File: test_numeric.py

package info (click to toggle)
python-numpy 1%3A1.4.1-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 12,736 kB
  • ctags: 14,035
  • sloc: ansic: 80,776; python: 62,482; makefile: 183; fortran: 121; f90: 42; cpp: 28; perl: 19; sh: 15
file content (958 lines) | stat: -rw-r--r-- 30,773 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
import sys
from decimal import Decimal

import numpy as np
from numpy.core import *
from numpy.random import rand, randint, randn
from numpy.testing import *
from numpy.core.multiarray import dot as dot_

class Vec:
    def __init__(self,sequence=None):
        if sequence is None:
            sequence=[]
        self.array=array(sequence)
    def __add__(self,other):
        out=Vec()
        out.array=self.array+other.array
        return out
    def __sub__(self,other):
        out=Vec()
        out.array=self.array-other.array
        return out
    def __mul__(self,other): # with scalar
        out=Vec(self.array.copy())
        out.array*=other
        return out
    def __rmul__(self,other):
        return self*other


class TestDot(TestCase):
    def setUp(self):
        self.A = rand(10,8)
        self.b1 = rand(8,1)
        self.b2 = rand(8)
        self.b3 = rand(1,8)
        self.b4 = rand(10)
        self.N = 14

    def test_matmat(self):
        A = self.A
        c1 = dot(A.transpose(), A)
        c2 = dot_(A.transpose(), A)
        assert_almost_equal(c1, c2, decimal=self.N)

    def test_matvec(self):
        A, b1 = self.A, self.b1
        c1 = dot(A, b1)
        c2 = dot_(A, b1)
        assert_almost_equal(c1, c2, decimal=self.N)

    def test_matvec2(self):
        A, b2 = self.A, self.b2
        c1 = dot(A, b2)
        c2 = dot_(A, b2)
        assert_almost_equal(c1, c2, decimal=self.N)

    def test_vecmat(self):
        A, b4 = self.A, self.b4
        c1 = dot(b4, A)
        c2 = dot_(b4, A)
        assert_almost_equal(c1, c2, decimal=self.N)

    def test_vecmat2(self):
        b3, A = self.b3, self.A
        c1 = dot(b3, A.transpose())
        c2 = dot_(b3, A.transpose())
        assert_almost_equal(c1, c2, decimal=self.N)

    def test_vecmat3(self):
        A, b4 = self.A, self.b4
        c1 = dot(A.transpose(),b4)
        c2 = dot_(A.transpose(),b4)
        assert_almost_equal(c1, c2, decimal=self.N)

    def test_vecvecouter(self):
        b1, b3 = self.b1, self.b3
        c1 = dot(b1, b3)
        c2 = dot_(b1, b3)
        assert_almost_equal(c1, c2, decimal=self.N)

    def test_vecvecinner(self):
        b1, b3 = self.b1, self.b3
        c1 = dot(b3, b1)
        c2 = dot_(b3, b1)
        assert_almost_equal(c1, c2, decimal=self.N)

    def test_columnvect1(self):
        b1 = ones((3,1))
        b2 = [5.3]
        c1 = dot(b1,b2)
        c2 = dot_(b1,b2)
        assert_almost_equal(c1, c2, decimal=self.N)

    def test_columnvect2(self):
        b1 = ones((3,1)).transpose()
        b2 = [6.2]
        c1 = dot(b2,b1)
        c2 = dot_(b2,b1)
        assert_almost_equal(c1, c2, decimal=self.N)

    def test_vecscalar(self):
        b1 = rand(1,1)
        b2 = rand(1,8)
        c1 = dot(b1,b2)
        c2 = dot_(b1,b2)
        assert_almost_equal(c1, c2, decimal=self.N)

    def test_vecscalar2(self):
        b1 = rand(8,1)
        b2 = rand(1,1)
        c1 = dot(b1,b2)
        c2 = dot_(b1,b2)
        assert_almost_equal(c1, c2, decimal=self.N)

    def test_all(self):
        dims = [(),(1,),(1,1)]
        for dim1 in dims:
            for dim2 in dims:
                arg1 = rand(*dim1)
                arg2 = rand(*dim2)
                c1 = dot(arg1, arg2)
                c2 = dot_(arg1, arg2)
                assert (c1.shape == c2.shape)
                assert_almost_equal(c1, c2, decimal=self.N)

