File: test_umath.py

package info (click to toggle)
python-numpy 1%3A1.4.1-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 12,736 kB
  • ctags: 14,035
  • sloc: ansic: 80,776; python: 62,482; makefile: 183; fortran: 121; f90: 42; cpp: 28; perl: 19; sh: 15
file content (962 lines) | stat: -rw-r--r-- 35,991 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
import sys

from numpy.testing import *
import numpy.core.umath as ncu
import numpy as np

class TestDivision(TestCase):
    def test_division_int(self):
        # int division should return the floor of the result, a la Python
        x = np.array([5, 10, 90, 100, -5, -10, -90, -100, -120])
        assert_equal(x / 100, [0, 0, 0, 1, -1, -1, -1, -1, -2])
        assert_equal(x // 100, [0, 0, 0, 1, -1, -1, -1, -1, -2])
        assert_equal(x % 100, [5, 10, 90, 0, 95, 90, 10, 0, 80])

    def test_division_complex(self):
        # check that implementation is correct
        msg = "Complex division implementation check"
        x = np.array([1. + 1.*1j, 1. + .5*1j, 1. + 2.*1j], dtype=np.complex128)
        assert_almost_equal(x**2/x, x, err_msg=msg)
        # check overflow, underflow
        msg = "Complex division overflow/underflow check"
        x = np.array([1.e+110, 1.e-110], dtype=np.complex128)
        y = x**2/x
        assert_almost_equal(y/x, [1, 1], err_msg=msg)

    def test_floor_division_complex(self):
        # check that implementation is correct
        msg = "Complex floor division implementation check"
        x = np.array([.9 + 1j, -.1 + 1j, .9 + .5*1j, .9 + 2.*1j], dtype=np.complex128)
        y = np.array([0., -1., 0., 0.], dtype=np.complex128)
        assert_equal(np.floor_divide(x**2,x), y, err_msg=msg)
        # check overflow, underflow
        msg = "Complex floor division overflow/underflow check"
        x = np.array([1.e+110, 1.e-110], dtype=np.complex128)
        y = np.floor_divide(x**2, x)
        assert_equal(y, [1.e+110, 0], err_msg=msg)

class TestPower(TestCase):
    def test_power_float(self):
        x = np.array([1., 2., 3.])
        assert_equal(x**0, [1., 1., 1.])
        assert_equal(x**1, x)
        assert_equal(x**2, [1., 4., 9.])
        y = x.copy()
        y **= 2
        assert_equal(y, [1., 4., 9.])
        assert_almost_equal(x**(-1), [1., 0.5, 1./3])
        assert_almost_equal(x**(0.5), [1., ncu.sqrt(2), ncu.sqrt(3)])

    def test_power_complex(self):
        x = np.array([1+2j, 2+3j, 3+4j])
        assert_equal(x**0, [1., 1., 1.])
        assert_equal(x**1, x)
        assert_almost_equal(x**2, [-3+4j, -5+12j, -7+24j])
        assert_almost_equal(x**3, [(1+2j)**3, (2+3j)**3, (3+4j)**3])
        assert_almost_equal(x**4, [(1+2j)**4, (2+3j)**4, (3+4j)**4])
        assert_almost_equal(x**(-1), [1/(1+2j), 1/(2+3j), 1/(3+4j)])
        assert_almost_equal(x**(-2), [1/(1+2j)**2, 1/(2+3j)**2, 1/(3+4j)**2])
        assert_almost_equal(x**(-3), [(-11+2j)/125, (-46-9j)/2197,
                                      (-117-44j)/15625])
        assert_almost_equal(x**(0.5), [ncu.sqrt(1+2j), ncu.sqrt(2+3j),
                                       ncu.sqrt(3+4j)])
        norm = 1./((x**14)[0])
        assert_almost_equal(x**14 * norm,
                [i * norm for i in [-76443+16124j, 23161315+58317492j,
                                    5583548873 +  2465133864j]])

