1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
|
import tempfile
import sys
import os
import numpy as np
from numpy.testing import *
from numpy.core import *
from numpy.core.multiarray_tests import test_neighborhood_iterator, test_neighborhood_iterator_oob
from test_print import in_foreign_locale
class TestFlags(TestCase):
def setUp(self):
self.a = arange(10)
def test_writeable(self):
mydict = locals()
self.a.flags.writeable = False
self.assertRaises(RuntimeError, runstring, 'self.a[0] = 3', mydict)
self.a.flags.writeable = True
self.a[0] = 5
self.a[0] = 0
def test_otherflags(self):
assert_equal(self.a.flags.carray, True)
assert_equal(self.a.flags.farray, False)
assert_equal(self.a.flags.behaved, True)
assert_equal(self.a.flags.fnc, False)
assert_equal(self.a.flags.forc, True)
assert_equal(self.a.flags.owndata, True)
assert_equal(self.a.flags.writeable, True)
assert_equal(self.a.flags.aligned, True)
assert_equal(self.a.flags.updateifcopy, False)
class TestAttributes(TestCase):
def setUp(self):
self.one = arange(10)
self.two = arange(20).reshape(4,5)
self.three = arange(60,dtype=float64).reshape(2,5,6)
def test_attributes(self):
assert_equal(self.one.shape, (10,))
assert_equal(self.two.shape, (4,5))
assert_equal(self.three.shape, (2,5,6))
self.three.shape = (10,3,2)
assert_equal(self.three.shape, (10,3,2))
self.three.shape = (2,5,6)
assert_equal(self.one.strides, (self.one.itemsize,))
num = self.two.itemsize
assert_equal(self.two.strides, (5*num, num))
num = self.three.itemsize
assert_equal(self.three.strides, (30*num, 6*num, num))
assert_equal(self.one.ndim, 1)
assert_equal(self.two.ndim, 2)
assert_equal(self.three.ndim, 3)
num = self.two.itemsize
assert_equal(self.two.size, 20)
assert_equal(self.two.nbytes, 20*num)
assert_equal(self.two.itemsize, self.two.dtype.itemsize)
assert_equal(self.two.base, arange(20))
def test_dtypeattr(self):
assert_equal(self.one.dtype, dtype(int_))
assert_equal(self.three.dtype, dtype(float_))
assert_equal(self.one.dtype.char, 'l')
assert_equal(self.three.dtype.char, 'd')
self.failUnless(self.three.dtype.str[0] in '<>')
assert_equal(self.one.dtype.str[1], 'i')
assert_equal(self.three.dtype.str[1], 'f')
def test_stridesattr(self):
x = self.one
def make_array(size, offset, strides):
return ndarray([size], buffer=x, dtype=int,
offset=offset*x.itemsize,
strides=strides*x.itemsize)
assert_equal(make_array(4, 4, -1), array([4, 3, 2, 1]))
self.failUnlessRaises(ValueError, make_array, 4, 4, -2)
self.failUnlessRaises(ValueError, make_array, 4, 2, -1)
self.failUnlessRaises(ValueError, make_array, 8, 3, 1)
#self.failUnlessRaises(ValueError, make_array, 8, 3, 0)
#self.failUnlessRaises(ValueError, lambda: ndarray([1], strides=4))
def test_set_stridesattr(self):
x = self.one
def make_array(size, offset, strides):
try:
r = ndarray([size], dtype=int, buffer=x, offset=offset*x.itemsize)
except:
pass
r.strides = strides=strides*x.itemsize
return r
assert_equal(make_array(4, 4, -1), array([4, 3, 2, 1]))
self.failUnlessRaises(ValueError, make_array, 4, 4, -2)
self.failUnlessRaises(ValueError, make_array, 4, 2, -1)
self.failUnlessRaises(ValueError, make_array, 8, 3, 1)
#self.failUnlessRaises(ValueError, make_array, 8, 3, 0)
def test_fill(self):
for t in "?bhilqpBHILQPfdgFDGO":
x = empty((3,2,1), t)
y = empty((3,2,1), t)
x.fill(1)
y[...] = 1
assert_equal(x,y)
x = array([(0,0.0), (1,1.0)], dtype='i4,f8')
x.fill(x[0])
assert_equal(x['f1'][1], x['f1'][0])
class TestDtypedescr(TestCase):
def test_construction(self):
d1 = dtype('i4')
assert_equal(d1, dtype(int32))
d2 = dtype('f8')
assert_equal(d2, dtype(float64))
class TestZeroRank(TestCase):
def setUp(self):
self.d = array(0), array('x', object)
def test_ellipsis_subscript(self):
a,b = self.d
self.failUnlessEqual(a[...], 0)
self.failUnlessEqual(b[...], 'x')
self.failUnless(a[...] is a)
self.failUnless(b[...] is b)
def test_empty_subscript(self):
a,b = self.d
self.failUnlessEqual(a[()], 0)
self.failUnlessEqual(b[()], 'x')
self.failUnless(type(a[()]) is a.dtype.type)
self.failUnless(type(b[()]) is str)
def test_invalid_subscript(self):
a,b = self.d
self.failUnlessRaises(IndexError, lambda x: x[0], a)
self.failUnlessRaises(IndexError, lambda x: x[0], b)
self.failUnlessRaises(IndexError, lambda x: x[array([], int)], a)
self.failUnlessRaises(IndexError, lambda x: x[array([], int)], b)
def test_ellipsis_subscript_assignment(self):
a,b = self.d
a[...] = 42
self.failUnlessEqual(a, 42)
b[...] = ''
self.failUnlessEqual(b.item(), '')
def test_empty_subscript_assignment(self):
a,b = self.d
a[()] = 42
self.failUnlessEqual(a, 42)
b[()] = ''
self.failUnlessEqual(b.item(), '')
def test_invalid_subscript_assignment(self):
a,b = self.d
def assign(x, i, v):
x[i] = v
self.failUnlessRaises(IndexError, assign, a, 0, 42)
self.failUnlessRaises(IndexError, assign, b, 0, '')
self.failUnlessRaises(ValueError, assign, a, (), '')
def test_newaxis(self):
a,b = self.d
self.failUnlessEqual(a[newaxis].shape, (1,))
self.failUnlessEqual(a[..., newaxis].shape, (1,))
self.failUnlessEqual(a[newaxis, ...].shape, (1,))
self.failUnlessEqual(a[..., newaxis].shape, (1,))
self.failUnlessEqual(a[newaxis, ..., newaxis].shape, (1,1))
self.failUnlessEqual(a[..., newaxis, newaxis].shape, (1,1))