    def test_vecobject(self):
        U_non_cont = transpose([[1.,1.],[1.,2.]])
        U_cont = ascontiguousarray(U_non_cont)
        x = array([Vec([1.,0.]),Vec([0.,1.])])
        zeros = array([Vec([0.,0.]),Vec([0.,0.])])
        zeros_test = dot(U_cont,x) - dot(U_non_cont,x)
        assert_equal(zeros[0].array, zeros_test[0].array)
        assert_equal(zeros[1].array, zeros_test[1].array)


class TestResize(TestCase):
    def test_copies(self):
        A = array([[1,2],[3,4]])
        Ar1 = array([[1,2,3,4],[1,2,3,4]])
        assert_equal(resize(A, (2,4)), Ar1)

        Ar2 = array([[1,2],[3,4],[1,2],[3,4]])
        assert_equal(resize(A, (4,2)), Ar2)

        Ar3 = array([[1,2,3],[4,1,2],[3,4,1],[2,3,4]])
        assert_equal(resize(A, (4,3)), Ar3)

    def test_zeroresize(self):
        A = array([[1,2],[3,4]])
        Ar = resize(A, (0,))
        assert_equal(Ar, array([]))


class TestNonarrayArgs(TestCase):
    # check that non-array arguments to functions wrap them in arrays
    def test_squeeze(self):
        A = [[[1,1,1],[2,2,2],[3,3,3]]]
        assert squeeze(A).shape == (3,3)

    def test_cumproduct(self):
        A = [[1,2,3],[4,5,6]]
        assert all(cumproduct(A) == array([1,2,6,24,120,720]))

    def test_size(self):
        A = [[1,2,3],[4,5,6]]
        assert size(A) == 6
        assert size(A,0) == 2
        assert size(A,1) == 3

    def test_mean(self):
        A = [[1,2,3],[4,5,6]]
        assert mean(A) == 3.5
        assert all(mean(A,0) == array([2.5,3.5,4.5]))
        assert all(mean(A,1) == array([2.,5.]))

    def test_std(self):
        A = [[1,2,3],[4,5,6]]
        assert_almost_equal(std(A), 1.707825127659933)
        assert_almost_equal(std(A,0), array([1.5, 1.5, 1.5]))
        assert_almost_equal(std(A,1), array([0.81649658, 0.81649658]))

    def test_var(self):
        A = [[1,2,3],[4,5,6]]
        assert_almost_equal(var(A), 2.9166666666666665)
        assert_almost_equal(var(A,0), array([2.25, 2.25, 2.25]))
        assert_almost_equal(var(A,1), array([0.66666667, 0.66666667]))


class TestBoolScalar(TestCase):
    def test_logical(self):
        f = False_
        t = True_
        s = "xyz"
        self.failUnless((t and s) is s)
        self.failUnless((f and s) is f)

    def test_bitwise_or(self):
        f = False_
        t = True_
        self.failUnless((t | t) is t)
        self.failUnless((f | t) is t)
        self.failUnless((t | f) is t)
        self.failUnless((f | f) is f)

    def test_bitwise_and(self):
        f = False_
        t = True_
        self.failUnless((t & t) is t)
        self.failUnless((f & t) is f)
        self.failUnless((t & f) is f)
        self.failUnless((f & f) is f)

    def test_bitwise_xor(self):
        f = False_
        t = True_
        self.failUnless((t ^ t) is f)
        self.failUnless((f ^ t) is t)
        self.failUnless((t ^ f) is t)
        self.failUnless((f ^ f) is f)


class TestSeterr(TestCase):
    def test_set(self):
        err = seterr()
        old = seterr(divide='warn')
        self.failUnless(err == old)
        new = seterr()
        self.failUnless(new['divide'] == 'warn')
        seterr(over='raise')
        self.failUnless(geterr()['over'] == 'raise')
        self.failUnless(new['divide'] == 'warn')
        seterr(**old)
        self.failUnless(geterr() == old)

    def test_divide_err(self):
        seterr(divide='raise')
        try:
            array([1.]) / array([0.])
        except FloatingPointError:
            pass
        else:
            self.fail()
        seterr(divide='ignore')
        array([1.]) / array([0.])