        # Ticket #836
        def assert_complex_equal(x, y):
            assert_array_equal(x.real, y.real)
            assert_array_equal(x.imag, y.imag)

        for z in [complex(0, np.inf), complex(1, np.inf)]:
            z = np.array([z], dtype=np.complex_)
            assert_complex_equal(z**1, z)
            assert_complex_equal(z**2, z*z)
            assert_complex_equal(z**3, z*z*z)

class TestLog2(TestCase):
    def test_log2_values(self) :
        x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
        y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
        for dt in ['f','d','g'] :
            xf = np.array(x, dtype=dt)
            yf = np.array(y, dtype=dt)
            assert_almost_equal(np.log2(xf), yf)

class TestExp2(TestCase):
    def test_exp2_values(self) :
        x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
        y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
        for dt in ['f','d','g'] :
            xf = np.array(x, dtype=dt)
            yf = np.array(y, dtype=dt)
            assert_almost_equal(np.exp2(yf), xf)

class TestLogAddExp2(object):
    # Need test for intermediate precisions
    def test_logaddexp2_values(self) :
        x = [1, 2, 3, 4, 5]
        y = [5, 4, 3, 2, 1]
        z = [6, 6, 6, 6, 6]
        for dt, dec in zip(['f','d','g'],[6, 15, 15]) :
            xf = np.log2(np.array(x, dtype=dt))
            yf = np.log2(np.array(y, dtype=dt))
            zf = np.log2(np.array(z, dtype=dt))
            assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec)

    def test_logaddexp2_range(self) :
        x = [1000000, -1000000, 1000200, -1000200]
        y = [1000200, -1000200, 1000000, -1000000]
        z = [1000200, -1000000, 1000200, -1000000]
        for dt in ['f','d','g'] :
            logxf = np.array(x, dtype=dt)
            logyf = np.array(y, dtype=dt)
            logzf = np.array(z, dtype=dt)
            assert_almost_equal(np.logaddexp2(logxf, logyf), logzf)

    def test_inf(self) :
        inf = np.inf
        x = [inf, -inf,  inf, -inf, inf, 1,  -inf,  1]
        y = [inf,  inf, -inf, -inf, 1,   inf, 1,   -inf]
        z = [inf,  inf,  inf, -inf, inf, inf, 1,    1]
        for dt in ['f','d','g'] :
            logxf = np.array(x, dtype=dt)
            logyf = np.array(y, dtype=dt)
            logzf = np.array(z, dtype=dt)
            assert_equal(np.logaddexp2(logxf, logyf), logzf)

    def test_nan(self):
        assert np.isnan(np.logaddexp2(np.nan, np.inf))
        assert np.isnan(np.logaddexp2(np.inf, np.nan))
        assert np.isnan(np.logaddexp2(np.nan, 0))
        assert np.isnan(np.logaddexp2(0, np.nan))
        assert np.isnan(np.logaddexp2(np.nan, np.nan))

class TestLog(TestCase):
    def test_log_values(self) :
        x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
        y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
        for dt in ['f','d','g'] :
            log2_ = 0.69314718055994530943
            xf = np.array(x, dtype=dt)
            yf = np.array(y, dtype=dt)*log2_
            assert_almost_equal(np.log(xf), yf)

class TestExp(TestCase):
    def test_exp_values(self) :
        x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
        y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
        for dt in ['f','d','g'] :
            log2_ = 0.69314718055994530943
            xf = np.array(x, dtype=dt)
            yf = np.array(y, dtype=dt)*log2_
            assert_almost_equal(np.exp(yf), xf)

class TestLogAddExp(object):
    def test_logaddexp_values(self) :
        x = [1, 2, 3, 4, 5]
        y = [5, 4, 3, 2, 1]
        z = [6, 6, 6, 6, 6]
        for dt, dec in zip(['f','d','g'],[6, 15, 15]) :
            xf = np.log(np.array(x, dtype=dt))
            yf = np.log(np.array(y, dtype=dt))
            zf = np.log(np.array(z, dtype=dt))
            assert_almost_equal(np.logaddexp(xf, yf), zf, decimal=dec)

    def test_logaddexp_range(self) :
        x = [1000000, -1000000, 1000200, -1000200]
        y = [1000200, -1000200, 1000000, -1000000]
        z = [1000200, -1000000, 1000200, -1000000]
        for dt in ['f','d','g'] :
            logxf = np.array(x, dtype=dt)
            logyf = np.array(y, dtype=dt)
            logzf = np.array(z, dtype=dt)
            assert_almost_equal(np.logaddexp(logxf, logyf), logzf)

    def test_inf(self) :
        inf = np.inf
        x = [inf, -inf,  inf, -inf, inf, 1,  -inf,  1]
        y = [inf,  inf, -inf, -inf, 1,   inf, 1,   -inf]
        z = [inf,  inf,  inf, -inf, inf, inf, 1,    1]
        for dt in ['f','d','g'] :
            logxf = np.array(x, dtype=dt)
            logyf = np.array(y, dtype=dt)
            logzf = np.array(z, dtype=dt)
            assert_equal(np.logaddexp(logxf, logyf), logzf)

