstate):
    """
    _rand_bool(low, high, size, rngstate)

    Return random np.bool_ integers between ``low`` and ``high``, inclusive.

    Return random integers from the "discrete uniform" distribution in the
    closed interval [``low``, ``high``). On entry the arguments are presumed
    to have been validated for size and order for the np.bool_ type.

    Parameters
    ----------
    low : int
        Lowest (signed) integer to be drawn from the distribution.
    high : int
        Highest (signed) integer to be drawn from the distribution.
    size : int or tuple of ints
        Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
        ``m * n * k`` samples are drawn.  Default is None, in which case a
        single value is returned.
    rngstate : encapsulated pointer to rk_state
        The specific type depends on the python version. In Python 2 it is
        a PyCObject, in Python 3 a PyCapsule object.

    Returns
    -------
    out : python integer or ndarray of np.bool_
          `size`-shaped array of random integers from the appropriate
          distribution, or a single such random int if `size` not provided.

    """
    cdef npy_bool off, rng, buf
    cdef npy_bool *out
    cdef ndarray array "arrayObject"
    cdef npy_intp cnt
    cdef rk_state *state = <rk_state *>PyCapsule_GetPointer(rngstate, NULL)

    off = <npy_bool>(low)
    rng = <npy_bool>(high) - <npy_bool>(low)

    if size is None:
        rk_random_bool(off, rng, 1, &buf, state)
        return np.bool_(<npy_bool>buf)
    else:
        array = <ndarray>np.empty(size, np.bool_)
        cnt = PyArray_SIZE(array)
        array_data = <npy_bool *>PyArray_DATA(array)
        with nogil:
            rk_random_bool(off, rng, cnt, array_data, state)
        return array

def _rand_int8(npy_int8 low, npy_int8 high, size, rngstate):
    """
    _rand_int8(low, high, size, rngstate)

    Return random np.int8 integers between ``low`` and ``high``, inclusive.

    Return random integers from the "discrete uniform" distribution in the
    closed interval [``low``, ``high``). On entry the arguments are presumed
    to have been validated for size and order for the np.int8 type.

    Parameters
    ----------
    low : int
        Lowest (signed) integer to be drawn from the distribution.
    high : int
        Highest (signed) integer to be drawn from the distribution.
    size : int or tuple of ints
        Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
        ``m * n * k`` samples are drawn.  Default is None, in which case a
        single value is returned.
    rngstate : encapsulated pointer to rk_state
        The specific type depends on the python version. In Python 2 it is
        a PyCObject, in Python 3 a PyCapsule object.

    Returns
    -------
    out : python integer or ndarray of np.int8
          `size`-shaped array of random integers from the appropriate
          distribution, or a single such random int if `size` not provided.

    """
    cdef npy_uint8 off, rng, buf
    cdef npy_uint8 *out
    cdef ndarray array "arrayObject"
    cdef npy_intp cnt
    cdef rk_state *state = <rk_state *>PyCapsule_GetPointer(rngstate, NULL)

    off = <npy_uint8>(low)
    rng = <npy_uint8>(high) - <npy_uint8>(low)

    if size is None:
        rk_random_uint8(off, rng, 1, &buf, state)
        return np.int8(<npy_int8>buf)
    else:
        array = <ndarray>np.empty(size, np.int8)
        cnt = PyArray_SIZE(array)
        array_data = <npy_uint8 *>PyArray_DATA(array)
        with nogil:
            rk_random_uint8(off, rng, cnt, array_data, state)
        return array

def _rand_int16(npy_int16 low, npy_int16 high, size, rngstate):
    """
    _rand_int16(low, high, size, rngstate)

    Return random np.int16 integers between ``low`` and ``high``, inclusive.

    Return random integers from the "discrete uniform" distribution in the
    closed interval [``low``, ``high``). On entry the arguments are presumed
    to have been validated for size and order for the np.int16 type.

