1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
|
import sys
from numpy.testing import *
import numpy.core.umath as ncu
import numpy as np
class TestDivision(TestCase):
def test_division_int(self):
# int division should return the floor of the result, a la Python
x = np.array([5, 10, 90, 100, -5, -10, -90, -100, -120])
assert_equal(x / 100, [0, 0, 0, 1, -1, -1, -1, -1, -2])
assert_equal(x // 100, [0, 0, 0, 1, -1, -1, -1, -1, -2])
assert_equal(x % 100, [5, 10, 90, 0, 95, 90, 10, 0, 80])
def test_division_complex(self):
# check that implementation is correct
msg = "Complex division implementation check"
x = np.array([1. + 1.*1j, 1. + .5*1j, 1. + 2.*1j], dtype=np.complex128)
assert_almost_equal(x**2/x, x, err_msg=msg)
# check overflow, underflow
msg = "Complex division overflow/underflow check"
x = np.array([1.e+110, 1.e-110], dtype=np.complex128)
y = x**2/x
assert_almost_equal(y/x, [1, 1], err_msg=msg)
def test_floor_division_complex(self):
# check that implementation is correct
msg = "Complex floor division implementation check"
x = np.array([.9 + 1j, -.1 + 1j, .9 + .5*1j, .9 + 2.*1j], dtype=np.complex128)
y = np.array([0., -1., 0., 0.], dtype=np.complex128)
assert_equal(np.floor_divide(x**2,x), y, err_msg=msg)
# check overflow, underflow
msg = "Complex floor division overflow/underflow check"
x = np.array([1.e+110, 1.e-110], dtype=np.complex128)
y = np.floor_divide(x**2, x)
assert_equal(y, [1.e+110, 0], err_msg=msg)
class TestPower(TestCase):
def test_power_float(self):
x = np.array([1., 2., 3.])
assert_equal(x**0, [1., 1., 1.])
assert_equal(x**1, x)
assert_equal(x**2, [1., 4., 9.])
y = x.copy()
y **= 2
assert_equal(y, [1., 4., 9.])
assert_almost_equal(x**(-1), [1., 0.5, 1./3])
assert_almost_equal(x**(0.5), [1., ncu.sqrt(2), ncu.sqrt(3)])
def test_power_complex(self):
x = np.array([1+2j, 2+3j, 3+4j])
assert_equal(x**0, [1., 1., 1.])
assert_equal(x**1, x)
assert_almost_equal(x**2, [-3+4j, -5+12j, -7+24j])
assert_almost_equal(x**3, [(1+2j)**3, (2+3j)**3, (3+4j)**3])
assert_almost_equal(x**4, [(1+2j)**4, (2+3j)**4, (3+4j)**4])
assert_almost_equal(x**(-1), [1/(1+2j), 1/(2+3j), 1/(3+4j)])
assert_almost_equal(x**(-2), [1/(1+2j)**2, 1/(2+3j)**2, 1/(3+4j)**2])
assert_almost_equal(x**(-3), [(-11+2j)/125, (-46-9j)/2197,
(-117-44j)/15625])
assert_almost_equal(x**(0.5), [ncu.sqrt(1+2j), ncu.sqrt(2+3j),
ncu.sqrt(3+4j)])
norm = 1./((x**14)[0])
assert_almost_equal(x**14 * norm,
[i * norm for i in [-76443+16124j, 23161315+58317492j,
5583548873 + 2465133864j]])
# Ticket #836
def assert_complex_equal(x, y):
assert_array_equal(x.real, y.real)
assert_array_equal(x.imag, y.imag)
for z in [complex(0, np.inf), complex(1, np.inf)]:
z = np.array([z], dtype=np.complex_)
assert_complex_equal(z**1, z)
assert_complex_equal(z**2, z*z)
assert_complex_equal(z**3, z*z*z)
class TestLog2(TestCase):
def test_log2_values(self) :
x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for dt in ['f','d','g'] :
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_almost_equal(np.log2(xf), yf)
class TestExp2(TestCase):
def test_exp2_values(self) :
x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for dt in ['f','d','g'] :
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_almost_equal(np.exp2(yf), xf)
class TestLogAddExp2(object):
# Need test for intermediate precisions
def test_logaddexp2_values(self) :
x = [1, 2, 3, 4, 5]