class TestFromiter(TestCase):
    def makegen(self):
        for x in xrange(24):
            yield x**2

    def test_types(self):
        ai32 = fromiter(self.makegen(), int32)
        ai64 = fromiter(self.makegen(), int64)
        af = fromiter(self.makegen(), float)
        self.failUnless(ai32.dtype == dtype(int32))
        self.failUnless(ai64.dtype == dtype(int64))
        self.failUnless(af.dtype == dtype(float))

    def test_lengths(self):
        expected = array(list(self.makegen()))
        a = fromiter(self.makegen(), int)
        a20 = fromiter(self.makegen(), int, 20)
        self.failUnless(len(a) == len(expected))
        self.failUnless(len(a20) == 20)
        try:
            fromiter(self.makegen(), int, len(expected) + 10)
        except ValueError:
            pass
        else:
            self.fail()

    def test_values(self):
        expected = array(list(self.makegen()))
        a = fromiter(self.makegen(), int)
        a20 = fromiter(self.makegen(), int, 20)
        self.failUnless(alltrue(a == expected,axis=0))
        self.failUnless(alltrue(a20 == expected[:20],axis=0))


class TestIndex(TestCase):
    def test_boolean(self):
        a = rand(3,5,8)
        V = rand(5,8)
        g1 = randint(0,5,size=15)
        g2 = randint(0,8,size=15)
        V[g1,g2] = -V[g1,g2]
        assert (array([a[0][V>0],a[1][V>0],a[2][V>0]]) == a[:,V>0]).all()


class TestBinaryRepr(TestCase):
    def test_zero(self):
        assert_equal(binary_repr(0),'0')

    def test_large(self):
        assert_equal(binary_repr(10736848),'101000111101010011010000')

    def test_negative(self):
        assert_equal(binary_repr(-1), '-1')
        assert_equal(binary_repr(-1, width=8), '11111111')


class TestArrayComparisons(TestCase):
    def test_array_equal(self):
        res = array_equal(array([1,2]), array([1,2]))
        assert res
        assert type(res) is bool
        res = array_equal(array([1,2]), array([1,2,3]))
        assert not res
        assert type(res) is bool
        res = array_equal(array([1,2]), array([3,4]))
        assert not res
        assert type(res) is bool
        res = array_equal(array([1,2]), array([1,3]))
        assert not res
        assert type(res) is bool

    def test_array_equiv(self):
        res = array_equiv(array([1,2]), array([1,2]))
        assert res
        assert type(res) is bool
        res = array_equiv(array([1,2]), array([1,2,3]))
        assert not res
        assert type(res) is bool
        res = array_equiv(array([1,2]), array([3,4]))
        assert not res
        assert type(res) is bool
        res = array_equiv(array([1,2]), array([1,3]))
        assert not res
        assert type(res) is bool

        res = array_equiv(array([1,1]), array([1]))
        assert res
        assert type(res) is bool
        res = array_equiv(array([1,1]), array([[1],[1]]))
        assert res
        assert type(res) is bool
        res = array_equiv(array([1,2]), array([2]))
        assert not res
        assert type(res) is bool
        res = array_equiv(array([1,2]), array([[1],[2]]))
        assert not res
        assert type(res) is bool
        res = array_equiv(array([1,2]), array([[1,2,3],[4,5,6],[7,8,9]]))
        assert not res
        assert type(res) is bool


def assert_array_strict_equal(x, y):
    assert_array_equal(x, y)
    # Check flags
    assert x.flags == y.flags
    # check endianness
    assert x.dtype.isnative == y.dtype.isnative


class TestClip(TestCase):
    def setUp(self):
        self.nr = 5
        self.nc = 3

    def fastclip(self, a, m, M, out=None):
        if out is None:
            return a.clip(m,M)
        else:
            return a.clip(m,M,out)

    def clip(self, a, m, M, out=None):
        # use slow-clip
        selector = less(a, m)+2*greater(a, M)
        return selector.choose((a, m, M), out=out)