    Parameters
    ----------
    low : int
        Lowest (signed) integer to be drawn from the distribution.
    high : int
        Highest (signed) integer to be drawn from the distribution.
    size : int or tuple of ints
        Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
        ``m * n * k`` samples are drawn.  Default is None, in which case a
        single value is returned.
    rngstate : encapsulated pointer to rk_state
        The specific type depends on the python version. In Python 2 it is
        a PyCObject, in Python 3 a PyCapsule object.

    Returns
    -------
    out : python integer or ndarray of np.int16
          `size`-shaped array of random integers from the appropriate
          distribution, or a single such random int if `size` not provided.

    """
    cdef npy_uint16 off, rng, buf
    cdef npy_uint16 *out
    cdef ndarray array "arrayObject"
    cdef npy_intp cnt
    cdef rk_state *state = <rk_state *>PyCapsule_GetPointer(rngstate, NULL)

    off = <npy_uint16>(low)
    rng = <npy_uint16>(high) - <npy_uint16>(low)

    if size is None:
        rk_random_uint16(off, rng, 1, &buf, state)
        return np.int16(<npy_int16>buf)
    else:
        array = <ndarray>np.empty(size, np.int16)
        cnt = PyArray_SIZE(array)
        array_data = <npy_uint16 *>PyArray_DATA(array)
        with nogil:
            rk_random_uint16(off, rng, cnt, array_data, state)
        return array

def _rand_int32(npy_int32 low, npy_int32 high, size, rngstate):
    """
    _rand_int32(low, high, size, rngstate)

    Return random np.int32 integers between ``low`` and ``high``, inclusive.

    Return random integers from the "discrete uniform" distribution in the
    closed interval [``low``, ``high``). On entry the arguments are presumed
    to have been validated for size and order for the np.int32 type.

    Parameters
    ----------
    low : int
        Lowest (signed) integer to be drawn from the distribution.
    high : int
        Highest (signed) integer to be drawn from the distribution.
    size : int or tuple of ints
        Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
        ``m * n * k`` samples are drawn.  Default is None, in which case a
        single value is returned.
    rngstate : encapsulated pointer to rk_state
        The specific type depends on the python version. In Python 2 it is
        a PyCObject, in Python 3 a PyCapsule object.

    Returns
    -------
    out : python integer or ndarray of np.int32
          `size`-shaped array of random integers from the appropriate
          distribution, or a single such random int if `size` not provided.

    """
    cdef npy_uint32 off, rng, buf
    cdef npy_uint32 *out
    cdef ndarray array "arrayObject"
    cdef npy_intp cnt
    cdef rk_state *state = <rk_state *>PyCapsule_GetPointer(rngstate, NULL)

    off = <npy_uint32>(low)
    rng = <npy_uint32>(high) - <npy_uint32>(low)

    if size is None:
        rk_random_uint32(off, rng, 1, &buf, state)
        return np.int32(<npy_int32>buf)
    else:
        array = <ndarray>np.empty(size, np.int32)
        cnt = PyArray_SIZE(array)
        array_data = <npy_uint32 *>PyArray_DATA(array)
        with nogil:
            rk_random_uint32(off, rng, cnt, array_data, state)
        return array

def _rand_int64(npy_int64 low, npy_int64 high, size, rngstate):
    """
    _rand_int64(low, high, size, rngstate)

    Return random np.int64 integers between ``low`` and ``high``, inclusive.

    Return random integers from the "discrete uniform" distribution in the
    closed interval [``low``, ``high``). On entry the arguments are presumed
    to have been validated for size and order for the np.int64 type.

    Parameters
    ----------
    low : int
        Lowest (signed) integer to be drawn from the distribution.
    high : int
        Highest (signed) integer to be drawn from the distribution.
    size : int or tuple of ints
        Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
        ``m * n * k`` samples are drawn.  Default is None, in which case a
        single value is returned.
    rngstate : encapsulated pointer to rk_state
        The specific type depends on the python version. In Python 2 it is
        a PyCObject, in Python 3 a PyCapsule object.

    Returns
    -------
    out : python integer or ndarray of np.int64
          `size`-shaped array of random integers from the appropriate
          distribution, or a single such random int if `size` not provided.