y = [5, 4, 3, 2, 1]
z = [6, 6, 6, 6, 6]
for dt, dec in zip(['f','d','g'],[6, 15, 15]) :
xf = np.log2(np.array(x, dtype=dt))
yf = np.log2(np.array(y, dtype=dt))
zf = np.log2(np.array(z, dtype=dt))
assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec)
def test_logaddexp2_range(self) :
x = [1000000, -1000000, 1000200, -1000200]
y = [1000200, -1000200, 1000000, -1000000]
z = [1000200, -1000000, 1000200, -1000000]
for dt in ['f','d','g'] :
logxf = np.array(x, dtype=dt)
logyf = np.array(y, dtype=dt)
logzf = np.array(z, dtype=dt)
assert_almost_equal(np.logaddexp2(logxf, logyf), logzf)
def test_inf(self) :
inf = np.inf
x = [inf, -inf, inf, -inf, inf, 1, -inf, 1]
y = [inf, inf, -inf, -inf, 1, inf, 1, -inf]
z = [inf, inf, inf, -inf, inf, inf, 1, 1]
for dt in ['f','d','g'] :
logxf = np.array(x, dtype=dt)
logyf = np.array(y, dtype=dt)
logzf = np.array(z, dtype=dt)
assert_equal(np.logaddexp2(logxf, logyf), logzf)
def test_nan(self):
assert np.isnan(np.logaddexp2(np.nan, np.inf))
assert np.isnan(np.logaddexp2(np.inf, np.nan))
assert np.isnan(np.logaddexp2(np.nan, 0))
assert np.isnan(np.logaddexp2(0, np.nan))
assert np.isnan(np.logaddexp2(np.nan, np.nan))
class TestLog(TestCase):
def test_log_values(self) :
x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for dt in ['f','d','g'] :
log2_ = 0.69314718055994530943
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)*log2_
assert_almost_equal(np.log(xf), yf)
class TestExp(TestCase):
def test_exp_values(self) :
x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for dt in ['f','d','g'] :
log2_ = 0.69314718055994530943
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)*log2_
assert_almost_equal(np.exp(yf), xf)
class TestLogAddExp(object):
def test_logaddexp_values(self) :
x = [1, 2, 3, 4, 5]
y = [5, 4, 3, 2, 1]
z = [6, 6, 6, 6, 6]
for dt, dec in zip(['f','d','g'],[6, 15, 15]) :
xf = np.log(np.array(x, dtype=dt))
yf = np.log(np.array(y, dtype=dt))
zf = np.log(np.array(z, dtype=dt))
assert_almost_equal(np.logaddexp(xf, yf), zf, decimal=dec)
def test_logaddexp_range(self) :
x = [1000000, -1000000, 1000200, -1000200]
y = [1000200, -1000200, 1000000, -1000000]
z = [1000200, -1000000, 1000200, -1000000]
for dt in ['f','d','g'] :
logxf = np.array(x, dtype=dt)
logyf = np.array(y, dtype=dt)
logzf = np.array(z, dtype=dt)
assert_almost_equal(np.logaddexp(logxf, logyf), logzf)
def test_inf(self) :
inf = np.inf
x = [inf, -inf, inf, -inf, inf, 1, -inf, 1]
y = [inf, inf, -inf, -inf, 1, inf, 1, -inf]
z = [inf, inf, inf, -inf, inf, inf, 1, 1]
for dt in ['f','d','g'] :
logxf = np.array(x, dtype=dt)
logyf = np.array(y, dtype=dt)
logzf = np.array(z, dtype=dt)
assert_equal(np.logaddexp(logxf, logyf), logzf)
def test_nan(self):
assert np.isnan(np.logaddexp(np.nan, np.inf))
assert np.isnan(np.logaddexp(np.inf, np.nan))
assert np.isnan(np.logaddexp(np.nan, 0))
assert np.isnan(np.logaddexp(0, np.nan))
assert np.isnan(np.logaddexp(np.nan, np.nan))
class TestLog1p(TestCase):
def test_log1p(self):
assert_almost_equal(ncu.log1p(0.2), ncu.log(1.2))
assert_almost_equal(ncu.log1p(1e-6), ncu.log(1+1e-6))
class TestExpm1(TestCase):
def test_expm1(self):
assert_almost_equal(ncu.expm1(0.2), ncu.exp(0.2)-1)
assert_almost_equal(ncu.expm1(1e-6), ncu.exp(1e-6)-1)
class TestHypot(TestCase, object):
def test_simple(self):
assert_almost_equal(ncu.hypot(1, 1), ncu.sqrt(2))
assert_almost_equal(ncu.hypot(0, 0), 0)