self.failUnlessEqual(a[newaxis, newaxis, ...].shape, (1,1))
self.failUnlessEqual(a[(newaxis,)*10].shape, (1,)*10)
def test_invalid_newaxis(self):
a,b = self.d
def subscript(x, i): x[i]
self.failUnlessRaises(IndexError, subscript, a, (newaxis, 0))
self.failUnlessRaises(IndexError, subscript, a, (newaxis,)*50)
def test_constructor(self):
x = ndarray(())
x[()] = 5
self.failUnlessEqual(x[()], 5)
y = ndarray((),buffer=x)
y[()] = 6
self.failUnlessEqual(x[()], 6)
def test_output(self):
x = array(2)
self.failUnlessRaises(ValueError, add, x, [1], x)
class TestScalarIndexing(TestCase):
def setUp(self):
self.d = array([0,1])[0]
def test_ellipsis_subscript(self):
a = self.d
self.failUnlessEqual(a[...], 0)
self.failUnlessEqual(a[...].shape,())
def test_empty_subscript(self):
a = self.d
self.failUnlessEqual(a[()], 0)
self.failUnlessEqual(a[()].shape,())
def test_invalid_subscript(self):
a = self.d
self.failUnlessRaises(IndexError, lambda x: x[0], a)
self.failUnlessRaises(IndexError, lambda x: x[array([], int)], a)
def test_invalid_subscript_assignment(self):
a = self.d
def assign(x, i, v):
x[i] = v
self.failUnlessRaises(TypeError, assign, a, 0, 42)
def test_newaxis(self):
a = self.d
self.failUnlessEqual(a[newaxis].shape, (1,))
self.failUnlessEqual(a[..., newaxis].shape, (1,))
self.failUnlessEqual(a[newaxis, ...].shape, (1,))
self.failUnlessEqual(a[..., newaxis].shape, (1,))
self.failUnlessEqual(a[newaxis, ..., newaxis].shape, (1,1))
self.failUnlessEqual(a[..., newaxis, newaxis].shape, (1,1))
self.failUnlessEqual(a[newaxis, newaxis, ...].shape, (1,1))
self.failUnlessEqual(a[(newaxis,)*10].shape, (1,)*10)
def test_invalid_newaxis(self):
a = self.d
def subscript(x, i): x[i]
self.failUnlessRaises(IndexError, subscript, a, (newaxis, 0))
self.failUnlessRaises(IndexError, subscript, a, (newaxis,)*50)
class TestCreation(TestCase):
def test_from_attribute(self):
class x(object):
def __array__(self, dtype=None):
pass
self.failUnlessRaises(ValueError, array, x())
def test_from_string(self) :
types = np.typecodes['AllInteger'] + np.typecodes['Float']
nstr = ['123','123']
result = array([123, 123], dtype=int)
for type in types :
msg = 'String conversion for %s' % type
assert_equal(array(nstr, dtype=type), result, err_msg=msg)
class TestBool(TestCase):
def test_test_interning(self):
a0 = bool_(0)
b0 = bool_(False)
self.failUnless(a0 is b0)
a1 = bool_(1)
b1 = bool_(True)
self.failUnless(a1 is b1)
self.failUnless(array([True])[0] is a1)
self.failUnless(array(True)[()] is a1)
class TestMethods(TestCase):
def test_test_round(self):
assert_equal(array([1.2,1.5]).round(), [1,2])
assert_equal(array(1.5).round(), 2)
assert_equal(array([12.2,15.5]).round(-1), [10,20])
assert_equal(array([12.15,15.51]).round(1), [12.2,15.5])
def test_transpose(self):
a = array([[1,2],[3,4]])
assert_equal(a.transpose(), [[1,3],[2,4]])
self.failUnlessRaises(ValueError, lambda: a.transpose(0))
self.failUnlessRaises(ValueError, lambda: a.transpose(0,0))
self.failUnlessRaises(ValueError, lambda: a.transpose(0,1,2))
def test_sort(self):
# test ordering for floats and complex containing nans. It is only
# necessary to check the lessthan comparison, so sorts that
# only follow the insertion sort path are sufficient. We only
# test doubles and complex doubles as the logic is the same.
# check doubles
msg = "Test real sort order with nans"
a = np.array([np.nan, 1, 0])
b = sort(a)
assert_equal(b, a[::-1], msg)
# check complex
msg = "Test complex sort order with nans"
a = np.zeros(9, dtype=np.complex128)
a.real += [np.nan, np.nan, np.nan, 1, 0, 1, 1, 0, 0]
a.imag += [np.nan, 1, 0, np.nan, np.nan, 1, 0, 1, 0]
b = sort(a)
assert_equal(b, a[::-1], msg)
# all c scalar sorts use the same code with different types
# so it suffices to run a quick check with one type. The number
# of sorted items must be greater than ~50 to check the actual
# algorithm because quick and merge sort fall over to insertion
# sort for small arrays.
a = np.arange(100)
b = a[::-1].copy()
for kind in ['q','m','h'] :
msg = "scalar sort, kind=%s" % kind
c = a.copy();
c.sort(kind=kind)
assert_equal(c, a, msg)
c = b.copy();
c.sort(kind=kind)
assert_equal(c, a, msg)
# test complex sorts. These use the same code as the scalars
# but the compare fuction differs.
ai = a*1j + 1
bi = b*1j + 1
for kind in ['q','m','h'] :
msg = "complex sort, real part == 1, kind=%s" % kind
c = ai.copy();
c.sort(kind=kind)
assert_equal(c, ai, msg)
c = bi.copy();
c.sort(kind=kind)
assert_equal(c, ai, msg)
ai = a + 1j
bi = b + 1j
for kind in ['q','m','h'] :
msg = "complex sort, imag part == 1, kind=%s" % kind
c = ai.copy();
c.sort(kind=kind)
assert_equal(c, ai, msg)
c = bi.copy();
c.sort(kind=kind)
assert_equal(c, ai, msg)
# test string sorts.
s = 'aaaaaaaa'
a = np.array([s + chr(i) for i in range(100)])
b = a[::-1].copy()
for kind in ['q', 'm', 'h'] :
msg = "string sort, kind=%s" % kind
c = a.copy();
c.sort(kind=kind)
assert_equal(c, a, msg)
c = b.copy();
c.sort(kind=kind)
assert_equal(c, a, msg)
# test unicode sort.
s = 'aaaaaaaa'
a = np.array([s + chr(i) for i in range(100)], dtype=np.unicode)
b = a[::-1].copy()
for kind in ['q', 'm', 'h'] :
msg = "unicode sort, kind=%s" % kind
c = a.copy();
c.sort(kind=kind)
assert_equal(c, a, msg)
c = b.copy();
c.sort(kind=kind)
assert_equal(c, a, msg)