    """
    cdef npy_uint64 off, rng, buf
    cdef npy_uint64 *out
    cdef ndarray array "arrayObject"
    cdef npy_intp cnt
    cdef rk_state *state = <rk_state *>PyCapsule_GetPointer(rngstate, NULL)

    off = <npy_uint64>(low)
    rng = <npy_uint64>(high) - <npy_uint64>(low)

    if size is None:
        rk_random_uint64(off, rng, 1, &buf, state)
        return np.int64(<npy_int64>buf)
    else:
        array = <ndarray>np.empty(size, np.int64)
        cnt = PyArray_SIZE(array)
        array_data = <npy_uint64 *>PyArray_DATA(array)
        with nogil:
            rk_random_uint64(off, rng, cnt, array_data, state)
        return array

def _rand_uint8(npy_uint8 low, npy_uint8 high, size, rngstate):
    """
    _rand_uint8(low, high, size, rngstate)

    Return random np.uint8 integers between ``low`` and ``high``, inclusive.

    Return random integers from the "discrete uniform" distribution in the
    closed interval [``low``, ``high``). On entry the arguments are presumed
    to have been validated for size and order for the np.uint8 type.

    Parameters
    ----------
    low : int
        Lowest (signed) integer to be drawn from the distribution.
    high : int
        Highest (signed) integer to be drawn from the distribution.
    size : int or tuple of ints
        Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
        ``m * n * k`` samples are drawn.  Default is None, in which case a
        single value is returned.
    rngstate : encapsulated pointer to rk_state
        The specific type depends on the python version. In Python 2 it is
        a PyCObject, in Python 3 a PyCapsule object.

    Returns
    -------
    out : python integer or ndarray of np.uint8
          `size`-shaped array of random integers from the appropriate
          distribution, or a single such random int if `size` not provided.

    """
    cdef npy_uint8 off, rng, buf
    cdef npy_uint8 *out
    cdef ndarray array "arrayObject"
    cdef npy_intp cnt
    cdef rk_state *state = <rk_state *>PyCapsule_GetPointer(rngstate, NULL)

    off = <npy_uint8>(low)
    rng = <npy_uint8>(high) - <npy_uint8>(low)

    if size is None:
        rk_random_uint8(off, rng, 1, &buf, state)
        return np.uint8(<npy_uint8>buf)
    else:
        array = <ndarray>np.empty(size, np.uint8)
        cnt = PyArray_SIZE(array)
        array_data = <npy_uint8 *>PyArray_DATA(array)
        with nogil:
            rk_random_uint8(off, rng, cnt, array_data, state)
        return array

def _rand_uint16(npy_uint16 low, npy_uint16 high, size, rngstate):
    """
    _rand_uint16(low, high, size, rngstate)

    Return random np.uint16 integers between ``low`` and ``high``, inclusive.

    Return random integers from the "discrete uniform" distribution in the
    closed interval [``low``, ``high``). On entry the arguments are presumed
    to have been validated for size and order for the np.uint16 type.

    Parameters
    ----------
    low : int
        Lowest (signed) integer to be drawn from the distribution.
    high : int
        Highest (signed) integer to be drawn from the distribution.
    size : int or tuple of ints
        Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
        ``m * n * k`` samples are drawn.  Default is None, in which case a
        single value is returned.
    rngstate : encapsulated pointer to rk_state
        The specific type depends on the python version. In Python 2 it is
        a PyCObject, in Python 3 a PyCapsule object.

    Returns
    -------
    out : python integer or ndarray of np.uint16
          `size`-shaped array of random integers from the appropriate
          distribution, or a single such random int if `size` not provided.