def assert_hypot_isnan(x, y):
assert np.isnan(ncu.hypot(x, y)), "hypot(%s, %s) is %s, not nan" % (x, y, ncu.hypot(x, y))
def assert_hypot_isinf(x, y):
assert np.isinf(ncu.hypot(x, y)), "hypot(%s, %s) is %s, not inf" % (x, y, ncu.hypot(x, y))
class TestHypotSpecialValues(TestCase):
def test_nan_outputs(self):
assert_hypot_isnan(np.nan, np.nan)
assert_hypot_isnan(np.nan, 1)
def test_nan_outputs(self):
assert_hypot_isinf(np.nan, np.inf)
assert_hypot_isinf(np.inf, np.nan)
assert_hypot_isinf(np.inf, 0)
assert_hypot_isinf(0, np.inf)
def assert_arctan2_isnan(x, y):
assert np.isnan(ncu.arctan2(x, y)), "arctan(%s, %s) is %s, not nan" % (x, y, ncu.arctan2(x, y))
def assert_arctan2_ispinf(x, y):
assert (np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) > 0), "arctan(%s, %s) is %s, not +inf" % (x, y, ncu.arctan2(x, y))
def assert_arctan2_isninf(x, y):
assert (np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) < 0), "arctan(%s, %s) is %s, not -inf" % (x, y, ncu.arctan2(x, y))
def assert_arctan2_ispzero(x, y):
assert (ncu.arctan2(x, y) == 0 and not np.signbit(ncu.arctan2(x, y))), "arctan(%s, %s) is %s, not +0" % (x, y, ncu.arctan2(x, y))
def assert_arctan2_isnzero(x, y):
assert (ncu.arctan2(x, y) == 0 and np.signbit(ncu.arctan2(x, y))), "arctan(%s, %s) is %s, not -0" % (x, y, ncu.arctan2(x, y))
class TestArctan2SpecialValues(TestCase):
def test_one_one(self):
# atan2(1, 1) returns pi/4.
assert_almost_equal(ncu.arctan2(1, 1), 0.25 * np.pi)
assert_almost_equal(ncu.arctan2(-1, 1), -0.25 * np.pi)
assert_almost_equal(ncu.arctan2(1, -1), 0.75 * np.pi)
def test_zero_nzero(self):
# atan2(+-0, -0) returns +-pi.
assert_almost_equal(ncu.arctan2(np.PZERO, np.NZERO), np.pi)
assert_almost_equal(ncu.arctan2(np.NZERO, np.NZERO), -np.pi)
def test_zero_pzero(self):
# atan2(+-0, +0) returns +-0.
assert_arctan2_ispzero(np.PZERO, np.PZERO)
assert_arctan2_isnzero(np.NZERO, np.PZERO)
def test_zero_negative(self):
# atan2(+-0, x) returns +-pi for x < 0.
assert_almost_equal(ncu.arctan2(np.PZERO, -1), np.pi)
assert_almost_equal(ncu.arctan2(np.NZERO, -1), -np.pi)
def test_zero_positive(self):
# atan2(+-0, x) returns +-0 for x > 0.
assert_arctan2_ispzero(np.PZERO, 1)
assert_arctan2_isnzero(np.NZERO, 1)
def test_positive_zero(self):
# atan2(y, +-0) returns +pi/2 for y > 0.
assert_almost_equal(ncu.arctan2(1, np.PZERO), 0.5 * np.pi)
assert_almost_equal(ncu.arctan2(1, np.NZERO), 0.5 * np.pi)
def test_negative_zero(self):
# atan2(y, +-0) returns -pi/2 for y < 0.
assert_almost_equal(ncu.arctan2(-1, np.PZERO), -0.5 * np.pi)
assert_almost_equal(ncu.arctan2(-1, np.NZERO), -0.5 * np.pi)
def test_any_ninf(self):
# atan2(+-y, -infinity) returns +-pi for finite y > 0.
assert_almost_equal(ncu.arctan2(1, np.NINF), np.pi)
assert_almost_equal(ncu.arctan2(-1, np.NINF), -np.pi)
def test_any_pinf(self):
# atan2(+-y, +infinity) returns +-0 for finite y > 0.
assert_arctan2_ispzero(1, np.inf)
assert_arctan2_isnzero(-1, np.inf)
def test_inf_any(self):
# atan2(+-infinity, x) returns +-pi/2 for finite x.
assert_almost_equal(ncu.arctan2( np.inf, 1), 0.5 * np.pi)
assert_almost_equal(ncu.arctan2(-np.inf, 1), -0.5 * np.pi)
def test_inf_ninf(self):
# atan2(+-infinity, -infinity) returns +-3*pi/4.
assert_almost_equal(ncu.arctan2( np.inf, -np.inf), 0.75 * np.pi)
assert_almost_equal(ncu.arctan2(-np.inf, -np.inf), -0.75 * np.pi)
def test_inf_pinf(self):