# todo, check object array sorts.
# check axis handling. This should be the same for all type
# specific sorts, so we only check it for one type and one kind
a = np.array([[3,2],[1,0]])
b = np.array([[1,0],[3,2]])
c = np.array([[2,3],[0,1]])
d = a.copy()
d.sort(axis=0)
assert_equal(d, b, "test sort with axis=0")
d = a.copy()
d.sort(axis=1)
assert_equal(d, c, "test sort with axis=1")
d = a.copy()
d.sort()
assert_equal(d, c, "test sort with default axis")
# using None is known fail at this point
# d = a.copy()
# d.sort(axis=None)
#assert_equal(d, c, "test sort with axis=None")
def test_sort_order(self):
# Test sorting an array with fields
x1=np.array([21,32,14])
x2=np.array(['my','first','name'])
x3=np.array([3.1,4.5,6.2])
r=np.rec.fromarrays([x1,x2,x3],names='id,word,number')
r.sort(order=['id'])
assert_equal(r.id, array([14,21,32]))
assert_equal(r.word, array(['name','my','first']))
assert_equal(r.number, array([6.2,3.1,4.5]))
r.sort(order=['word'])
assert_equal(r.id, array([32,21,14]))
assert_equal(r.word, array(['first','my','name']))
assert_equal(r.number, array([4.5,3.1,6.2]))
r.sort(order=['number'])
assert_equal(r.id, array([21,32,14]))
assert_equal(r.word, array(['my','first','name']))
assert_equal(r.number, array([3.1,4.5,6.2]))
def test_argsort(self):
# all c scalar argsorts use the same code with different types
# so it suffices to run a quick check with one type. The number
# of sorted items must be greater than ~50 to check the actual
# algorithm because quick and merge sort fall over to insertion
# sort for small arrays.
a = np.arange(100)
b = a[::-1].copy()
for kind in ['q','m','h'] :
msg = "scalar argsort, kind=%s" % kind
assert_equal(a.copy().argsort(kind=kind), a, msg)
assert_equal(b.copy().argsort(kind=kind), b, msg)
# test complex argsorts. These use the same code as the scalars
# but the compare fuction differs.
ai = a*1j + 1
bi = b*1j + 1
for kind in ['q','m','h'] :
msg = "complex argsort, kind=%s" % kind
assert_equal(ai.copy().argsort(kind=kind), a, msg)
assert_equal(bi.copy().argsort(kind=kind), b, msg)
ai = a + 1j
bi = b + 1j
for kind in ['q','m','h'] :
msg = "complex argsort, kind=%s" % kind
assert_equal(ai.copy().argsort(kind=kind), a, msg)
assert_equal(bi.copy().argsort(kind=kind), b, msg)
# test string argsorts.
s = 'aaaaaaaa'
a = np.array([s + chr(i) for i in range(100)])
b = a[::-1].copy()
r = arange(100)
rr = r[::-1].copy()
for kind in ['q', 'm', 'h'] :
msg = "string argsort, kind=%s" % kind
assert_equal(a.copy().argsort(kind=kind), r, msg)
assert_equal(b.copy().argsort(kind=kind), rr, msg)
# test unicode argsorts.
s = 'aaaaaaaa'
a = np.array([s + chr(i) for i in range(100)], dtype=np.unicode)
b = a[::-1].copy()
r = arange(100)
rr = r[::-1].copy()
for kind in ['q', 'm', 'h'] :
msg = "unicode argsort, kind=%s" % kind
assert_equal(a.copy().argsort(kind=kind), r, msg)
assert_equal(b.copy().argsort(kind=kind), rr, msg)
# todo, check object array argsorts.
# check axis handling. This should be the same for all type
# specific argsorts, so we only check it for one type and one kind
a = np.array([[3,2],[1,0]])
b = np.array([[1,1],[0,0]])
c = np.array([[1,0],[1,0]])
assert_equal(a.copy().argsort(axis=0), b)
assert_equal(a.copy().argsort(axis=1), c)
assert_equal(a.copy().argsort(), c)
# using None is known fail at this point
#assert_equal(a.copy().argsort(axis=None, c)
# check that stable argsorts are stable
r = np.arange(100)
# scalars
a = np.zeros(100)
assert_equal(a.argsort(kind='m'), r)
# complex
a = np.zeros(100, dtype=np.complex)
assert_equal(a.argsort(kind='m'), r)
# string
a = np.array(['aaaaaaaaa' for i in range(100)])
assert_equal(a.argsort(kind='m'), r)
# unicode
a = np.array(['aaaaaaaaa' for i in range(100)], dtype=np.unicode)
assert_equal(a.argsort(kind='m'), r)
def test_searchsorted(self):