    def test_nan(self):
        assert np.isnan(np.logaddexp(np.nan, np.inf))
        assert np.isnan(np.logaddexp(np.inf, np.nan))
        assert np.isnan(np.logaddexp(np.nan, 0))
        assert np.isnan(np.logaddexp(0, np.nan))
        assert np.isnan(np.logaddexp(np.nan, np.nan))

class TestLog1p(TestCase):
    def test_log1p(self):
        assert_almost_equal(ncu.log1p(0.2), ncu.log(1.2))
        assert_almost_equal(ncu.log1p(1e-6), ncu.log(1+1e-6))

class TestExpm1(TestCase):
    def test_expm1(self):
        assert_almost_equal(ncu.expm1(0.2), ncu.exp(0.2)-1)
        assert_almost_equal(ncu.expm1(1e-6), ncu.exp(1e-6)-1)

class TestHypot(TestCase, object):
    def test_simple(self):
        assert_almost_equal(ncu.hypot(1, 1), ncu.sqrt(2))
        assert_almost_equal(ncu.hypot(0, 0), 0)

def assert_hypot_isnan(x, y):
    assert np.isnan(ncu.hypot(x, y)), "hypot(%s, %s) is %s, not nan" % (x, y, ncu.hypot(x, y))

def assert_hypot_isinf(x, y):
    assert np.isinf(ncu.hypot(x, y)), "hypot(%s, %s) is %s, not inf" % (x, y, ncu.hypot(x, y))

class TestHypotSpecialValues(TestCase):
    def test_nan_outputs(self):
        assert_hypot_isnan(np.nan, np.nan)
        assert_hypot_isnan(np.nan, 1)

    def test_nan_outputs(self):
        assert_hypot_isinf(np.nan, np.inf)
        assert_hypot_isinf(np.inf, np.nan)
        assert_hypot_isinf(np.inf, 0)
        assert_hypot_isinf(0, np.inf)

def assert_arctan2_isnan(x, y):
    assert np.isnan(ncu.arctan2(x, y)), "arctan(%s, %s) is %s, not nan" % (x, y, ncu.arctan2(x, y))

def assert_arctan2_ispinf(x, y):
    assert (np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) > 0), "arctan(%s, %s) is %s, not +inf" % (x, y, ncu.arctan2(x, y))

def assert_arctan2_isninf(x, y):
    assert (np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) < 0), "arctan(%s, %s) is %s, not -inf" % (x, y, ncu.arctan2(x, y))

def assert_arctan2_ispzero(x, y):
    assert (ncu.arctan2(x, y) == 0 and not np.signbit(ncu.arctan2(x, y))), "arctan(%s, %s) is %s, not +0" % (x, y, ncu.arctan2(x, y))

def assert_arctan2_isnzero(x, y):
    assert (ncu.arctan2(x, y) == 0 and np.signbit(ncu.arctan2(x, y))), "arctan(%s, %s) is %s, not -0" % (x, y, ncu.arctan2(x, y))

class TestArctan2SpecialValues(TestCase):
    def test_one_one(self):
        # atan2(1, 1) returns pi/4.
        assert_almost_equal(ncu.arctan2(1, 1), 0.25 * np.pi)
        assert_almost_equal(ncu.arctan2(-1, 1), -0.25 * np.pi)
        assert_almost_equal(ncu.arctan2(1, -1), 0.75 * np.pi)

    def test_zero_nzero(self):
        # atan2(+-0, -0) returns +-pi.
        assert_almost_equal(ncu.arctan2(np.PZERO, np.NZERO), np.pi)
        assert_almost_equal(ncu.arctan2(np.NZERO, np.NZERO), -np.pi)

    def test_zero_pzero(self):
        # atan2(+-0, +0) returns +-0.
        assert_arctan2_ispzero(np.PZERO, np.PZERO)
        assert_arctan2_isnzero(np.NZERO, np.PZERO)

    def test_zero_negative(self):
        # atan2(+-0, x) returns +-pi for x < 0.
        assert_almost_equal(ncu.arctan2(np.PZERO, -1), np.pi)
        assert_almost_equal(ncu.arctan2(np.NZERO, -1), -np.pi)

    def test_zero_positive(self):
        # atan2(+-0, x) returns +-0 for x > 0.
        assert_arctan2_ispzero(np.PZERO, 1)
        assert_arctan2_isnzero(np.NZERO, 1)