# atan2(+-infinity, +infinity) returns +-pi/4.
assert_almost_equal(ncu.arctan2( np.inf, np.inf), 0.25 * np.pi)
assert_almost_equal(ncu.arctan2(-np.inf, np.inf), -0.25 * np.pi)
def test_nan_any(self):
# atan2(nan, x) returns nan for any x, including inf
assert_arctan2_isnan(np.nan, np.inf)
assert_arctan2_isnan(np.inf, np.nan)
assert_arctan2_isnan(np.nan, np.nan)
class TestMaximum(TestCase):
def test_reduce_complex(self):
assert_equal(np.maximum.reduce([1,2j]),1)
assert_equal(np.maximum.reduce([1+3j,2j]),1+3j)
def test_float_nans(self):
nan = np.nan
arg1 = np.array([0, nan, nan])
arg2 = np.array([nan, 0, nan])
out = np.array([nan, nan, nan])
assert_equal(np.maximum(arg1, arg2), out)
def test_complex_nans(self):
nan = np.nan
for cnan in [nan, nan*1j, nan + nan*1j] :
arg1 = np.array([0, cnan, cnan], dtype=np.complex)
arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
out = np.array([nan, nan, nan], dtype=np.complex)
assert_equal(np.maximum(arg1, arg2), out)
class TestMinimum(TestCase):
def test_reduce_complex(self):
assert_equal(np.minimum.reduce([1,2j]),2j)
assert_equal(np.minimum.reduce([1+3j,2j]),2j)
def test_float_nans(self):
nan = np.nan
arg1 = np.array([0, nan, nan])
arg2 = np.array([nan, 0, nan])
out = np.array([nan, nan, nan])
assert_equal(np.minimum(arg1, arg2), out)
def test_complex_nans(self):
nan = np.nan
for cnan in [nan, nan*1j, nan + nan*1j] :
arg1 = np.array([0, cnan, cnan], dtype=np.complex)
arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
out = np.array([nan, nan, nan], dtype=np.complex)
assert_equal(np.minimum(arg1, arg2), out)
class TestFmax(TestCase):
def test_reduce_complex(self):
assert_equal(np.fmax.reduce([1,2j]),1)
assert_equal(np.fmax.reduce([1+3j,2j]),1+3j)
def test_float_nans(self):
nan = np.nan
arg1 = np.array([0, nan, nan])
arg2 = np.array([nan, 0, nan])
out = np.array([0, 0, nan])
assert_equal(np.fmax(arg1, arg2), out)
def test_complex_nans(self):
nan = np.nan
for cnan in [nan, nan*1j, nan + nan*1j] :
arg1 = np.array([0, cnan, cnan], dtype=np.complex)
arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
out = np.array([0, 0, nan], dtype=np.complex)
assert_equal(np.fmax(arg1, arg2), out)
class TestFmin(TestCase):
def test_reduce_complex(self):
assert_equal(np.fmin.reduce([1,2j]),2j)
assert_equal(np.fmin.reduce([1+3j,2j]),2j)
def test_float_nans(self):
nan = np.nan
arg1 = np.array([0, nan, nan])
arg2 = np.array([nan, 0, nan])
out = np.array([0, 0, nan])
assert_equal(np.fmin(arg1, arg2), out)
def test_complex_nans(self):
nan = np.nan
for cnan in [nan, nan*1j, nan + nan*1j] :
arg1 = np.array([0, cnan, cnan], dtype=np.complex)
arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
out = np.array([0, 0, nan], dtype=np.complex)
assert_equal(np.fmin(arg1, arg2), out)
class TestFloatingPoint(TestCase):
def test_floating_point(self):
assert_equal(ncu.FLOATING_POINT_SUPPORT, 1)
class TestDegrees(TestCase):
def test_degrees(self):
assert_almost_equal(ncu.degrees(np.pi), 180.0)
assert_almost_equal(ncu.degrees(-0.5*np.pi), -90.0)
class TestRadians(TestCase):
def test_radians(self):
assert_almost_equal(ncu.radians(180.0), np.pi)
assert_almost_equal(ncu.radians(-90.0), -0.5*np.pi)
class TestSpecialMethods(TestCase):
def test_wrap(self):
class with_wrap(object):
def __array__(self):
return np.zeros(1)
def __array_wrap__(self, arr, context):
r = with_wrap()
r.arr = arr
r.context = context
return r
a = with_wrap()
x = ncu.minimum(a, a)
assert_equal(x.arr, np.zeros(1))
func, args, i = x.context
self.failUnless(func is ncu.minimum)
self.failUnlessEqual(len(args), 2)
assert_equal(args[0], a)
assert_equal(args[1], a)
self.failUnlessEqual(i, 0)
def test_wrap_with_iterable(self):
# test fix for bug #1026:
class with_wrap(np.ndarray):
__array_priority__ = 10
def __new__(cls):
return np.asarray(1).view(cls).copy()
def __array_wrap__(self, arr, context):
return arr.view(type(self))
a = with_wrap()
x = ncu.multiply(a, (1, 2, 3))
self.failUnless(isinstance(x, with_wrap))
assert_array_equal(x, np.array((1, 2, 3)))
def test_priority_with_scalar(self):
# test fix for bug #826:
class A(np.ndarray):
__array_priority__ = 10
def __new__(cls):
return np.asarray(1.0, 'float64').view(cls).copy()
a = A()
x = np.float64(1)*a
self.failUnless(isinstance(x, A))
assert_array_equal(x, np.array(1))
def test_old_wrap(self):
class with_wrap(object):
def __array__(self):
return np.zeros(1)
def __array_wrap__(self, arr):
r = with_wrap()
r.arr = arr
return r
a = with_wrap()
x = ncu.minimum(a, a)
assert_equal(x.arr, np.zeros(1))
def test_priority(self):
class A(object):
def __array__(self):
return np.zeros(1)
def __array_wrap__(self, arr, context):
r = type(self)()
r.arr = arr
r.context = context
return r
class B(A):