# test for floats and complex containing nans. The logic is the
# same for all float types so only test double types for now.
# The search sorted routines use the compare functions for the
# array type, so this checks if that is consistent with the sort
# order.
# check double
a = np.array([np.nan, 1, 0])
a = np.array([0, 1, np.nan])
msg = "Test real searchsorted with nans, side='l'"
b = a.searchsorted(a, side='l')
assert_equal(b, np.arange(3), msg)
msg = "Test real searchsorted with nans, side='r'"
b = a.searchsorted(a, side='r')
assert_equal(b, np.arange(1,4), msg)
# check double complex
a = np.zeros(9, dtype=np.complex128)
a.real += [0, 0, 1, 1, 0, 1, np.nan, np.nan, np.nan]
a.imag += [0, 1, 0, 1, np.nan, np.nan, 0, 1, np.nan]
msg = "Test complex searchsorted with nans, side='l'"
b = a.searchsorted(a, side='l')
assert_equal(b, np.arange(9), msg)
msg = "Test complex searchsorted with nans, side='r'"
b = a.searchsorted(a, side='r')
assert_equal(b, np.arange(1,10), msg)
def test_flatten(self):
x0 = np.array([[1,2,3],[4,5,6]], np.int32)
x1 = np.array([[[1,2],[3,4]],[[5,6],[7,8]]], np.int32)
y0 = np.array([1,2,3,4,5,6], np.int32)
y0f = np.array([1,4,2,5,3,6], np.int32)
y1 = np.array([1,2,3,4,5,6,7,8], np.int32)
y1f = np.array([1,5,3,7,2,6,4,8], np.int32)
assert_equal(x0.flatten(), y0)
assert_equal(x0.flatten('F'), y0f)
assert_equal(x0.flatten('F'), x0.T.flatten())
assert_equal(x1.flatten(), y1)
assert_equal(x1.flatten('F'), y1f)
assert_equal(x1.flatten('F'), x1.T.flatten())
class TestSubscripting(TestCase):
def test_test_zero_rank(self):
x = array([1,2,3])
self.failUnless(isinstance(x[0], int))
self.failUnless(type(x[0, ...]) is ndarray)
class TestPickling(TestCase):
def test_both(self):
import pickle
carray = array([[2,9],[7,0],[3,8]])
tarray = transpose(carray)
assert_equal(carray, pickle.loads(carray.dumps()))
assert_equal(tarray, pickle.loads(tarray.dumps()))
# version 0 pickles, using protocol=2 to pickle
# version 0 doesn't have a version field
def test_version0_int8(self):
s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.'
a = array([1,2,3,4], dtype=int8)
p = loads(s)
assert_equal(a, p)
def test_version0_float32(self):
s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.'
a = array([1.0, 2.0, 3.0, 4.0], dtype=float32)
p = loads(s)
assert_equal(a, p)
def test_version0_object(self):
s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.'
a = array([{'a':1}, {'b':2}])
p = loads(s)
assert_equal(a, p)
# version 1 pickles, using protocol=2 to pickle
def test_version1_int8(self):
s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.'
a = array([1,2,3,4], dtype=int8)
p = loads(s)
assert_equal(a, p)
def test_version1_float32(self):
s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(K\x01U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.'
a = array([1.0, 2.0, 3.0, 4.0], dtype=float32)
p = loads(s)
assert_equal(a, p)
def test_version1_object(self):
s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.'
a = array([{'a':1}, {'b':2}])
p = loads(s)
assert_equal(a, p)
class TestFancyIndexing(TestCase):
def test_list(self):
x = ones((1,1))
x[:,[0]] = 2.0
assert_array_equal(x, array([[2.0]]))
x = ones((1,1,1))
x[:,:,[0]] = 2.0
assert_array_equal(x, array([[[2.0]]]))
def test_tuple(self):
x = ones((1,1))
x[:,(0,)] = 2.0
assert_array_equal(x, array([[2.0]]))
x = ones((1,1,1))
x[:,:,(0,)] = 2.0
assert_array_equal(x, array([[[2.0]]]))
class TestStringCompare(TestCase):
def test_string(self):
g1 = array(["This","is","example"])
g2 = array(["This","was","example"])
assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0,1,2]])
assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0,1,2]])
assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0,1,2]])
assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0,1,2]])
assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0,1,2]])
assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0,1,2]])
def test_mixed(self):
g1 = array(["spam","spa","spammer","and eggs"])
g2 = "spam"
assert_array_equal(g1 == g2, [x == g2 for x in g1])
assert_array_equal(g1 != g2, [x != g2 for x in g1])
assert_array_equal(g1 < g2, [x < g2 for x in g1])
assert_array_equal(g1 > g2, [x > g2 for x in g1])
assert_array_equal(g1 <= g2, [x <= g2 for x in g1])
assert_array_equal(g1 >= g2, [x >= g2 for x in g1])
def test_unicode(self):
g1 = array([u"This",u"is",u"example"])
g2 = array([u"This",u"was",u"example"])
assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0,1,2]])
assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0,1,2]])
assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0,1,2]])
assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0,1,2]])
assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0,1,2]])
assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0,1,2]])
class TestArgmax(TestCase):
def test_all(self):
a = np.random.normal(0,1,(4,5,6,7,8))
for i in xrange(a.ndim):
amax = a.max(i)
aargmax = a.argmax(i)
axes = range(a.ndim)
axes.remove(i)
assert all(amax == aargmax.choose(*a.transpose(i,*axes)))
class TestMinMax(TestCase):
def test_scalar(self):
assert_raises(ValueError, np.amax, 1, 1)
assert_raises(ValueError, np.amin, 1, 1)
assert_equal(np.amax(1, axis=0), 1)
assert_equal(np.amin(1, axis=0), 1)
assert_equal(np.amax(1, axis=None), 1)
assert_equal(np.amin(1, axis=None), 1)
def test_axis(self):
assert_raises(ValueError, np.amax, [1,2,3], 1000)
assert_equal(np.amax([[1,2,3]], axis=1), 3)
class TestNewaxis(TestCase):
def test_basic(self):
sk = array([0,-0.1,0.1])
res = 250*sk[:,newaxis]
assert_almost_equal(res.ravel(),250*sk)
class TestClip(TestCase):
def _check_range(self,x,cmin,cmax):
assert np.all(x >= cmin)
assert np.all(x <= cmax)
def _clip_type(self,type_group,array_max,
clip_min,clip_max,inplace=False,
expected_min=None,expected_max=None):
if expected_min is None:
expected_min = clip_min
if expected_max is None:
expected_max = clip_max
for T in np.sctypes[type_group]:
if sys.byteorder == 'little':
byte_orders = ['=','>']
else:
byte_orders = ['<','=']
for byteorder in byte_orders:
dtype = np.dtype(T).newbyteorder(byteorder)
x = (np.random.random(1000) * array_max).astype(dtype)
if inplace:
x.clip(clip_min,clip_max,x)
else:
x = x.clip(clip_min,clip_max)
byteorder = '='
if x.dtype.byteorder == '|': byteorder = '|'
assert_equal(x.dtype.byteorder,byteorder)
self._check_range(x,expected_min,expected_max)
return x
def test_basic(self):
for inplace in [False, True]:
self._clip_type('float',1024,-12.8,100.2, inplace=inplace)
self._clip_type('float',1024,0,0, inplace=inplace)
self._clip_type('int',1024,-120,100.5, inplace=inplace)
self._clip_type('int',1024,0,0, inplace=inplace)
x = self._clip_type('uint',1024,-120,100,expected_min=0, inplace=inplace)
x = self._clip_type('uint',1024,0,0, inplace=inplace)
def test_record_array(self):
rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8')])
y = rec['x'].clip(-0.3,0.5)
self._check_range(y,-0.3,0.5)
def test_max_or_min(self):
val = np.array([0,1,2,3,4,5,6,7])
x = val.clip(3)
assert np.all(x >= 3)
x = val.clip(min=3)
assert np.all(x >= 3)
x = val.clip(max=4)
assert np.all(x <= 4)
class TestPutmask(TestCase):
def tst_basic(self,x,T,mask,val):
np.putmask(x,mask,val)
assert np.all(x[mask] == T(val))
assert x.dtype == T
def test_ip_types(self):
unchecked_types = [str, unicode, np.void, object]
x = np.random.random(1000)*100
mask = x < 40
for val in [-100,0,15]:
for types in np.sctypes.itervalues():
for T in types:
if T not in unchecked_types:
yield self.tst_basic,x.copy().astype(T),T,mask,val
def test_mask_size(self):
self.failUnlessRaises(ValueError, np.putmask,
np.array([1,2,3]), [True], 5)
def tst_byteorder(self,dtype):
x = np.array([1,2,3],dtype)
np.putmask(x,[True,False,True],-1)
assert_array_equal(x,[-1,2,-1])
def test_ip_byteorder(self):
for dtype in ('>i4','<i4'):
yield self.tst_byteorder,dtype
def test_record_array(self):
