1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
"""
Template for each `dtype` helper function in `np.random.randint`.
"""
def _rand_bool(npy_bool low, npy_bool high, size, rngstate):
"""
_rand_bool(low, high, size, rngstate)
Return random np.bool_ integers between ``low`` and ``high``, inclusive.
Return random integers from the "discrete uniform" distribution in the
closed interval [``low``, ``high``). On entry the arguments are presumed
to have been validated for size and order for the np.bool_ type.
Parameters
----------
low : int
Lowest (signed) integer to be drawn from the distribution.
high : int
Highest (signed) integer to be drawn from the distribution.
size : int or tuple of ints
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
rngstate : encapsulated pointer to rk_state
The specific type depends on the python version. In Python 2 it is
a PyCObject, in Python 3 a PyCapsule object.
Returns
-------
out : python integer or ndarray of np.bool_
`size`-shaped array of random integers from the appropriate
distribution, or a single such random int if `size` not provided.
"""
cdef npy_bool off, rng, buf
cdef npy_bool *out
cdef ndarray array "arrayObject"
cdef npy_intp cnt
cdef rk_state *state = <rk_state *>PyCapsule_GetPointer(rngstate, NULL)
off = <npy_bool>(low)
rng = <npy_bool>(high) - <npy_bool>(low)
if size is None:
rk_random_bool(off, rng, 1, &buf, state)
return np.bool_(<npy_bool>buf)
else:
array = <ndarray>np.empty(size, np.bool_)
cnt = PyArray_SIZE(array)
array_data = <npy_bool *>PyArray_DATA(array)
with nogil:
rk_random_bool(off, rng, cnt, array_data, state)
return array
def _rand_int8(npy_int8 low, npy_int8 high, size, rngstate):
"""
_rand_int8(low, high, size, rngstate)
Return random np.int8 integers between ``low`` and ``high``, inclusive.
Return random integers from the "discrete uniform" distribution in the
closed interval [``low``, ``high``). On entry the arguments are presumed
to have been validated for size and order for the np.int8 type.
Parameters
----------
low : int
Lowest (signed) integer to be drawn from the distribution.
high : int
Highest (signed) integer to be drawn from the distribution.
size : int or tuple of ints
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
rngstate : encapsulated pointer to rk_state
The specific type depends on the python version. In Python 2 it is
a PyCObject, in Python 3 a PyCapsule object.
Returns
-------
out : python integer or ndarray of np.int8
`size`-shaped array of random integers from the appropriate
distribution, or a single such random int if `size` not provided.
"""
cdef npy_uint8 off, rng, buf
cdef npy_uint8 *out
cdef ndarray array "arrayObject"
cdef npy_intp cnt
cdef rk_state *state = <rk_state *>PyCapsule_GetPointer(rngstate, NULL)
off = <npy_uint8>(low)
rng = <npy_uint8>(high) - <npy_uint8>(low)
if size is None:
rk_random_uint8(off, rng, 1, &buf, state)
return np.int8(<npy_int8>buf)
else:
array = <ndarray>np.empty(size, np.int8)
cnt = PyArray_SIZE(array)
array_data = <npy_uint8 *>PyArray_DATA(array)
with nogil:
rk_random_uint8(off, rng, cnt, array_data, state)
return array
def _rand_int16(npy_int16 low, npy_int16 high, size, rngstate):
"""
_rand_int16(low, high, size, rngstate)
Return random np.int16 integers between ``low`` and ``high``, inclusive.
Return random integers from the "discrete uniform" distribution in the
closed interval [``low``, ``high``). On entry the arguments are presumed
to have been validated for size and order for the np.int16 type.
Parameters
----------
low : int
Lowest (signed) integer to be drawn from the distribution.
high : int
Highest (signed) integer to be drawn from the distribution.
size : int or tuple of ints
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
rngstate : encapsulated pointer to rk_state
The specific type depends on the python version. In Python 2 it is
a PyCObject, in Python 3 a PyCapsule object.
Returns
-------
out : python integer or ndarray of np.int16
`size`-shaped array of random integers from the appropriate
distribution, or a single such random int if `size` not provided.
"""
cdef npy_uint16 off, rng, buf
cdef npy_uint16 *out
cdef ndarray array "arrayObject"
cdef npy_intp cnt
cdef rk_state *state = <rk_state *>PyCapsule_GetPointer(rngstate, NULL)
off = <npy_uint16>(low)
rng = <npy_uint16>(high) - <npy_uint16>(low)
if size is None:
rk_random_uint16(off, rng, 1, &buf, state)
return np.int16(<npy_int16>buf)
else:
array = <ndarray>np.empty(size, np.int16)
cnt = PyArray_SIZE(array)
array_data = <npy_uint16 *>PyArray_DATA(array)
with nogil:
rk_random_uint16(off, rng, cnt, array_data, state)
return array
def _rand_int32(npy_int32 low, npy_int32 high, size, rngstate):
"""
_rand_int32(low, high, size, rngstate)
Return random np.int32 integers between ``low`` and ``high``, inclusive.