__array_priority__ = 20.
class C(A):
__array_priority__ = 40.
x = np.zeros(1)
a = A()
b = B()
c = C()
f = ncu.minimum
self.failUnless(type(f(x,x)) is np.ndarray)
self.failUnless(type(f(x,a)) is A)
self.failUnless(type(f(x,b)) is B)
self.failUnless(type(f(x,c)) is C)
self.failUnless(type(f(a,x)) is A)
self.failUnless(type(f(b,x)) is B)
self.failUnless(type(f(c,x)) is C)
self.failUnless(type(f(a,a)) is A)
self.failUnless(type(f(a,b)) is B)
self.failUnless(type(f(b,a)) is B)
self.failUnless(type(f(b,b)) is B)
self.failUnless(type(f(b,c)) is C)
self.failUnless(type(f(c,b)) is C)
self.failUnless(type(f(c,c)) is C)
self.failUnless(type(ncu.exp(a) is A))
self.failUnless(type(ncu.exp(b) is B))
self.failUnless(type(ncu.exp(c) is C))
def test_failing_wrap(self):
class A(object):
def __array__(self):
return np.zeros(1)
def __array_wrap__(self, arr, context):
raise RuntimeError
a = A()
self.failUnlessRaises(RuntimeError, ncu.maximum, a, a)
def test_default_prepare(self):
class with_wrap(object):
__array_priority__ = 10
def __array__(self):
return np.zeros(1)
def __array_wrap__(self, arr, context):
return arr
a = with_wrap()
x = ncu.minimum(a, a)
assert_equal(x, np.zeros(1))
assert_equal(type(x), np.ndarray)
def test_prepare(self):
class with_prepare(np.ndarray):
__array_priority__ = 10
def __array_prepare__(self, arr, context):
# make sure we can return a new
return np.array(arr).view(type=with_prepare)
a = np.array(1).view(type=with_prepare)
x = np.add(a, a)
assert_equal(x, np.array(2))
assert_equal(type(x), with_prepare)
def test_failing_prepare(self):
class A(object):
def __array__(self):
return np.zeros(1)
def __array_prepare__(self, arr, context=None):
raise RuntimeError
a = A()
self.failUnlessRaises(RuntimeError, ncu.maximum, a, a)
def test_array_with_context(self):
class A(object):
def __array__(self, dtype=None, context=None):
func, args, i = context
self.func = func
self.args = args
self.i = i
return np.zeros(1)
class B(object):
def __array__(self, dtype=None):
return np.zeros(1, dtype)
class C(object):
def __array__(self):
return np.zeros(1)
a = A()
ncu.maximum(np.zeros(1), a)
self.failUnless(a.func is ncu.maximum)
assert_equal(a.args[0], 0)
self.failUnless(a.args[1] is a)
self.failUnless(a.i == 1)
assert_equal(ncu.maximum(a, B()), 0)
assert_equal(ncu.maximum(a, C()), 0)
class TestChoose(TestCase):
def test_mixed(self):
c = np.array([True,True])
a = np.array([True,True])
assert_equal(np.choose(c, (a, 1)), np.array([1,1]))
def is_longdouble_finfo_bogus():
info = np.finfo(np.longcomplex)
return not np.isfinite(np.log10(info.tiny/info.eps))
class TestComplexFunctions(object):
funcs = [np.arcsin, np.arccos, np.arctan, np.arcsinh, np.arccosh,
np.arctanh, np.sin, np.cos, np.tan, np.exp,
np.exp2, np.log, np.sqrt, np.log10, np.log2,
np.log1p]
def test_it(self):
for f in self.funcs:
if f is np.arccosh :
x = 1.5
else :
x = .5
fr = f(x)
fz = f(np.complex(x))
assert_almost_equal(fz.real, fr, err_msg='real part %s'%f)
assert_almost_equal(fz.imag, 0., err_msg='imag part %s'%f)
def test_precisions_consistent(self) :
z = 1 + 1j
for f in self.funcs :
fcf = f(np.csingle(z))
fcd = f(np.cdouble(z))
fcl = f(np.clongdouble(z))