# Note mixed byteorder.
rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')])
np.putmask(rec['x'],[True,False],10)
assert_array_equal(rec['x'],[10,5])
np.putmask(rec['y'],[True,False],10)
assert_array_equal(rec['y'],[10,4])
def test_masked_array(self):
## x = np.array([1,2,3])
## z = np.ma.array(x,mask=[True,False,False])
## np.putmask(z,[True,True,True],3)
pass
class TestTake(TestCase):
def tst_basic(self,x):
ind = range(x.shape[0])
assert_array_equal(x.take(ind, axis=0), x)
def test_ip_types(self):
unchecked_types = [str, unicode, np.void, object]
x = np.random.random(24)*100
x.shape = 2,3,4
for types in np.sctypes.itervalues():
for T in types:
if T not in unchecked_types:
yield self.tst_basic,x.copy().astype(T)
def test_raise(self):
x = np.random.random(24)*100
x.shape = 2,3,4
self.failUnlessRaises(IndexError, x.take, [0,1,2], axis=0)
self.failUnlessRaises(IndexError, x.take, [-3], axis=0)
assert_array_equal(x.take([-1], axis=0)[0], x[1])
def test_clip(self):
x = np.random.random(24)*100
x.shape = 2,3,4
assert_array_equal(x.take([-1], axis=0, mode='clip')[0], x[0])
assert_array_equal(x.take([2], axis=0, mode='clip')[0], x[1])
def test_wrap(self):
x = np.random.random(24)*100
x.shape = 2,3,4
assert_array_equal(x.take([-1], axis=0, mode='wrap')[0], x[1])
assert_array_equal(x.take([2], axis=0, mode='wrap')[0], x[0])
assert_array_equal(x.take([3], axis=0, mode='wrap')[0], x[1])
def tst_byteorder(self,dtype):
x = np.array([1,2,3],dtype)
assert_array_equal(x.take([0,2,1]),[1,3,2])
def test_ip_byteorder(self):
for dtype in ('>i4','<i4'):
yield self.tst_byteorder,dtype
def test_record_array(self):
# Note mixed byteorder.
rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')])
rec1 = rec.take([1])
assert rec1['x'] == 5.0 and rec1['y'] == 4.0
class TestLexsort(TestCase):
def test_basic(self):
a = [1,2,1,3,1,5]
b = [0,4,5,6,2,3]
idx = np.lexsort((b,a))
expected_idx = np.array([0,4,2,1,3,5])
assert_array_equal(idx,expected_idx)
x = np.vstack((b,a))
idx = np.lexsort(x)
assert_array_equal(idx,expected_idx)
assert_array_equal(x[1][idx],np.sort(x[1]))
class TestIO(object):
"""Test tofile, fromfile, tostring, and fromstring"""
def setUp(self):
shape = (2,4,3)
rand = np.random.random
self.x = rand(shape) + rand(shape).astype(np.complex)*1j
self.x[0,:,1] = [nan, inf, -inf, nan]
self.dtype = self.x.dtype
self.filename = tempfile.mktemp()
def tearDown(self):
if os.path.isfile(self.filename):
os.unlink(self.filename)
#tmp_file.close()
def test_empty_files_binary(self):
f = open(self.filename, 'w')
f.close()
y = fromfile(self.filename)
assert_(y.size == 0, "Array not empty")
def test_empty_files_text(self):
f = open(self.filename, 'w')
f.close()
y = fromfile(self.filename, sep=" ")
assert_(y.size == 0, "Array not empty")
def test_roundtrip_file(self):
f = open(self.filename, 'wb')
self.x.tofile(f)
f.close()
# NB. doesn't work with flush+seek, due to use of C stdio
f = open(self.filename, 'rb')
y = np.fromfile(f, dtype=self.dtype)
f.close()
assert_array_equal(y, self.x.flat)
os.unlink(self.filename)
def test_roundtrip_filename(self):
self.x.tofile(self.filename)
y = np.fromfile(self.filename, dtype=self.dtype)
assert_array_equal(y, self.x.flat)
def test_roundtrip_binary_str(self):
s = self.x.tostring()
y = np.fromstring(s, dtype=self.dtype)
assert_array_equal(y, self.x.flat)
s = self.x.tostring('F')
y = np.fromstring(s, dtype=self.dtype)
assert_array_equal(y, self.x.flatten('F'))
def test_roundtrip_str(self):
x = self.x.real.ravel()
s = "@".join(map(str, x))
y = np.fromstring(s, sep="@")
# NB. str imbues less precision
nan_mask = ~np.isfinite(x)
assert_array_equal(x[nan_mask], y[nan_mask])
assert_array_almost_equal(x[~nan_mask], y[~nan_mask], decimal=5)
def test_roundtrip_repr(self):
x = self.x.real.ravel()
s = "@".join(map(repr, x))
y = np.fromstring(s, sep="@")
assert_array_equal(x, y)
def _check_from(self, s, value, **kw):