Return random integers from the "discrete uniform" distribution in the
closed interval [``low``, ``high``). On entry the arguments are presumed
to have been validated for size and order for the np.int32 type.
Parameters
----------
low : int
Lowest (signed) integer to be drawn from the distribution.
high : int
Highest (signed) integer to be drawn from the distribution.
size : int or tuple of ints
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
rngstate : encapsulated pointer to rk_state
The specific type depends on the python version. In Python 2 it is
a PyCObject, in Python 3 a PyCapsule object.
Returns
-------
out : python integer or ndarray of np.int32
`size`-shaped array of random integers from the appropriate
distribution, or a single such random int if `size` not provided.
"""
cdef npy_uint32 off, rng, buf
cdef npy_uint32 *out
cdef ndarray array "arrayObject"
cdef npy_intp cnt
cdef rk_state *state = <rk_state *>PyCapsule_GetPointer(rngstate, NULL)
off = <npy_uint32>(low)
rng = <npy_uint32>(high) - <npy_uint32>(low)
if size is None:
rk_random_uint32(off, rng, 1, &buf, state)
return np.int32(<npy_int32>buf)
else:
array = <ndarray>np.empty(size, np.int32)
cnt = PyArray_SIZE(array)
array_data = <npy_uint32 *>PyArray_DATA(array)
with nogil:
rk_random_uint32(off, rng, cnt, array_data, state)
return array
def _rand_int64(npy_int64 low, npy_int64 high, size, rngstate):
"""
_rand_int64(low, high, size, rngstate)
Return random np.int64 integers between ``low`` and ``high``, inclusive.
Return random integers from the "discrete uniform" distribution in the
closed interval [``low``, ``high``). On entry the arguments are presumed
to have been validated for size and order for the np.int64 type.
Parameters
----------
low : int
Lowest (signed) integer to be drawn from the distribution.
high : int
Highest (signed) integer to be drawn from the distribution.
size : int or tuple of ints
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
rngstate : encapsulated pointer to rk_state
The specific type depends on the python version. In Python 2 it is
a PyCObject, in Python 3 a PyCapsule object.
Returns
-------
out : python integer or ndarray of np.int64
`size`-shaped array of random integers from the appropriate
distribution, or a single such random int if `size` not provided.
"""
cdef npy_uint64 off, rng, buf
cdef npy_uint64 *out
cdef ndarray array "arrayObject"
cdef npy_intp cnt
cdef rk_state *state = <rk_state *>PyCapsule_GetPointer(rngstate, NULL)
off = <npy_uint64>(low)
rng = <npy_uint64>(high) - <npy_uint64>(low)
if size is None:
rk_random_uint64(off, rng, 1, &buf, state)
return np.int64(<npy_int64>buf)
else:
array = <ndarray>np.empty(size, np.int64)
cnt = PyArray_SIZE(array)
array_data = <npy_uint64 *>PyArray_DATA(array)
with nogil:
rk_random_uint64(off, rng, cnt, array_data, state)
return array
def _rand_uint8(npy_uint8 low, npy_uint8 high, size, rngstate):
"""
_rand_uint8(low, high, size, rngstate)
Return random np.uint8 integers between ``low`` and ``high``, inclusive.
Return random integers from the "discrete uniform" distribution in the
closed interval [``low``, ``high``). On entry the arguments are presumed
to have been validated for size and order for the np.uint8 type.
Parameters
----------
low : int
Lowest (signed) integer to be drawn from the distribution.
high : int
Highest (signed) integer to be drawn from the distribution.
size : int or tuple of ints
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
rngstate : encapsulated pointer to rk_state
The specific type depends on the python version. In Python 2 it is
a PyCObject, in Python 3 a PyCapsule object.
Returns
-------
out : python integer or ndarray of np.uint8
`size`-shaped array of random integers from the appropriate
distribution, or a single such random int if `size` not provided.
"""
cdef npy_uint8 off, rng, buf
cdef npy_uint8 *out
cdef ndarray array "arrayObject"
cdef npy_intp cnt
cdef rk_state *state = <rk_state *>PyCapsule_GetPointer(rngstate, NULL)
off = <npy_uint8>(low)
rng = <npy_uint8>(high) - <npy_uint8>(low)
if size is None:
rk_random_uint8(off, rng, 1, &buf, state)
return np.uint8(<npy_uint8>buf)
else:
array = <ndarray>np.empty(size, np.uint8)
cnt = PyArray_SIZE(array)
array_data = <npy_uint8 *>PyArray_DATA(array)
with nogil:
rk_random_uint8(off, rng, cnt, array_data, state)
return array
def _rand_uint16(npy_uint16 low, npy_uint16 high, size, rngstate):
"""
_rand_uint16(low, high, size, rngstate)
Return random np.uint16 integers between ``low`` and ``high``, inclusive.