    """
    cdef npy_uint16 off, rng, buf
    cdef npy_uint16 *out
    cdef ndarray array "arrayObject"
    cdef npy_intp cnt
    cdef rk_state *state = <rk_state *>PyCapsule_GetPointer(rngstate, NULL)

    off = <npy_uint16>(low)
    rng = <npy_uint16>(high) - <npy_uint16>(low)

    if size is None:
        rk_random_uint16(off, rng, 1, &buf, state)
        return np.uint16(<npy_uint16>buf)
    else:
        array = <ndarray>np.empty(size, np.uint16)
        cnt = PyArray_SIZE(array)
        array_data = <npy_uint16 *>PyArray_DATA(array)
        with nogil:
            rk_random_uint16(off, rng, cnt, array_data, state)
        return array

def _rand_uint32(npy_uint32 low, npy_uint32 high, size, rngstate):
    """
    _rand_uint32(low, high, size, rngstate)

    Return random np.uint32 integers between ``low`` and ``high``, inclusive.

    Return random integers from the "discrete uniform" distribution in the
    closed interval [``low``, ``high``). On entry the arguments are presumed
    to have been validated for size and order for the np.uint32 type.

    Parameters
    ----------
    low : int
        Lowest (signed) integer to be drawn from the distribution.
    high : int
        Highest (signed) integer to be drawn from the distribution.
    size : int or tuple of ints
        Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
        ``m * n * k`` samples are drawn.  Default is None, in which case a
        single value is returned.
    rngstate : encapsulated pointer to rk_state
        The specific type depends on the python version. In Python 2 it is
        a PyCObject, in Python 3 a PyCapsule object.

    Returns
    -------
    out : python integer or ndarray of np.uint32
          `size`-shaped array of random integers from the appropriate
          distribution, or a single such random int if `size` not provided.

    """
    cdef npy_uint32 off, rng, buf
    cdef npy_uint32 *out
    cdef ndarray array "arrayObject"
    cdef npy_intp cnt
    cdef rk_state *state = <rk_state *>PyCapsule_GetPointer(rngstate, NULL)

    off = <npy_uint32>(low)
    rng = <npy_uint32>(high) - <npy_uint32>(low)

    if size is None:
        rk_random_uint32(off, rng, 1, &buf, state)
        return np.uint32(<npy_uint32>buf)
    else:
        array = <ndarray>np.empty(size, np.uint32)
        cnt = PyArray_SIZE(array)
        array_data = <npy_uint32 *>PyArray_DATA(array)
        with nogil:
            rk_random_uint32(off, rng, cnt, array_data, state)
        return array

def _rand_uint64(npy_uint64 low, npy_uint64 high, size, rngstate):
    """
    _rand_uint64(low, high, size, rngstate)

    Return random np.uint64 integers between ``low`` and ``high``, inclusive.

    Return random integers from the "discrete uniform" distribution in the
    closed interval [``low``, ``high``). On entry the arguments are presumed
    to have been validated for size and order for the np.uint64 type.

    Parameters
    ----------
    low : int
        Lowest (signed) integer to be drawn from the distribution.
    high : int
        Highest (signed) integer to be drawn from the distribution.
    size : int or tuple of ints
        Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
        ``m * n * k`` samples are drawn.  Default is None, in which case a
        single value is returned.
    rngstate : encapsulated pointer to rk_state
        The specific type depends on the python version. In Python 2 it is
        a PyCObject, in Python 3 a PyCapsule object.

    Returns
    -------
    out : python integer or ndarray of np.uint64
          `size`-shaped array of random integers from the appropriate
          distribution, or a single such random int if `size` not provided.

    """
    cdef npy_uint64 off, rng, buf
    cdef npy_uint64 *out
    cdef ndarray array "arrayObject"
    cdef npy_intp cnt
    cdef rk_state *state = <rk_state *>PyCapsule_GetPointer(rngstate, NULL)

    off = <npy_uint64>(low)
    rng = <npy_uint64>(high) - <npy_uint64>(low)

    if size is None:
        rk_random_uint64(off, rng, 1, &buf, state)
        return np.uint64(<npy_uint64>buf)
    else:
        array = <ndarray>np.empty(size, np.uint64)
        cnt = PyArray_SIZE(array)
        array_data = <npy_uint64 *>PyArray_DATA(array)
        with nogil:
            rk_random_uint64(off, rng, cnt, array_data, state)
        return array