    def test_positive_zero(self):
        # atan2(y, +-0) returns +pi/2 for y > 0.
        assert_almost_equal(ncu.arctan2(1, np.PZERO), 0.5 * np.pi)
        assert_almost_equal(ncu.arctan2(1, np.NZERO), 0.5 * np.pi)

    def test_negative_zero(self):
        # atan2(y, +-0) returns -pi/2 for y < 0.
        assert_almost_equal(ncu.arctan2(-1, np.PZERO), -0.5 * np.pi)
        assert_almost_equal(ncu.arctan2(-1, np.NZERO), -0.5 * np.pi)

    def test_any_ninf(self):
        # atan2(+-y, -infinity) returns +-pi for finite y > 0.
        assert_almost_equal(ncu.arctan2(1, np.NINF),  np.pi)
        assert_almost_equal(ncu.arctan2(-1, np.NINF), -np.pi)

    def test_any_pinf(self):
        # atan2(+-y, +infinity) returns +-0 for finite y > 0.
        assert_arctan2_ispzero(1, np.inf)
        assert_arctan2_isnzero(-1, np.inf)

    def test_inf_any(self):
        # atan2(+-infinity, x) returns +-pi/2 for finite x.
        assert_almost_equal(ncu.arctan2( np.inf, 1),  0.5 * np.pi)
        assert_almost_equal(ncu.arctan2(-np.inf, 1), -0.5 * np.pi)

    def test_inf_ninf(self):
        # atan2(+-infinity, -infinity) returns +-3*pi/4.
        assert_almost_equal(ncu.arctan2( np.inf, -np.inf),  0.75 * np.pi)
        assert_almost_equal(ncu.arctan2(-np.inf, -np.inf), -0.75 * np.pi)

    def test_inf_pinf(self):
        # atan2(+-infinity, +infinity) returns +-pi/4.
        assert_almost_equal(ncu.arctan2( np.inf, np.inf),  0.25 * np.pi)
        assert_almost_equal(ncu.arctan2(-np.inf, np.inf), -0.25 * np.pi)

    def test_nan_any(self):
        # atan2(nan, x) returns nan for any x, including inf
        assert_arctan2_isnan(np.nan, np.inf)
        assert_arctan2_isnan(np.inf, np.nan)
        assert_arctan2_isnan(np.nan, np.nan)

class TestMaximum(TestCase):
    def test_reduce_complex(self):
        assert_equal(np.maximum.reduce([1,2j]),1)
        assert_equal(np.maximum.reduce([1+3j,2j]),1+3j)

    def test_float_nans(self):
        nan = np.nan
        arg1 = np.array([0,   nan, nan])
        arg2 = np.array([nan, 0,   nan])
        out  = np.array([nan, nan, nan])
        assert_equal(np.maximum(arg1, arg2), out)

    def test_complex_nans(self):
        nan = np.nan
        for cnan in [nan, nan*1j, nan + nan*1j] :
            arg1 = np.array([0, cnan, cnan], dtype=np.complex)
            arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
            out  = np.array([nan, nan, nan], dtype=np.complex)
            assert_equal(np.maximum(arg1, arg2), out)

class TestMinimum(TestCase):
    def test_reduce_complex(self):
        assert_equal(np.minimum.reduce([1,2j]),2j)
        assert_equal(np.minimum.reduce([1+3j,2j]),2j)

    def test_float_nans(self):
        nan = np.nan
        arg1 = np.array([0,   nan, nan])
        arg2 = np.array([nan, 0,   nan])
        out  = np.array([nan, nan, nan])
        assert_equal(np.minimum(arg1, arg2), out)

    def test_complex_nans(self):
        nan = np.nan
        for cnan in [nan, nan*1j, nan + nan*1j] :
            arg1 = np.array([0, cnan, cnan], dtype=np.complex)
            arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
            out  = np.array([nan, nan, nan], dtype=np.complex)
            assert_equal(np.minimum(arg1, arg2), out)

class TestFmax(TestCase):
    def test_reduce_complex(self):
        assert_equal(np.fmax.reduce([1,2j]),1)
        assert_equal(np.fmax.reduce([1+3j,2j]),1+3j)

    def test_float_nans(self):
        nan = np.nan
        arg1 = np.array([0,   nan, nan])
        arg2 = np.array([nan, 0,   nan])
        out  = np.array([0,   0,   nan])
        assert_equal(np.fmax(arg1, arg2), out)