    # Handy functions
    def _generate_data(self, n, m):
        return randn(n, m)

    def _generate_data_complex(self, n, m):
        return randn(n, m) + 1.j *rand(n, m)

    def _generate_flt_data(self, n, m):
        return (randn(n, m)).astype(float32)

    def _neg_byteorder(self, a):
        a = asarray(a)
        if sys.byteorder == 'little':
            a = a.astype(a.dtype.newbyteorder('>'))
        else:
            a = a.astype(a.dtype.newbyteorder('<'))
        return a

    def _generate_non_native_data(self, n, m):
        data = randn(n, m)
        data = self._neg_byteorder(data)
        assert not data.dtype.isnative
        return data

    def _generate_int_data(self, n, m):
        return (10 * rand(n, m)).astype(int64)

    def _generate_int32_data(self, n, m):
        return (10 * rand(n, m)).astype(int32)

    # Now the real test cases
    def test_simple_double(self):
        """Test native double input with scalar min/max."""
        a   = self._generate_data(self.nr, self.nc)
        m   = 0.1
        M   = 0.6
        ac  = self.fastclip(a, m, M)
        act = self.clip(a, m, M)
        assert_array_strict_equal(ac, act)

    def test_simple_int(self):
        """Test native int input with scalar min/max."""
        a   = self._generate_int_data(self.nr, self.nc)
        a   = a.astype(int)
        m   = -2
        M   = 4
        ac  = self.fastclip(a, m, M)
        act = self.clip(a, m, M)
        assert_array_strict_equal(ac, act)

    def test_array_double(self):
        """Test native double input with array min/max."""
        a   = self._generate_data(self.nr, self.nc)
        m   = zeros(a.shape)
        M   = m + 0.5
        ac  = self.fastclip(a, m, M)
        act = self.clip(a, m, M)
        assert_array_strict_equal(ac, act)

    def test_simple_nonnative(self):
        """Test non native double input with scalar min/max.
        Test native double input with non native double scalar min/max."""
        a   = self._generate_non_native_data(self.nr, self.nc)
        m   = -0.5
        M   = 0.6
        ac  = self.fastclip(a, m, M)
        act = self.clip(a, m, M)
        assert_array_equal(ac, act)

        "Test native double input with non native double scalar min/max."
        a   = self._generate_data(self.nr, self.nc)
        m   = -0.5
        M   = self._neg_byteorder(0.6)
        assert not M.dtype.isnative
        ac  = self.fastclip(a, m, M)
        act = self.clip(a, m, M)
        assert_array_equal(ac, act)

    def test_simple_complex(self):
        """Test native complex input with native double scalar min/max.
        Test native input with complex double scalar min/max.
        """
        a   = 3 * self._generate_data_complex(self.nr, self.nc)
        m   = -0.5
        M   = 1.
        ac  = self.fastclip(a, m, M)
        act = self.clip(a, m, M)
        assert_array_strict_equal(ac, act)

        "Test native input with complex double scalar min/max."
        a   = 3 * self._generate_data(self.nr, self.nc)
        m   = -0.5 + 1.j
        M   = 1. + 2.j
        ac  = self.fastclip(a, m, M)
        act = self.clip(a, m, M)
        assert_array_strict_equal(ac, act)

    def test_clip_non_contig(self):
        """Test clip for non contiguous native input and native scalar min/max."""
        a   = self._generate_data(self.nr * 2, self.nc * 3)
        a   = a[::2, ::3]
        assert not a.flags['F_CONTIGUOUS']
        assert not a.flags['C_CONTIGUOUS']
        ac  = self.fastclip(a, -1.6, 1.7)
        act = self.clip(a, -1.6, 1.7)
        assert_array_strict_equal(ac, act)

    def test_simple_out(self):
        """Test native double input with scalar min/max."""
        a   = self._generate_data(self.nr, self.nc)
        m   = -0.5
        M   = 0.6
        ac  = zeros(a.shape)
        act = zeros(a.shape)
        self.fastclip(a, m, M, ac)
        self.clip(a, m, M, act)
        assert_array_strict_equal(ac, act)

    def test_simple_int32_inout(self):
        """Test native int32 input with double min/max and int32 out."""
        a   = self._generate_int32_data(self.nr, self.nc)
        m   = float64(0)
        M   = float64(2)
        ac  = zeros(a.shape, dtype = int32)
        act = ac.copy()
        self.fastclip(a, m, M, ac)
        self.clip(a, m, M, act)
        assert_array_strict_equal(ac, act)