assert_almost_equal(fcf, fcd, decimal=6, err_msg='fch-fcd %s'%f)
assert_almost_equal(fcl, fcd, decimal=15, err_msg='fch-fcl %s'%f)
def test_branch_cuts(self):
# check branch cuts and continuity on them
yield _check_branch_cut, np.log, -0.5, 1j, 1, -1
yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1
yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1
yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1
yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1
yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, -1j], 1, -1
yield _check_branch_cut, np.arccos, [ -2, 2], [1j, -1j], 1, -1
yield _check_branch_cut, np.arctan, [-2j, 2j], [1, -1 ], -1, 1
yield _check_branch_cut, np.arcsinh, [-2j, 2j], [-1, 1], -1, 1
yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1
yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, -1j], 1, -1
# check against bogus branch cuts: assert continuity between quadrants
yield _check_branch_cut, np.arcsin, [-2j, 2j], [ 1, 1], 1, 1
yield _check_branch_cut, np.arccos, [-2j, 2j], [ 1, 1], 1, 1
yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1
yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1 ], 1, 1
yield _check_branch_cut, np.arccosh, [-2j, 2j, 2], [1, 1, 1j], 1, 1
yield _check_branch_cut, np.arctanh, [-2j, 2j, 0], [1, 1, 1j], 1, 1
@dec.knownfailureif(True, "These branch cuts are known to fail")
def test_branch_cuts_failing(self):
# XXX: signed zero not OK with ICC on 64-bit platform for log, see
# http://permalink.gmane.org/gmane.comp.python.numeric.general/25335
yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True
# XXX: signed zeros are not OK for sqrt or for the arc* functions
yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True
yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, -1j], 1, -1, True
yield _check_branch_cut, np.arccos, [ -2, 2], [1j, -1j], 1, -1, True
yield _check_branch_cut, np.arctan, [-2j, 2j], [1, -1 ], -1, 1, True
yield _check_branch_cut, np.arcsinh, [-2j, 2j], [-1, 1], -1, 1, True
yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True
yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, -1j], 1, -1, True
def test_against_cmath(self):
import cmath, sys
# cmath.asinh is broken in some versions of Python, see
# http://bugs.python.org/issue1381
broken_cmath_asinh = False
if sys.version_info < (2,6):
broken_cmath_asinh = True
points = [-1-1j, -1+1j, +1-1j, +1+1j]
name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
atol = 4*np.finfo(np.complex).eps
for func in self.funcs:
fname = func.__name__.split('.')[-1]
cname = name_map.get(fname, fname)
try:
cfunc = getattr(cmath, cname)
except AttributeError:
continue
for p in points:
a = complex(func(np.complex_(p)))
b = cfunc(p)
if cname == 'asinh' and broken_cmath_asinh:
continue
assert abs(a - b) < atol, "%s %s: %s; cmath: %s"%(fname,p,a,b)
def check_loss_of_precision(self, dtype):
"""Check loss of precision in complex arc* functions"""
# Check against known-good functions
info = np.finfo(dtype)
real_dtype = dtype(0.).real.dtype
eps = info.eps
def check(x, rtol):
x = x.astype(real_dtype)
z = x.astype(dtype)
d = np.absolute(np.arcsinh(x)/np.arcsinh(z).real - 1)