    def test_complex_nans(self):
        nan = np.nan
        for cnan in [nan, nan*1j, nan + nan*1j] :
            arg1 = np.array([0, cnan, cnan], dtype=np.complex)
            arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
            out  = np.array([0,    0, nan], dtype=np.complex)
            assert_equal(np.fmax(arg1, arg2), out)

class TestFmin(TestCase):
    def test_reduce_complex(self):
        assert_equal(np.fmin.reduce([1,2j]),2j)
        assert_equal(np.fmin.reduce([1+3j,2j]),2j)

    def test_float_nans(self):
        nan = np.nan
        arg1 = np.array([0,   nan, nan])
        arg2 = np.array([nan, 0,   nan])
        out  = np.array([0,   0,   nan])
        assert_equal(np.fmin(arg1, arg2), out)

    def test_complex_nans(self):
        nan = np.nan
        for cnan in [nan, nan*1j, nan + nan*1j] :
            arg1 = np.array([0, cnan, cnan], dtype=np.complex)
            arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
            out  = np.array([0,    0, nan], dtype=np.complex)
            assert_equal(np.fmin(arg1, arg2), out)

class TestFloatingPoint(TestCase):
    def test_floating_point(self):
        assert_equal(ncu.FLOATING_POINT_SUPPORT, 1)

class TestDegrees(TestCase):
    def test_degrees(self):
        assert_almost_equal(ncu.degrees(np.pi), 180.0)
        assert_almost_equal(ncu.degrees(-0.5*np.pi), -90.0)

class TestRadians(TestCase):
    def test_radians(self):
        assert_almost_equal(ncu.radians(180.0), np.pi)
        assert_almost_equal(ncu.radians(-90.0), -0.5*np.pi)

class TestSpecialMethods(TestCase):
    def test_wrap(self):
        class with_wrap(object):
            def __array__(self):
                return np.zeros(1)
            def __array_wrap__(self, arr, context):
                r = with_wrap()
                r.arr = arr
                r.context = context
                return r
        a = with_wrap()
        x = ncu.minimum(a, a)
        assert_equal(x.arr, np.zeros(1))
        func, args, i = x.context
        self.failUnless(func is ncu.minimum)
        self.failUnlessEqual(len(args), 2)
        assert_equal(args[0], a)
        assert_equal(args[1], a)
        self.failUnlessEqual(i, 0)

    def test_wrap_with_iterable(self):
        # test fix for bug #1026:
        class with_wrap(np.ndarray):
            __array_priority__ = 10
            def __new__(cls):
                return np.asarray(1).view(cls).copy()
            def __array_wrap__(self, arr, context):
                return arr.view(type(self))
        a = with_wrap()
        x = ncu.multiply(a, (1, 2, 3))
        self.failUnless(isinstance(x, with_wrap))
        assert_array_equal(x, np.array((1, 2, 3)))

    def test_priority_with_scalar(self):
        # test fix for bug #826:
        class A(np.ndarray):
            __array_priority__ = 10
            def __new__(cls):
                return np.asarray(1.0, 'float64').view(cls).copy()
        a = A()
        x = np.float64(1)*a
        self.failUnless(isinstance(x, A))
        assert_array_equal(x, np.array(1))

    def test_old_wrap(self):
        class with_wrap(object):
            def __array__(self):
                return np.zeros(1)
            def __array_wrap__(self, arr):
                r = with_wrap()
                r.arr = arr
                return r
        a = with_wrap()
        x = ncu.minimum(a, a)
        assert_equal(x.arr, np.zeros(1))

    def test_priority(self):
        class A(object):
            def __array__(self):
                return np.zeros(1)
            def __array_wrap__(self, arr, context):
                r = type(self)()
                r.arr = arr
                r.context = context
                return r
        class B(A):
            __array_priority__ = 20.
        class C(A):
            __array_priority__ = 40.
        x = np.zeros(1)
        a = A()
        b = B()
        c = C()
        f = ncu.minimum
        self.failUnless(type(f(x,x)) is np.ndarray)
        self.failUnless(type(f(x,a)) is A)
        self.failUnless(type(f(x,b)) is B)
        self.failUnless(type(f(x,c)) is C)
        self.failUnless(type(f(a,x)) is A)
        self.failUnless(type(f(b,x)) is B)
        self.failUnless(type(f(c,x)) is C)

        self.failUnless(type(f(a,a)) is A)
        self.failUnless(type(f(a,b)) is B)
        self.failUnless(type(f(b,a)) is B)
        self.failUnless(type(f(b,b)) is B)
        self.failUnless(type(f(b,c)) is C)
        self.failUnless(type(f(c,b)) is C)
        self.failUnless(type(f(c,c)) is C)