    def test_simple_int64_out(self):
        """Test native int32 input with int32 scalar min/max and int64 out."""
        a   = self._generate_int32_data(self.nr, self.nc)
        m   = int32(-1)
        M   = int32(1)
        ac  = zeros(a.shape, dtype = int64)
        act = ac.copy()
        self.fastclip(a, m, M, ac)
        self.clip(a, m, M, act)
        assert_array_strict_equal(ac, act)

    def test_simple_int64_inout(self):
        """Test native in32 input with double array min/max and int32 out."""
        a   = self._generate_int32_data(self.nr, self.nc)
        m   = zeros(a.shape, float64)
        M   = float64(1)
        ac  = zeros(a.shape, dtype = int32)
        act = ac.copy()
        self.fastclip(a, m, M, ac)
        self.clip(a, m, M, act)
        assert_array_strict_equal(ac, act)

    def test_simple_int32_out(self):
        """Test native double input with scalar min/max and int out."""
        a   = self._generate_data(self.nr, self.nc)
        m   = -1.0
        M   = 2.0
        ac  = zeros(a.shape, dtype = int32)
        act = ac.copy()
        self.fastclip(a, m, M, ac)
        self.clip(a, m, M, act)
        assert_array_strict_equal(ac, act)

    def test_simple_inplace_01(self):
        """Test native double input with array min/max in-place."""
        a   = self._generate_data(self.nr, self.nc)
        ac  = a.copy()
        m   = zeros(a.shape)
        M   = 1.0
        self.fastclip(a, m, M, a)
        self.clip(a, m, M, ac)
        assert_array_strict_equal(a, ac)

    def test_simple_inplace_02(self):
        """Test native double input with scalar min/max in-place."""
        a   = self._generate_data(self.nr, self.nc)
        ac  = a.copy()
        m   = -0.5
        M   = 0.6
        self.fastclip(a, m, M, a)
        self.clip(a, m, M, ac)
        assert_array_strict_equal(a, ac)

    def test_noncontig_inplace(self):
        """Test non contiguous double input with double scalar min/max in-place."""
        a   = self._generate_data(self.nr * 2, self.nc * 3)
        a   = a[::2, ::3]
        assert not a.flags['F_CONTIGUOUS']
        assert not a.flags['C_CONTIGUOUS']
        ac  = a.copy()
        m   = -0.5
        M   = 0.6
        self.fastclip(a, m, M, a)
        self.clip(a, m, M, ac)
        assert_array_equal(a, ac)

    def test_type_cast_01(self):
        "Test native double input with scalar min/max."
        a   = self._generate_data(self.nr, self.nc)
        m   = -0.5
        M   = 0.6
        ac  = self.fastclip(a, m, M)
        act = self.clip(a, m, M)
        assert_array_strict_equal(ac, act)

    def test_type_cast_02(self):
        "Test native int32 input with int32 scalar min/max."
        a   = self._generate_int_data(self.nr, self.nc)
        a   = a.astype(int32)
        m   = -2
        M   = 4
        ac  = self.fastclip(a, m, M)
        act = self.clip(a, m, M)
        assert_array_strict_equal(ac, act)

    def test_type_cast_03(self):
        "Test native int32 input with float64 scalar min/max."
        a   = self._generate_int32_data(self.nr, self.nc)
        m   = -2
        M   = 4
        ac  = self.fastclip(a, float64(m), float64(M))
        act = self.clip(a, float64(m), float64(M))
        assert_array_strict_equal(ac, act)

    def test_type_cast_04(self):
        "Test native int32 input with float32 scalar min/max."
        a   = self._generate_int32_data(self.nr, self.nc)
        m   = float32(-2)
        M   = float32(4)
        act = self.fastclip(a,m,M)
        ac  = self.clip(a,m,M)
        assert_array_strict_equal(ac, act)

    def test_type_cast_05(self):
        "Test native int32 with double arrays min/max."
        a   = self._generate_int_data(self.nr, self.nc)
        m   = -0.5
        M   = 1.
        ac  = self.fastclip(a, m * zeros(a.shape), M)
        act = self.clip(a, m * zeros(a.shape), M)
        assert_array_strict_equal(ac, act)