Return random integers from the "discrete uniform" distribution in the
closed interval [``low``, ``high``). On entry the arguments are presumed
to have been validated for size and order for the np.uint16 type.
Parameters
----------
low : int
Lowest (signed) integer to be drawn from the distribution.
high : int
Highest (signed) integer to be drawn from the distribution.
size : int or tuple of ints
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
rngstate : encapsulated pointer to rk_state
The specific type depends on the python version. In Python 2 it is
a PyCObject, in Python 3 a PyCapsule object.
Returns
-------
out : python integer or ndarray of np.uint16
`size`-shaped array of random integers from the appropriate
distribution, or a single such random int if `size` not provided.
"""
cdef npy_uint16 off, rng, buf
cdef npy_uint16 *out
cdef ndarray array "arrayObject"
cdef npy_intp cnt
cdef rk_state *state = <rk_state *>PyCapsule_GetPointer(rngstate, NULL)
off = <npy_uint16>(low)
rng = <npy_uint16>(high) - <npy_uint16>(low)
if size is None:
rk_random_uint16(off, rng, 1, &buf, state)
return np.uint16(<npy_uint16>buf)
else:
array = <ndarray>np.empty(size, np.uint16)
cnt = PyArray_SIZE(array)
array_data = <npy_uint16 *>PyArray_DATA(array)
with nogil:
rk_random_uint16(off, rng, cnt, array_data, state)
return array
def _rand_uint32(npy_uint32 low, npy_uint32 high, size, rngstate):
"""
_rand_uint32(low, high, size, rngstate)
Return random np.uint32 integers between ``low`` and ``high``, inclusive.
Return random integers from the "discrete uniform" distribution in the
closed interval [``low``, ``high``). On entry the arguments are presumed
to have been validated for size and order for the np.uint32 type.
Parameters
----------
low : int
Lowest (signed) integer to be drawn from the distribution.
high : int
Highest (signed) integer to be drawn from the distribution.
size : int or tuple of ints
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
rngstate : encapsulated pointer to rk_state
The specific type depends on the python version. In Python 2 it is
a PyCObject, in Python 3 a PyCapsule object.
Returns
-------
out : python integer or ndarray of np.uint32
`size`-shaped array of random integers from the appropriate
distribution, or a single such random int if `size` not provided.
"""
cdef npy_uint32 off, rng, buf
cdef npy_uint32 *out
cdef ndarray array "arrayObject"
cdef npy_intp cnt
cdef rk_state *state = <rk_state *>PyCapsule_GetPointer(rngstate, NULL)
off = <npy_uint32>(low)
rng = <npy_uint32>(high) - <npy_uint32>(low)
if size is None:
rk_random_uint32(off, rng, 1, &buf, state)
return np.uint32(<npy_uint32>buf)
else:
array = <ndarray>np.empty(size, np.uint32)
cnt = PyArray_SIZE(array)
array_data = <npy_uint32 *>PyArray_DATA(array)
with nogil:
rk_random_uint32(off, rng, cnt, array_data, state)
return array
def _rand_uint64(npy_uint64 low, npy_uint64 high, size, rngstate):
"""
_rand_uint64(low, high, size, rngstate)
Return random np.uint64 integers between ``low`` and ``high``, inclusive.
Return random integers from the "discrete uniform" distribution in the
closed interval [``low``, ``high``). On entry the arguments are presumed
to have been validated for size and order for the np.uint64 type.
Parameters
----------
low : int
Lowest (signed) integer to be drawn from the distribution.
high : int
Highest (signed) integer to be drawn from the distribution.
size : int or tuple of ints
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
rngstate : encapsulated pointer to rk_state
The specific type depends on the python version. In Python 2 it is
a PyCObject, in Python 3 a PyCapsule object.
Returns
-------
out : python integer or ndarray of np.uint64
`size`-shaped array of random integers from the appropriate
distribution, or a single such random int if `size` not provided.
"""
cdef npy_uint64 off, rng, buf
cdef npy_uint64 *out
cdef ndarray array "arrayObject"
cdef npy_intp cnt
cdef rk_state *state = <rk_state *>PyCapsule_GetPointer(rngstate, NULL)
off = <npy_uint64>(low)
rng = <npy_uint64>(high) - <npy_uint64>(low)
if size is None:
rk_random_uint64(off, rng, 1, &buf, state)
return np.uint64(<npy_uint64>buf)
else:
array = <ndarray>np.empty(size, np.uint64)
cnt = PyArray_SIZE(array)
array_data = <npy_uint64 *>PyArray_DATA(array)
with nogil:
rk_random_uint64(off, rng, cnt, array_data, state)
return array
|