assert np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
'arcsinh')
z = (1j*x).astype(dtype)
d = np.absolute(np.arcsinh(x)/np.arcsin(z).imag - 1)
assert np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
'arcsin')
z = x.astype(dtype)
d = np.absolute(np.arctanh(x)/np.arctanh(z).real - 1)
assert np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
'arctanh')
z = (1j*x).astype(dtype)
d = np.absolute(np.arctanh(x)/np.arctan(z).imag - 1)
assert np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
'arctan')
# The switchover was chosen as 1e-3; hence there can be up to
# ~eps/1e-3 of relative cancellation error before it
x_series = np.logspace(-20, -3.001, 200)
x_basic = np.logspace(-2.999, 0, 10, endpoint=False)
if dtype is np.longcomplex:
# It's not guaranteed that the system-provided arc functions
# are accurate down to a few epsilons. (Eg. on Linux 64-bit)
# So, give more leeway for long complex tests here:
check(x_series, 50*eps)
else:
check(x_series, 2*eps)
check(x_basic, 2*eps/1e-3)
# Check a few points
z = np.array([1e-5*(1+1j)], dtype=dtype)
p = 9.999999999333333333e-6 + 1.000000000066666666e-5j
d = np.absolute(1-np.arctanh(z)/p)
assert np.all(d < 1e-15)
p = 1.0000000000333333333e-5 + 9.999999999666666667e-6j
d = np.absolute(1-np.arcsinh(z)/p)
assert np.all(d < 1e-15)
p = 9.999999999333333333e-6j + 1.000000000066666666e-5
d = np.absolute(1-np.arctan(z)/p)
assert np.all(d < 1e-15)
p = 1.0000000000333333333e-5j + 9.999999999666666667e-6
d = np.absolute(1-np.arcsin(z)/p)
assert np.all(d < 1e-15)
# Check continuity across switchover points
def check(func, z0, d=1):
z0 = np.asarray(z0, dtype=dtype)
zp = z0 + abs(z0) * d * eps * 2
zm = z0 - abs(z0) * d * eps * 2
assert np.all(zp != zm), (zp, zm)
# NB: the cancellation error at the switchover is at least eps
good = (abs(func(zp) - func(zm)) < 2*eps)
assert np.all(good), (func, z0[~good])
for func in (np.arcsinh,np.arcsinh,np.arcsin,np.arctanh,np.arctan):
pts = [rp+1j*ip for rp in (-1e-3,0,1e-3) for ip in(-1e-3,0,1e-3)
if rp != 0 or ip != 0]
check(func, pts, 1)
check(func, pts, 1j)
check(func, pts, 1+1j)
def test_loss_of_precision(self):
for dtype in [np.complex64, np.complex_]:
yield self.check_loss_of_precision, dtype
@dec.knownfailureif(is_longdouble_finfo_bogus(), "Bogus long double finfo")
def test_loss_of_precision_longcomplex(self):
self.check_loss_of_precision(np.longcomplex)
class TestAttributes(TestCase):
def test_attributes(self):
add = ncu.add
assert_equal(add.__name__, 'add')
assert add.__doc__.startswith('add(x1, x2[, out])\n\n')
self.failUnless(add.ntypes >= 18) # don't fail if types added
self.failUnless('ii->i' in add.types)
assert_equal(add.nin, 2)
assert_equal(add.nout, 1)
assert_equal(add.identity, 0)
class TestSubclass(TestCase):
def test_subclass_op(self):
class simple(np.ndarray):
def __new__(subtype, shape):
self = np.ndarray.__new__(subtype, shape, dtype=object)
self.fill(0)
return self
a = simple((3,4))
assert_equal(a+a, a)
def _check_branch_cut(f, x0, dx, re_sign=1, im_sign=-1, sig_zero_ok=False,
dtype=np.complex):
"""
Check for a branch cut in a function.
Assert that `x0` lies on a branch cut of function `f` and `f` is
continuous from the direction `dx`.