    def test_type_cast_06(self):
        "Test native with NON native scalar min/max."
        a   = self._generate_data(self.nr, self.nc)
        m   = 0.5
        m_s = self._neg_byteorder(m)
        M   = 1.
        act = self.clip(a, m_s, M)
        ac  = self.fastclip(a, m_s, M)
        assert_array_strict_equal(ac, act)

    def test_type_cast_07(self):
        "Test NON native with native array min/max."
        a   = self._generate_data(self.nr, self.nc)
        m   = -0.5 * ones(a.shape)
        M   = 1.
        a_s = self._neg_byteorder(a)
        assert not a_s.dtype.isnative
        act = a_s.clip(m, M)
        ac  = self.fastclip(a_s, m, M)
        assert_array_strict_equal(ac, act)

    def test_type_cast_08(self):
        "Test NON native with native scalar min/max."
        a   = self._generate_data(self.nr, self.nc)
        m   = -0.5
        M   = 1.
        a_s = self._neg_byteorder(a)
        assert not a_s.dtype.isnative
        ac  = self.fastclip(a_s, m , M)
        act = a_s.clip(m, M)
        assert_array_strict_equal(ac, act)

    def test_type_cast_09(self):
        "Test native with NON native array min/max."
        a   = self._generate_data(self.nr, self.nc)
        m   = -0.5 * ones(a.shape)
        M   = 1.
        m_s = self._neg_byteorder(m)
        assert not m_s.dtype.isnative
        ac  = self.fastclip(a, m_s , M)
        act = self.clip(a, m_s, M)
        assert_array_strict_equal(ac, act)

    def test_type_cast_10(self):
        """Test native int32 with float min/max and float out for output argument."""
        a   = self._generate_int_data(self.nr, self.nc)
        b   = zeros(a.shape, dtype = float32)
        m   = float32(-0.5)
        M   = float32(1)
        act = self.clip(a, m, M, out = b)
        ac  = self.fastclip(a, m , M, out = b)
        assert_array_strict_equal(ac, act)

    def test_type_cast_11(self):
        "Test non native with native scalar, min/max, out non native"
        a   = self._generate_non_native_data(self.nr, self.nc)
        b   = a.copy()
        b   = b.astype(b.dtype.newbyteorder('>'))
        bt  = b.copy()
        m   = -0.5
        M   = 1.
        self.fastclip(a, m , M, out = b)
        self.clip(a, m, M, out = bt)
        assert_array_strict_equal(b, bt)

    def test_type_cast_12(self):
        "Test native int32 input and min/max and float out"
        a   = self._generate_int_data(self.nr, self.nc)
        b   = zeros(a.shape, dtype = float32)
        m   = int32(0)
        M   = int32(1)
        act = self.clip(a, m, M, out = b)
        ac  = self.fastclip(a, m , M, out = b)
        assert_array_strict_equal(ac, act)

    def test_clip_with_out_simple(self):
        "Test native double input with scalar min/max"
        a   = self._generate_data(self.nr, self.nc)
        m   = -0.5
        M   = 0.6
        ac  = zeros(a.shape)
        act = zeros(a.shape)
        self.fastclip(a, m, M, ac)
        self.clip(a, m, M, act)
        assert_array_strict_equal(ac, act)

    def test_clip_with_out_simple2(self):
        "Test native int32 input with double min/max and int32 out"
        a   = self._generate_int32_data(self.nr, self.nc)
        m   = float64(0)
        M   = float64(2)
        ac  = zeros(a.shape, dtype = int32)
        act = ac.copy()
        self.fastclip(a, m, M, ac)
        self.clip(a, m, M, act)
        assert_array_strict_equal(ac, act)

    def test_clip_with_out_simple_int32(self):
        "Test native int32 input with int32 scalar min/max and int64 out"
        a   = self._generate_int32_data(self.nr, self.nc)
        m   = int32(-1)
        M   = int32(1)
        ac  = zeros(a.shape, dtype = int64)
        act = ac.copy()
        self.fastclip(a, m, M, ac)
        self.clip(a, m, M, act)
        assert_array_strict_equal(ac, act)

