1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
__all__ = ['memmap']
import warnings
from numeric import uint8, ndarray, dtype
import sys
dtypedescr = dtype
valid_filemodes = ["r", "c", "r+", "w+"]
writeable_filemodes = ["r+","w+"]
mode_equivalents = {
"readonly":"r",
"copyonwrite":"c",
"readwrite":"r+",
"write":"w+"
}
class memmap(ndarray):
"""
Create a memory-map to an array stored in a *binary* file on disk.
Memory-mapped files are used for accessing small segments of large files
on disk, without reading the entire file into memory. Numpy's
memmap's are array-like objects. This differs from Python's ``mmap``
module, which uses file-like objects.
Parameters
----------
filename : str or file-like object
The file name or file object to be used as the array data buffer.
dtype : data-type, optional
The data-type used to interpret the file contents.
Default is `uint8`.
mode : {'r+', 'r', 'w+', 'c'}, optional
The file is opened in this mode:
+------+-------------------------------------------------------------+
| 'r' | Open existing file for reading only. |
+------+-------------------------------------------------------------+
| 'r+' | Open existing file for reading and writing. |
+------+-------------------------------------------------------------+
| 'w+' | Create or overwrite existing file for reading and writing. |
+------+-------------------------------------------------------------+
| 'c' | Copy-on-write: assignments affect data in memory, but |
| | changes are not saved to disk. The file on disk is |
| | read-only. |
+------+-------------------------------------------------------------+
Default is 'r+'.
offset : int, optional
In the file, array data starts at this offset. Since `offset` is
measured in bytes, it should be a multiple of the byte-size of
`dtype`. Requires ``shape=None``. The default is 0.
shape : tuple, optional
The desired shape of the array. By default, the returned array will be
1-D with the number of elements determined by file size and data-type.
order : {'C', 'F'}, optional
Specify the order of the ndarray memory layout: C (row-major) or
Fortran (column-major). This only has an effect if the shape is
greater than 1-D. The default order is 'C'.
Methods
-------
close
Close the memmap file.
flush
Flush any changes in memory to file on disk.
When you delete a memmap object, flush is called first to write
changes to disk before removing the object.
Notes
-----
The memmap object can be used anywhere an ndarray is accepted.
Given a memmap ``fp``, ``isinstance(fp, numpy.ndarray)`` returns
``True``.
Memory-mapped arrays use the Python memory-map object which
(prior to Python 2.5) does not allow files to be larger than a
certain size depending on the platform. This size is always < 2GB
even on 64-bit systems.
Examples
--------
>>> data = np.arange(12, dtype='float32')
>>> data.resize((3,4))
This example uses a temporary file so that doctest doesn't write
files to your directory. You would use a 'normal' filename.
>>> from tempfile import mkdtemp
>>> import os.path as path
>>> filename = path.join(mkdtemp(), 'newfile.dat')
Create a memmap with dtype and shape that matches our data:
>>> fp = np.memmap(filename, dtype='float32', mode='w+', shape=(3,4))
>>> fp
memmap([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]], dtype=float32)
Write data to memmap array:
>>> fp[:] = data[:]
>>> fp
memmap([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)
Deletion flushes memory changes to disk before removing the object:
>>> del fp
Load the memmap and verify data was stored:
>>> newfp = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
>>> newfp
memmap([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)
Read-only memmap:
>>> fpr = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
>>> fpr.flags.writeable
False
Copy-on-write memmap:
>>> fpc = np.memmap(filename, dtype='float32', mode='c', shape=(3,4))
>>> fpc.flags.writeable
True
It's possible to assign to copy-on-write array, but values are only
written into the memory copy of the array, and not written to disk:
>>> fpc
memmap([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)
>>> fpc[0,:] = 0
>>> fpc
memmap([[ 0., 0., 0., 0.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)
File on disk is unchanged:
>>> fpr
memmap([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)
Offset into a memmap:
>>> fpo = np.memmap(filename, dtype='float32', mode='r', offset=16)
>>> fpo
memmap([ 4., 5., 6., 7., 8., 9., 10., 11.], dtype=float32)
"""
__array_priority__ = -100.0
def __new__(subtype, filename, dtype=uint8, mode='r+', offset=0,
shape=None, order='C'):
# Import here to minimize 'import numpy' overhead
import mmap
try:
mode = mode_equivalents[mode]
except KeyError:
if mode not in valid_filemodes:
raise ValueError("mode must be one of %s" % \
(valid_filemodes + mode_equivalents.keys()))
if hasattr(filename,'read'):
fid = filename
else:
fid = file(filename, (mode == 'c' and 'r' or mode)+'b')
if (mode == 'w+') and shape is None:
raise ValueError, "shape must be given"
fid.seek(0, 2)
flen = fid.tell()
descr = dtypedescr(dtype)
_dbytes = descr.itemsize
if shape is None:
bytes = flen - offset
if (bytes % _dbytes):
fid.close()
raise ValueError, "Size of available data is not a "\
"multiple of data-type size."
size = bytes // _dbytes
shape = (size,)
else:
if not isinstance(shape, tuple):
shape = (shape,)
size = 1
for k in shape:
size *= k
bytes = long(offset + size*_dbytes)
if mode == 'w+' or (mode == 'r+' and flen < bytes):
fid.seek(bytes - 1, 0)
fid.write(chr(0))
fid.flush()
if mode == 'c':
acc = mmap.ACCESS_COPY
elif mode == 'r':
acc = mmap.ACCESS_READ
else:
acc = mmap.ACCESS_WRITE
if sys.version_info[:2] >= (2,6):
# The offset keyword in mmap.mmap needs Python >= 2.6
start = offset - offset % mmap.ALLOCATIONGRANULARITY
bytes -= start
offset -= start
mm = mmap.mmap(fid.fileno(), bytes, access=acc, offset=start)
else:
mm = mmap.mmap(fid.fileno(), bytes, access=acc)
self = ndarray.__new__(subtype, shape, dtype=descr, buffer=mm,
offset=offset, order=order)
self._mmap = mm
return self
def __array_finalize__(self, obj):
if hasattr(obj, '_mmap'):
self._mmap = obj._mmap
else:
self._mmap = None
def flush(self):
"""
Write any changes in the array to the file on disk.
For further information, see `memmap`.
Parameters
----------
None
See Also
--------
memmap
"""
if self._mmap is not None:
self._mmap.flush()
def sync(self):
"""This method is deprecated, use `flush`."""
warnings.warn("Use ``flush``.", DeprecationWarning)
self.flush()
def _close(self):
"""Close the memmap file. Only do this when deleting the object."""
if self.base is self._mmap:
# The python mmap probably causes flush on close, but
# we put this here for safety
self._mmap.flush()
self._mmap.close()
self._mmap = None
def close(self):
"""Close the memmap file. Does nothing."""
warnings.warn("``close`` is deprecated on memmap arrays. Use del",
DeprecationWarning)
def __del__(self):
# We first check if we are the owner of the mmap, rather than
# a view, so deleting a view does not call _close
# on the parent mmap
if self._mmap is self.base:
try:
# First run tell() to see whether file is open
self._mmap.tell()
except ValueError:
pass
else:
self._close()
|