y = np.fromstring(s, **kw)
assert_array_equal(y, value)
f = open(self.filename, 'wb')
f.write(s)
f.close()
y = np.fromfile(self.filename, **kw)
assert_array_equal(y, value)
def test_nan(self):
self._check_from("nan +nan -nan NaN nan(foo) +NaN(BAR) -NAN(q_u_u_x_)",
[nan, nan, nan, nan, nan, nan, nan],
sep=' ')
def test_inf(self):
self._check_from("inf +inf -inf infinity -Infinity iNfInItY -inF",
[inf, inf, -inf, inf, -inf, inf, -inf], sep=' ')
def test_numbers(self):
self._check_from("1.234 -1.234 .3 .3e55 -123133.1231e+133",
[1.234, -1.234, .3, .3e55, -123133.1231e+133], sep=' ')
def test_binary(self):
self._check_from('\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@',
array([1,2,3,4]),
dtype='<f4')
def test_string(self):
self._check_from('1,2,3,4', [1., 2., 3., 4.], sep=',')
def test_counted_string(self):
self._check_from('1,2,3,4', [1., 2., 3., 4.], count=4, sep=',')
self._check_from('1,2,3,4', [1., 2., 3.], count=3, sep=',')
self._check_from('1,2,3,4', [1., 2., 3., 4.], count=-1, sep=',')
def test_string_with_ws(self):
self._check_from('1 2 3 4 ', [1, 2, 3, 4], dtype=int, sep=' ')
def test_counted_string_with_ws(self):
self._check_from('1 2 3 4 ', [1,2,3], count=3, dtype=int,
sep=' ')
def test_ascii(self):
self._check_from('1 , 2 , 3 , 4', [1.,2.,3.,4.], sep=',')
self._check_from('1,2,3,4', [1.,2.,3.,4.], dtype=float, sep=',')
def test_malformed(self):
self._check_from('1.234 1,234', [1.234, 1.], sep=' ')
def test_long_sep(self):
self._check_from('1_x_3_x_4_x_5', [1,3,4,5], sep='_x_')
def test_dtype(self):
v = np.array([1,2,3,4], dtype=np.int_)
self._check_from('1,2,3,4', v, sep=',', dtype=np.int_)
def test_tofile_sep(self):
x = np.array([1.51, 2, 3.51, 4], dtype=float)
f = open(self.filename, 'w')
x.tofile(f, sep=',')
f.close()
f = open(self.filename, 'r')
s = f.read()
f.close()
assert_equal(s, '1.51,2.0,3.51,4.0')
os.unlink(self.filename)
def test_tofile_format(self):
x = np.array([1.51, 2, 3.51, 4], dtype=float)
f = open(self.filename, 'w')
x.tofile(f, sep=',', format='%.2f')
f.close()
f = open(self.filename, 'r')
s = f.read()
f.close()
assert_equal(s, '1.51,2.00,3.51,4.00')
@in_foreign_locale
def _run_in_foreign_locale(self, func, fail=False):
np.testing.dec.knownfailureif(fail)(func)(self)
def test_locale(self):
yield self._run_in_foreign_locale, TestIO.test_numbers
yield self._run_in_foreign_locale, TestIO.test_nan
yield self._run_in_foreign_locale, TestIO.test_inf
yield self._run_in_foreign_locale, TestIO.test_counted_string
yield self._run_in_foreign_locale, TestIO.test_ascii
yield self._run_in_foreign_locale, TestIO.test_malformed
yield self._run_in_foreign_locale, TestIO.test_tofile_sep
yield self._run_in_foreign_locale, TestIO.test_tofile_format
class TestFromBuffer(TestCase):
def tst_basic(self,buffer,expected,kwargs):
assert_array_equal(np.frombuffer(buffer,**kwargs),expected)
def test_ip_basic(self):
for byteorder in ['<','>']:
for dtype in [float,int,np.complex]:
dt = np.dtype(dtype).newbyteorder(byteorder)
x = (np.random.random((4,7))*5).astype(dt)
buf = x.tostring()
yield self.tst_basic,buf,x.flat,{'dtype':dt}
class TestResize(TestCase):
def test_basic(self):
x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
x.resize((5,5))
assert_array_equal(x.flat[:9],np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).flat)
assert_array_equal(x[9:].flat,0)
def test_check_reference(self):
x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
y = x
self.failUnlessRaises(ValueError,x.resize,(5,1))
class TestRecord(TestCase):
def test_field_rename(self):
dt = np.dtype([('f',float),('i',int)])
dt.names = ['p','q']
assert_equal(dt.names,['p','q'])
class TestView(TestCase):
def test_basic(self):
x = np.array([(1,2,3,4),(5,6,7,8)],dtype=[('r',np.int8),('g',np.int8),
('b',np.int8),('a',np.int8)])
# We must be specific about the endianness here:
y = x.view(dtype='<i4')