    def test_clip_with_out_array_int32(self):
        "Test native int32 input with double array min/max and int32 out"
        a   = self._generate_int32_data(self.nr, self.nc)
        m   = zeros(a.shape, float64)
        M   = float64(1)
        ac  = zeros(a.shape, dtype = int32)
        act = ac.copy()
        self.fastclip(a, m, M, ac)
        self.clip(a, m, M, act)
        assert_array_strict_equal(ac, act)

    def test_clip_with_out_array_outint32(self):
        "Test native double input with scalar min/max and int out"
        a   = self._generate_data(self.nr, self.nc)
        m   = -1.0
        M   = 2.0
        ac  = zeros(a.shape, dtype = int32)
        act = ac.copy()
        self.fastclip(a, m, M, ac)
        self.clip(a, m, M, act)
        assert_array_strict_equal(ac, act)

    def test_clip_inplace_array(self):
        "Test native double input with array min/max"
        a   = self._generate_data(self.nr, self.nc)
        ac  = a.copy()
        m   = zeros(a.shape)
        M   = 1.0
        self.fastclip(a, m, M, a)
        self.clip(a, m, M, ac)
        assert_array_strict_equal(a, ac)

    def test_clip_inplace_simple(self):
        "Test native double input with scalar min/max"
        a   = self._generate_data(self.nr, self.nc)
        ac  = a.copy()
        m   = -0.5
        M   = 0.6
        self.fastclip(a, m, M, a)
        self.clip(a, m, M, ac)
        assert_array_strict_equal(a, ac)

    def test_clip_func_takes_out(self):
        """ Ensure that the clip() function takes an out= argument.
        """
        a = self._generate_data(self.nr, self.nc)
        ac = a.copy()
        m = -0.5
        M = 0.6
        a2 = clip(a, m, M, out=a)
        self.clip(a, m, M, ac)
        assert_array_strict_equal(a2, ac)
        self.assert_(a2 is a)


class test_allclose_inf(TestCase):
    rtol = 1e-5
    atol = 1e-8

    def tst_allclose(self,x,y):
        assert allclose(x,y), "%s and %s not close" % (x,y)

    def tst_not_allclose(self,x,y):
        assert not allclose(x,y), "%s and %s shouldn't be close" % (x,y)

    def test_ip_allclose(self):
        """Parametric test factory."""
        arr = array([100,1000])
        aran = arange(125).reshape((5,5,5))

        atol = self.atol
        rtol = self.rtol

        data = [([1,0], [1,0]),
                ([atol], [0]),
                ([1], [1+rtol+atol]),
                (arr, arr + arr*rtol),
                (arr, arr + arr*rtol + atol*2),
                (aran, aran + aran*rtol),]

        for (x,y) in data:
            yield (self.tst_allclose,x,y)

    def test_ip_not_allclose(self):
        """Parametric test factory."""
        aran = arange(125).reshape((5,5,5))

        atol = self.atol
        rtol = self.rtol

        data = [([inf,0], [1,inf]),
                ([inf,0], [1,0]),
                ([inf,inf], [1,inf]),
                ([inf,inf], [1,0]),
                ([-inf, 0], [inf, 0]),
                ([nan,0], [nan,0]),
                ([atol*2], [0]),
                ([1], [1+rtol+atol*2]),
                (aran, aran + aran*atol + atol*2),
                (array([inf,1]), array([0,inf]))]

        for (x,y) in data:
            yield (self.tst_not_allclose,x,y)

    def test_no_parameter_modification(self):
        x = array([inf,1])
        y = array([0,inf])
        allclose(x,y)
        assert_array_equal(x,array([inf,1]))
        assert_array_equal(y,array([0,inf]))


class TestStdVar(TestCase):
    def setUp(self):
        self.A = array([1,-1,1,-1])
        self.real_var = 1

    def test_basic(self):
        assert_almost_equal(var(self.A),self.real_var)
        assert_almost_equal(std(self.A)**2,self.real_var)

    def test_ddof1(self):
        assert_almost_equal(var(self.A,ddof=1),
                            self.real_var*len(self.A)/float(len(self.A)-1))
        assert_almost_equal(std(self.A,ddof=1)**2,
                            self.real_var*len(self.A)/float(len(self.A)-1))

    def test_ddof2(self):
        assert_almost_equal(var(self.A,ddof=2),
                            self.real_var*len(self.A)/float(len(self.A)-2))
        assert_almost_equal(std(self.A,ddof=2)**2,
                            self.real_var*len(self.A)/float(len(self.A)-2))