Parameters
----------
f : func
Function to check
x0 : array-like
Point on branch cut
dx : array-like
Direction to check continuity in
re_sign, im_sign : {1, -1}
Change of sign of the real or imaginary part expected
sig_zero_ok : bool
Whether to check if the branch cut respects signed zero (if applicable)
dtype : dtype
Dtype to check (should be complex)
"""
x0 = np.atleast_1d(x0).astype(dtype)
dx = np.atleast_1d(dx).astype(dtype)
scale = np.finfo(dtype).eps * 1e3
atol = 1e-4
y0 = f(x0)
yp = f(x0 + dx*scale*np.absolute(x0)/np.absolute(dx))
ym = f(x0 - dx*scale*np.absolute(x0)/np.absolute(dx))
assert np.all(np.absolute(y0.real - yp.real) < atol), (y0, yp)
assert np.all(np.absolute(y0.imag - yp.imag) < atol), (y0, yp)
assert np.all(np.absolute(y0.real - ym.real*re_sign) < atol), (y0, ym)
assert np.all(np.absolute(y0.imag - ym.imag*im_sign) < atol), (y0, ym)
if sig_zero_ok:
# check that signed zeros also work as a displacement
jr = (x0.real == 0) & (dx.real != 0)
ji = (x0.imag == 0) & (dx.imag != 0)
x = -x0
x.real[jr] = 0.*dx.real
x.imag[ji] = 0.*dx.imag
x = -x
ym = f(x)
ym = ym[jr | ji]
y0 = y0[jr | ji]
assert np.all(np.absolute(y0.real - ym.real*re_sign) < atol), (y0, ym)
assert np.all(np.absolute(y0.imag - ym.imag*im_sign) < atol), (y0, ym)
def test_copysign():
assert np.copysign(1, -1) == -1
assert 1 / np.copysign(0, -1) < 0
assert 1 / np.copysign(0, 1) > 0
assert np.signbit(np.copysign(np.nan, -1))
assert not np.signbit(np.copysign(np.nan, 1))
def _test_nextafter(t):
one = t(1)
two = t(2)
zero = t(0)
eps = np.finfo(t).eps
assert np.nextafter(one, two) - one == eps
assert np.nextafter(one, zero) - one < 0
assert np.isnan(np.nextafter(np.nan, one))
assert np.isnan(np.nextafter(one, np.nan))
assert np.nextafter(one, one) == one
def test_nextafter():
return _test_nextafter(np.float64)
def test_nextafterf():
return _test_nextafter(np.float32)
@dec.knownfailureif(sys.platform == 'win32', "Long double support buggy on win32")
def test_nextafterl():
return _test_nextafter(np.longdouble)
def _test_spacing(t):
one = t(1)
eps = np.finfo(t).eps
nan = t(np.nan)
inf = t(np.inf)
assert np.spacing(one) == eps
assert np.isnan(np.spacing(nan))
assert np.isnan(np.spacing(inf))
assert np.isnan(np.spacing(-inf))
assert np.spacing(t(1e30)) != 0
def test_spacing():
return _test_spacing(np.float64)
def test_spacingf():
return _test_spacing(np.float32)
@dec.knownfailureif(sys.platform == 'win32', "Long double support buggy on win32")
def test_spacingl():
return _test_spacing(np.longdouble)
def test_spacing_gfortran():
# Reference from this fortran file, built with gfortran 4.3.3 on linux
# 32bits:
# PROGRAM test_spacing
# INTEGER, PARAMETER :: SGL = SELECTED_REAL_KIND(p=6, r=37)
# INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(p=13, r=200)
#
# WRITE(*,*) spacing(0.00001_DBL)
# WRITE(*,*) spacing(1.0_DBL)
# WRITE(*,*) spacing(1000._DBL)
# WRITE(*,*) spacing(10500._DBL)
#
# WRITE(*,*) spacing(0.00001_SGL)
# WRITE(*,*) spacing(1.0_SGL)
# WRITE(*,*) spacing(1000._SGL)
# WRITE(*,*) spacing(10500._SGL)
# END PROGRAM
ref = {}
ref[np.float64] = [1.69406589450860068E-021,
2.22044604925031308E-016,
1.13686837721616030E-013,
1.81898940354585648E-012]
ref[np.float32] = [
9.09494702E-13,
1.19209290E-07,
6.10351563E-05,
9.76562500E-04]
for dt, dec in zip([np.float32, np.float64], (10, 20)):
x = np.array([1e-5, 1, 1000, 10500], dtype=dt)
assert_array_almost_equal(np.spacing(x), ref[dt], decimal=dec)
def test_nextafter_vs_spacing():
# XXX: spacing does not handle long double yet
for t in [np.float32, np.float64]:
for _f in [1, 1e-5, 1000]:
f = t(_f)
f1 = t(_f + 1)
assert np.nextafter(f, f1) - f == np.spacing(f)
def test_pos_nan():
"""Check np.nan is a positive nan."""
assert np.signbit(np.nan) == 0
def test_reduceat():
"""Test bug in reduceat with structured arrays copied for speed."""
db = np.dtype([('name', 'S11'),('time', np.int64), ('value', np.float32)])
a = np.empty([100], dtype=db)
a['name'] = 'Simple'
a['time'] = 10
a['value'] = 100
indx = [0,7,15,25]
h2 = []
val1 = indx[0]
for val2 in indx[1:]:
h2.append(np.add.reduce(a['value'][val1:val2]))
val1 = val2
h2.append(np.add.reduce(a['value'][val1:]))
h2 = np.array(h2)
# test buffered
res = np.setbufsize(32)
h1 = np.add.reduceat(a['value'], indx)
assert_array_almost_equal(h1, h2)
# test nobuffer
np.setbufsize(res)
h1 = np.add.reduceat(a['value'], indx)
assert_array_almost_equal(h1, h2)
if __name__ == "__main__":
run_module_suite()
|