# ... and again without the keyword.
z = x.view('<i4')
assert_array_equal(y, z)
assert_array_equal(y, [67305985, 134678021])
class TestStats(TestCase):
def test_subclass(self):
class TestArray(np.ndarray):
def __new__(cls, data, info):
result = np.array(data)
result = result.view(cls)
result.info = info
return result
def __array_finalize__(self, obj):
self.info = getattr(obj, "info", '')
dat = TestArray([[1,2,3,4],[5,6,7,8]], 'jubba')
res = dat.mean(1)
assert res.info == dat.info
res = dat.std(1)
assert res.info == dat.info
res = dat.var(1)
assert res.info == dat.info
class TestSummarization(TestCase):
def test_1d(self):
A = np.arange(1001)
strA = '[ 0 1 2 ..., 998 999 1000]'
assert str(A) == strA
reprA = 'array([ 0, 1, 2, ..., 998, 999, 1000])'
assert repr(A) == reprA
def test_2d(self):
A = np.arange(1002).reshape(2,501)
strA = '[[ 0 1 2 ..., 498 499 500]\n' \
' [ 501 502 503 ..., 999 1000 1001]]'
assert str(A) == strA
reprA = 'array([[ 0, 1, 2, ..., 498, 499, 500],\n' \
' [ 501, 502, 503, ..., 999, 1000, 1001]])'
assert repr(A) == reprA
class TestChoose(TestCase):
def setUp(self):
self.x = 2*ones((3,),dtype=int)
self.y = 3*ones((3,),dtype=int)
self.x2 = 2*ones((2,3), dtype=int)
self.y2 = 3*ones((2,3), dtype=int)
self.ind = [0,0,1]
def test_basic(self):
A = np.choose(self.ind, (self.x, self.y))
assert_equal(A, [2,2,3])
def test_broadcast1(self):
A = np.choose(self.ind, (self.x2, self.y2))
assert_equal(A, [[2,2,3],[2,2,3]])
def test_broadcast2(self):
A = np.choose(self.ind, (self.x, self.y2))
assert_equal(A, [[2,2,3],[2,2,3]])
def can_use_decimal():
try:
from decimal import Decimal
return True
except ImportError:
return False
# TODO: test for multidimensional
NEIGH_MODE = {'zero': 0, 'one': 1, 'constant': 2, 'circular': 3, 'mirror': 4}
class TestNeighborhoodIter(TestCase):
# Simple, 2d tests
def _test_simple2d(self, dt):
# Test zero and one padding for simple data type
x = np.array([[0, 1], [2, 3]], dtype=dt)
r = [np.array([[0, 0, 0], [0, 0, 1]], dtype=dt),
np.array([[0, 0, 0], [0, 1, 0]], dtype=dt),
np.array([[0, 0, 1], [0, 2, 3]], dtype=dt),
np.array([[0, 1, 0], [2, 3, 0]], dtype=dt)]
l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0], NEIGH_MODE['zero'])
assert_array_equal(l, r)
r = [np.array([[1, 1, 1], [1, 0, 1]], dtype=dt),
np.array([[1, 1, 1], [0, 1, 1]], dtype=dt),
np.array([[1, 0, 1], [1, 2, 3]], dtype=dt),
np.array([[0, 1, 1], [2, 3, 1]], dtype=dt)]
l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0], NEIGH_MODE['one'])
assert_array_equal(l, r)
r = [np.array([[4, 4, 4], [4, 0, 1]], dtype=dt),
np.array([[4, 4, 4], [0, 1, 4]], dtype=dt),
np.array([[4, 0, 1], [4, 2, 3]], dtype=dt),
np.array([[0, 1, 4], [2, 3, 4]], dtype=dt)]
l = test_neighborhood_iterator(x, [-1, 0, -1, 1], 4, NEIGH_MODE['constant'])
assert_array_equal(l, r)
def test_simple2d(self):
self._test_simple2d(np.float)
@dec.skipif(not can_use_decimal(),
"Skip neighborhood iterator tests for decimal objects " \
"(decimal module not available")
def test_simple2d_object(self):
from decimal import Decimal
self._test_simple2d(Decimal)
def _test_mirror2d(self, dt):
x = np.array([[0, 1], [2, 3]], dtype=dt)
r = [np.array([[0, 0, 1], [0, 0, 1]], dtype=dt),
np.array([[0, 1, 1], [0, 1, 1]], dtype=dt),
np.array([[0, 0, 1], [2, 2, 3]], dtype=dt),
np.array([[0, 1, 1], [2, 3, 3]], dtype=dt)]
l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0], NEIGH_MODE['mirror'])
assert_array_equal(l, r)
def test_mirror2d(self):
self._test_mirror2d(np.float)
@dec.skipif(not can_use_decimal(),
"Skip neighborhood iterator tests for decimal objects " \
"(decimal module not available")
def test_mirror2d_object(self):
from decimal import Decimal
self._test_mirror2d(Decimal)
# Simple, 1d tests
def _test_simple(self, dt):
# Test padding with constant values
x = np.linspace(1, 5, 5).astype(dt)
r = [[0, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 0]]
l = test_neighborhood_iterator(x, [-1, 1], x[0], NEIGH_MODE['zero'])
assert_array_equal(l, r)
r = [[1, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 1]]
l = test_neighborhood_iterator(x, [-1, 1], x[0], NEIGH_MODE['one'])
assert_array_equal(l, r)
r = [[x[4], 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, x[4]]]
l = test_neighborhood_iterator(x, [-1, 1], x[4], NEIGH_MODE['constant'])
assert_array_equal(l, r)
def test_simple_float(self):
self._test_simple(np.float)
@dec.skipif(not can_use_decimal(),
"Skip neighborhood iterator tests for decimal objects " \
"(decimal module not available")
def test_simple_object(self):
from decimal import Decimal
self._test_simple(Decimal)
# Test mirror modes
def _test_mirror(self, dt):
x = np.linspace(1, 5, 5).astype(dt)
r = np.array([[2, 1, 1, 2, 3], [1, 1, 2, 3, 4], [1, 2, 3, 4, 5],
[2, 3, 4, 5, 5], [3, 4, 5, 5, 4]], dtype=dt)
l = test_neighborhood_iterator(x, [-2, 2], x[1], NEIGH_MODE['mirror'])
self.failUnless([i.dtype == dt for i in l])
assert_array_equal(l, r)
def test_mirror(self):
self._test_mirror(np.float)
@dec.skipif(not can_use_decimal(),
"Skip neighborhood iterator tests for decimal objects " \
"(decimal module not available")
def test_mirror_object(self):
from decimal import Decimal
self._test_mirror(Decimal)
# Circular mode
def _test_circular(self, dt):
x = np.linspace(1, 5, 5).astype(dt)
r = np.array([[4, 5, 1, 2, 3], [5, 1, 2, 3, 4], [1, 2, 3, 4, 5],
[2, 3, 4, 5, 1], [3, 4, 5, 1, 2]], dtype=dt)
