1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
#A place for code to be called from C-code
# that implements more complicated stuff.
import re
import sys
#from _mx_datetime_parser import *
if (sys.byteorder == 'little'):
_nbo = '<'
else:
_nbo = '>'
def _makenames_list(adict):
from multiarray import dtype
allfields = []
fnames = adict.keys()
for fname in fnames:
obj = adict[fname]
n = len(obj)
if not isinstance(obj, tuple) or n not in [2,3]:
raise ValueError, "entry not a 2- or 3- tuple"
if (n > 2) and (obj[2] == fname):
continue
num = int(obj[1])
if (num < 0):
raise ValueError, "invalid offset."
format = dtype(obj[0])
if (format.itemsize == 0):
raise ValueError, "all itemsizes must be fixed."
if (n > 2):
title = obj[2]
else:
title = None
allfields.append((fname, format, num, title))
# sort by offsets
allfields.sort(lambda x,y: cmp(x[2],y[2]))
names = [x[0] for x in allfields]
formats = [x[1] for x in allfields]
offsets = [x[2] for x in allfields]
titles = [x[3] for x in allfields]
return names, formats, offsets, titles
# Called in PyArray_DescrConverter function when
# a dictionary without "names" and "formats"
# fields is used as a data-type descriptor.
def _usefields(adict, align):
from multiarray import dtype
try:
names = adict[-1]
except KeyError:
names = None
if names is None:
names, formats, offsets, titles = _makenames_list(adict)
else:
formats = []
offsets = []
titles = []
for name in names:
res = adict[name]
formats.append(res[0])
offsets.append(res[1])
if (len(res) > 2):
titles.append(res[2])
else:
titles.append(None)
return dtype({"names" : names,
"formats" : formats,
"offsets" : offsets,
"titles" : titles}, align)
# construct an array_protocol descriptor list
# from the fields attribute of a descriptor
# This calls itself recursively but should eventually hit
# a descriptor that has no fields and then return
# a simple typestring
def _array_descr(descriptor):
from multiarray import METADATA_DTSTR
fields = descriptor.fields
if fields is None:
subdtype = descriptor.subdtype
if subdtype is None:
if descriptor.metadata is None:
return descriptor.str
else:
new = descriptor.metadata.copy()
# Eliminate any key related to internal implementation
_ = new.pop(METADATA_DTSTR, None)
return (descriptor.str, new)
else:
return (_array_descr(subdtype[0]), subdtype[1])
names = descriptor.names
ordered_fields = [fields[x] + (x,) for x in names]
result = []
offset = 0
for field in ordered_fields:
if field[1] > offset:
num = field[1] - offset
result.append(('','|V%d' % num))
offset += num
if len(field) > 3:
name = (field[2],field[3])
else:
name = field[2]
if field[0].subdtype:
tup = (name, _array_descr(field[0].subdtype[0]),
field[0].subdtype[1])
else:
tup = (name, _array_descr(field[0]))
offset += field[0].itemsize
result.append(tup)
return result
# Build a new array from the information in a pickle.
# Note that the name numpy.core._internal._reconstruct is embedded in
# pickles of ndarrays made with NumPy before release 1.0
# so don't remove the name here, or you'll
# break backward compatibilty.
def _reconstruct(subtype, shape, dtype):
from multiarray import ndarray
return ndarray.__new__(subtype, shape, dtype)
# format_re and _split were taken from numarray by J. Todd Miller
def _split(input):
"""Split the input formats string into field formats without splitting
the tuple used to specify multi-dimensional arrays."""
newlist = []
hold = ''
listinput = input.split(',')
for element in listinput:
if hold != '':
item = hold + ',' + element
else:
item = element
left = item.count('(')
right = item.count(')')
# if the parenthesis is not balanced, hold the string
if left > right :
hold = item
# when balanced, append to the output list and reset the hold
elif left == right:
newlist.append(item.strip())
hold = ''
# too many close parenthesis is unacceptable
else:
raise SyntaxError, item
# if there is string left over in hold
if hold != '':
raise SyntaxError, hold
return newlist
format_datetime = re.compile(r"""(?P<typecode>M8|m8|datetime64|timedelta64)
([[]
((?P<num>\d+)?
(?P<baseunit>Y|M|W|B|D|h|m|s|ms|us|ns|ps|fs|as)
(/(?P<den>\d+))?