class TestStdVarComplex(TestCase):
    def test_basic(self):
        A = array([1,1.j,-1,-1.j])
        real_var = 1
        assert_almost_equal(var(A),real_var)
        assert_almost_equal(std(A)**2,real_var)


class TestLikeFuncs(TestCase):
    '''Test zeros_like and empty_like'''

    def setUp(self):
        self.data = [(array([[1,2,3],[4,5,6]],dtype=int32), (2,3), int32),
                     (array([[1,2,3],[4,5,6]],dtype=float32), (2,3), float32),
                     ]

    def test_zeros_like(self):
        for d, dshape, dtype in self.data:
            dz = zeros_like(d)
            assert dz.shape == dshape
            assert dz.dtype.type == dtype
            assert all(abs(dz) == 0)

    def test_empty_like(self):
        for d, dshape, dtype in self.data:
            dz = zeros_like(d)
            assert dz.shape == dshape
            assert dz.dtype.type == dtype

class _TestCorrelate(TestCase):
    def _setup(self, dt):
        self.x = np.array([1, 2, 3, 4, 5], dtype=dt)
        self.y = np.array([-1, -2, -3], dtype=dt)
        self.z1 = np.array([ -3.,  -8., -14., -20., -26., -14.,  -5.], dtype=dt)
        self.z2 = np.array([ -5.,  -14., -26., -20., -14., -8.,  -3.], dtype=dt)

    def test_float(self):
        self._setup(np.float)
        z = np.correlate(self.x, self.y, 'full', old_behavior=self.old_behavior)
        assert_array_almost_equal(z, self.z1)
        z = np.correlate(self.y, self.x, 'full', old_behavior=self.old_behavior)
        assert_array_almost_equal(z, self.z2)

    def test_object(self):
        self._setup(Decimal)
        z = np.correlate(self.x, self.y, 'full', old_behavior=self.old_behavior)
        assert_array_almost_equal(z, self.z1)
        z = np.correlate(self.y, self.x, 'full', old_behavior=self.old_behavior)
        assert_array_almost_equal(z, self.z2)

class TestCorrelate(_TestCorrelate):
    old_behavior = True
    def _setup(self, dt):
        # correlate uses an unconventional definition so that correlate(a, b)
        # == correlate(b, a), so force the corresponding outputs to be the same
        # as well
        _TestCorrelate._setup(self, dt)
        self.z2 = self.z1

    @dec.deprecated()
    def test_complex(self):
        x = np.array([1, 2, 3, 4+1j], dtype=np.complex)
        y = np.array([-1, -2j, 3+1j], dtype=np.complex)
        r_z = np.array([3+1j, 6, 8-1j, 9+1j, -1-8j, -4-1j], dtype=np.complex)
        z = np.correlate(x, y, 'full')
        assert_array_almost_equal(z, r_z)

    @dec.deprecated()
    def test_float(self):
        _TestCorrelate.test_float(self)

    @dec.deprecated()
    def test_object(self):
        _TestCorrelate.test_object(self)

class TestCorrelateNew(_TestCorrelate):
    old_behavior = False
    def test_complex(self):
        x = np.array([1, 2, 3, 4+1j], dtype=np.complex)
        y = np.array([-1, -2j, 3+1j], dtype=np.complex)
        r_z = np.array([3-1j, 6, 8+1j, 11+5j, -5+8j, -4-1j], dtype=np.complex)
        #z = np.acorrelate(x, y, 'full')
        #assert_array_almost_equal(z, r_z)

        r_z = r_z[::-1].conjugate()
        z = np.correlate(y, x, 'full', old_behavior=self.old_behavior)
        assert_array_almost_equal(z, r_z)

class TestArgwhere:
    def test_2D(self):
        x = np.arange(6).reshape((2, 3))
        assert_array_equal(np.argwhere(x > 1),
                           [[0, 2],
                            [1, 0],
                            [1, 1],
                            [1, 2]])

    def test_list(self):
        assert_equal(np.argwhere([4, 0, 2, 1, 3]), [[0], [2], [3], [4]])

if __name__ == "__main__":
    run_module_suite()