l = test_neighborhood_iterator(x, [-2, 2], x[0], NEIGH_MODE['circular'])
assert_array_equal(l, r)
def test_circular(self):
self._test_circular(np.float)
@dec.skipif(not can_use_decimal(),
"Skip neighborhood iterator tests for decimal objects " \
"(decimal module not available")
def test_circular_object(self):
from decimal import Decimal
self._test_circular(Decimal)
# Test stacking neighborhood iterators
class TestStackedNeighborhoodIter(TestCase):
# Simple, 1d test: stacking 2 constant-padded neigh iterators
def test_simple_const(self):
dt = np.float64
# Test zero and one padding for simple data type
x = np.array([1, 2, 3], dtype=dt)
r = [np.array([0], dtype=dt),
np.array([0], dtype=dt),
np.array([1], dtype=dt),
np.array([2], dtype=dt),
np.array([3], dtype=dt),
np.array([0], dtype=dt),
np.array([0], dtype=dt)]
l = test_neighborhood_iterator_oob(x, [-2, 4], NEIGH_MODE['zero'],
[0, 0], NEIGH_MODE['zero'])
assert_array_equal(l, r)
r = [np.array([1, 0, 1], dtype=dt),
np.array([0, 1, 2], dtype=dt),
np.array([1, 2, 3], dtype=dt),
np.array([2, 3, 0], dtype=dt),
np.array([3, 0, 1], dtype=dt)]
l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'],
[-1, 1], NEIGH_MODE['one'])
assert_array_equal(l, r)
# 2nd simple, 1d test: stacking 2 neigh iterators, mixing const padding and
# mirror padding
def test_simple_mirror(self):
dt = np.float64
# Stacking zero on top of mirror
x = np.array([1, 2, 3], dtype=dt)
r = [np.array([0, 1, 1], dtype=dt),
np.array([1, 1, 2], dtype=dt),
np.array([1, 2, 3], dtype=dt),
np.array([2, 3, 3], dtype=dt),
np.array([3, 3, 0], dtype=dt)]
l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['mirror'],
[-1, 1], NEIGH_MODE['zero'])
assert_array_equal(l, r)
# Stacking mirror on top of zero
x = np.array([1, 2, 3], dtype=dt)
r = [np.array([1, 0, 0], dtype=dt),
np.array([0, 0, 1], dtype=dt),
np.array([0, 1, 2], dtype=dt),
np.array([1, 2, 3], dtype=dt),
np.array([2, 3, 0], dtype=dt)]
l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'],
[-2, 0], NEIGH_MODE['mirror'])
assert_array_equal(l, r)
# Stacking mirror on top of zero: 2nd
x = np.array([1, 2, 3], dtype=dt)
r = [np.array([0, 1, 2], dtype=dt),
np.array([1, 2, 3], dtype=dt),
np.array([2, 3, 0], dtype=dt),
np.array([3, 0, 0], dtype=dt),
np.array([0, 0, 3], dtype=dt)]
l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'],
[0, 2], NEIGH_MODE['mirror'])
assert_array_equal(l, r)
# Stacking mirror on top of zero: 3rd
x = np.array([1, 2, 3], dtype=dt)
r = [np.array([1, 0, 0, 1, 2], dtype=dt),
np.array([0, 0, 1, 2, 3], dtype=dt),
np.array([0, 1, 2, 3, 0], dtype=dt),
np.array([1, 2, 3, 0, 0], dtype=dt),
np.array([2, 3, 0, 0, 3], dtype=dt)]
l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'],
[-2, 2], NEIGH_MODE['mirror'])
assert_array_equal(l, r)
# 3rd simple, 1d test: stacking 2 neigh iterators, mixing const padding and
# circular padding
def test_simple_circular(self):
dt = np.float64
# Stacking zero on top of mirror
x = np.array([1, 2, 3], dtype=dt)
r = [np.array([0, 3, 1], dtype=dt),
np.array([3, 1, 2], dtype=dt),
np.array([1, 2, 3], dtype=dt),
np.array([2, 3, 1], dtype=dt),
np.array([3, 1, 0], dtype=dt)]
l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['circular'],
[-1, 1], NEIGH_MODE['zero'])
assert_array_equal(l, r)
# Stacking mirror on top of zero
x = np.array([1, 2, 3], dtype=dt)
r = [np.array([3, 0, 0], dtype=dt),
np.array([0, 0, 1], dtype=dt),
np.array([0, 1, 2], dtype=dt),
np.array([1, 2, 3], dtype=dt),
np.array([2, 3, 0], dtype=dt)]
l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'],
[-2, 0], NEIGH_MODE['circular'])
assert_array_equal(l, r)
# Stacking mirror on top of zero: 2nd
x = np.array([1, 2, 3], dtype=dt)
r = [np.array([0, 1, 2], dtype=dt),
np.array([1, 2, 3], dtype=dt),
np.array([2, 3, 0], dtype=dt),
np.array([3, 0, 0], dtype=dt),
np.array([0, 0, 1], dtype=dt)]
l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'],
[0, 2], NEIGH_MODE['circular'])
assert_array_equal(l, r)
# Stacking mirror on top of zero: 3rd
x = np.array([1, 2, 3], dtype=dt)
r = [np.array([3, 0, 0, 1, 2], dtype=dt),
np.array([0, 0, 1, 2, 3], dtype=dt),
np.array([0, 1, 2, 3, 0], dtype=dt),
np.array([1, 2, 3, 0, 0], dtype=dt),
np.array([2, 3, 0, 0, 1], dtype=dt)]
l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'],
[-2, 2], NEIGH_MODE['circular'])
assert_array_equal(l, r)
# 4th simple, 1d test: stacking 2 neigh iterators, but with lower iterator
# being strictly within the array
def test_simple_strict_within(self):
dt = np.float64
# Stacking zero on top of zero, first neighborhood strictly inside the
# array
x = np.array([1, 2, 3], dtype=dt)
r = [np.array([1, 2, 3, 0], dtype=dt)]
l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'],
[-1, 2], NEIGH_MODE['zero'])
assert_array_equal(l, r)
# Stacking mirror on top of zero, first neighborhood strictly inside the
# array
x = np.array([1, 2, 3], dtype=dt)
r = [np.array([1, 2, 3, 3], dtype=dt)]
l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'],
[-1, 2], NEIGH_MODE['mirror'])
assert_array_equal(l, r)
# Stacking mirror on top of zero, first neighborhood strictly inside the
# array
x = np.array([1, 2, 3], dtype=dt)
r = [np.array([1, 2, 3, 1], dtype=dt)]
l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'],
[-1, 2], NEIGH_MODE['circular'])
assert_array_equal(l, r)
if __name__ == "__main__":
run_module_suite()
|