[]])
(//(?P<events>\d+))?)?""", re.X)
# Return (baseunit, num, den, events), datetime
# from date-time string
def _datetimestring(astr):
res = format_datetime.match(astr)
if res is None:
raise ValueError, "Incorrect date-time string."
typecode = res.group('typecode')
datetime = (typecode == 'M8' or typecode == 'datetime64')
defaults = ['us', 1, 1, 1]
names = ['baseunit', 'num', 'den', 'events']
func = [str, int, int, int]
dt_tuple = []
for i, name in enumerate(names):
value = res.group(name)
if value:
dt_tuple.append(func[i](value))
else:
dt_tuple.append(defaults[i])
return tuple(dt_tuple), datetime
format_re = re.compile(r'(?P<order1>[<>|=]?)(?P<repeats> *[(]?[ ,0-9]*[)]? *)(?P<order2>[<>|=]?)(?P<dtype>[A-Za-z0-9.]*)')
# astr is a string (perhaps comma separated)
_convorder = {'=': _nbo,
'|': '|',
'>': '>',
'<': '<'}
def _commastring(astr):
res = _split(astr)
if (len(res)) < 1:
raise ValueError, "unrecognized formant"
result = []
for k,item in enumerate(res):
# convert item
try:
(order1, repeats, order2, dtype) = format_re.match(item).groups()
except (TypeError, AttributeError):
raise ValueError('format %s is not recognized' % item)
if order2 == '':
order = order1
elif order1 == '':
order = order2
else:
order1 = _convorder[order1]
order2 = _convorder[order2]
if (order1 != order2):
raise ValueError('in-consistent byte-order specification %s and %s' % (order1, order2))
order = order1
if order in ['|', '=', _nbo]:
order = ''
dtype = '%s%s' % (order, dtype)
if (repeats == ''):
newitem = dtype
else:
newitem = (dtype, eval(repeats))
result.append(newitem)
return result
def _getintp_ctype():
from multiarray import dtype
val = _getintp_ctype.cache
if val is not None:
return val
char = dtype('p').char
import ctypes
if (char == 'i'):
val = ctypes.c_int
elif char == 'l':
val = ctypes.c_long
elif char == 'q':
val = ctypes.c_longlong
else:
val = ctypes.c_long
_getintp_ctype.cache = val
return val
_getintp_ctype.cache = None
# Used for .ctypes attribute of ndarray
class _missing_ctypes(object):
def cast(self, num, obj):
return num
def c_void_p(self, num):
return num
class _ctypes(object):
def __init__(self, array, ptr=None):
try:
import ctypes
self._ctypes = ctypes
except ImportError:
self._ctypes = _missing_ctypes()
self._arr = array
self._data = ptr
if self._arr.ndim == 0:
self._zerod = True
else:
self._zerod = False
def data_as(self, obj):
return self._ctypes.cast(self._data, obj)
def shape_as(self, obj):
if self._zerod:
return None
return (obj*self._arr.ndim)(*self._arr.shape)
def strides_as(self, obj):
if self._zerod:
return None
return (obj*self._arr.ndim)(*self._arr.strides)
def get_data(self):
return self._data
def get_shape(self):
if self._zerod:
return None
return (_getintp_ctype()*self._arr.ndim)(*self._arr.shape)
def get_strides(self):
if self._zerod:
return None
return (_getintp_ctype()*self._arr.ndim)(*self._arr.strides)
def get_as_parameter(self):
return self._ctypes.c_void_p(self._data)
data = property(get_data, None, doc="c-types data")
shape = property(get_shape, None, doc="c-types shape")
strides = property(get_strides, None, doc="c-types strides")
_as_parameter_ = property(get_as_parameter, None, doc="_as parameter_")
# Given a datatype and an order object
# return a new names tuple
# with the order indicated
def _newnames(datatype, order):
oldnames = datatype.names
nameslist = list(oldnames)
if isinstance(order, str):
order = [order]
if isinstance(order, (list, tuple)):
for name in order:
try:
nameslist.remove(name)
except ValueError:
raise ValueError, "unknown field name: %s" % (name,)
return tuple(list(order) + nameslist)
raise ValueError, "unsupported order value: %s" % (order,)
# Given an array with fields and a sequence of field names
# construct a new array with just those fields copied over
def _index_fields(ary, fields):
from multiarray import empty, dtype
dt = ary.dtype
new_dtype = [(name, dt[name]) for name in dt.names if name in fields]
if ary.flags.f_contiguous:
order = 'F'
else:
order = 'C'
newarray = empty(ary.shape, dtype=new_dtype, order=order)
for name in fields:
newarray[name] = ary[name]
return newarray
|