        self.failUnless(type(ncu.exp(a) is A))
        self.failUnless(type(ncu.exp(b) is B))
        self.failUnless(type(ncu.exp(c) is C))

    def test_failing_wrap(self):
        class A(object):
            def __array__(self):
                return np.zeros(1)
            def __array_wrap__(self, arr, context):
                raise RuntimeError
        a = A()
        self.failUnlessRaises(RuntimeError, ncu.maximum, a, a)

    def test_default_prepare(self):
        class with_wrap(object):
            __array_priority__ = 10
            def __array__(self):
                return np.zeros(1)
            def __array_wrap__(self, arr, context):
                return arr
        a = with_wrap()
        x = ncu.minimum(a, a)
        assert_equal(x, np.zeros(1))
        assert_equal(type(x), np.ndarray)

    def test_prepare(self):
        class with_prepare(np.ndarray):
            __array_priority__ = 10
            def __array_prepare__(self, arr, context):
                # make sure we can return a new 
                return np.array(arr).view(type=with_prepare)
        a = np.array(1).view(type=with_prepare)
        x = np.add(a, a)
        assert_equal(x, np.array(2))
        assert_equal(type(x), with_prepare)

    def test_failing_prepare(self):
        class A(object):
            def __array__(self):
                return np.zeros(1)
            def __array_prepare__(self, arr, context=None):
                raise RuntimeError
        a = A()
        self.failUnlessRaises(RuntimeError, ncu.maximum, a, a)

    def test_array_with_context(self):
        class A(object):
            def __array__(self, dtype=None, context=None):
                func, args, i = context
                self.func = func
                self.args = args
                self.i = i
                return np.zeros(1)
        class B(object):
            def __array__(self, dtype=None):
                return np.zeros(1, dtype)
        class C(object):
            def __array__(self):
                return np.zeros(1)
        a = A()
        ncu.maximum(np.zeros(1), a)
        self.failUnless(a.func is ncu.maximum)
        assert_equal(a.args[0], 0)
        self.failUnless(a.args[1] is a)
        self.failUnless(a.i == 1)
        assert_equal(ncu.maximum(a, B()), 0)
        assert_equal(ncu.maximum(a, C()), 0)


class TestChoose(TestCase):
    def test_mixed(self):
        c = np.array([True,True])
        a = np.array([True,True])
        assert_equal(np.choose(c, (a, 1)), np.array([1,1]))


def is_longdouble_finfo_bogus():
    info = np.finfo(np.longcomplex)
    return not np.isfinite(np.log10(info.tiny/info.eps))

class TestComplexFunctions(object):
    funcs = [np.arcsin,  np.arccos,  np.arctan, np.arcsinh, np.arccosh,
             np.arctanh, np.sin,     np.cos,    np.tan,     np.exp,
             np.exp2,    np.log,     np.sqrt,   np.log10,   np.log2,
             np.log1p]

    def test_it(self):
        for f in self.funcs:
            if f is np.arccosh :
                x = 1.5
            else :
                x = .5
            fr = f(x)
            fz = f(np.complex(x))
            assert_almost_equal(fz.real, fr, err_msg='real part %s'%f)
            assert_almost_equal(fz.imag, 0., err_msg='imag part %s'%f)

    def test_precisions_consistent(self) :
        z = 1 + 1j
        for f in self.funcs :
            fcf = f(np.csingle(z))
            fcd  = f(np.cdouble(z))
            fcl = f(np.clongdouble(z))
            assert_almost_equal(fcf, fcd, decimal=6, err_msg='fch-fcd %s'%f)
            assert_almost_equal(fcl, fcd, decimal=15, err_msg='fch-fcl %s'%f)

    def test_branch_cuts(self):
        # check branch cuts and continuity on them
        yield _check_branch_cut, np.log,   -0.5, 1j, 1, -1
        yield _check_branch_cut, np.log2,  -0.5, 1j, 1, -1
        yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1
        yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1
        yield _check_branch_cut, np.sqrt,  -0.5, 1j, 1, -1

        yield _check_branch_cut, np.arcsin, [ -2, 2],   [1j, -1j], 1, -1
        yield _check_branch_cut, np.arccos, [ -2, 2],   [1j, -1j], 1, -1
        yield _check_branch_cut, np.arctan, [-2j, 2j],  [1,  -1 ], -1, 1

        yield _check_branch_cut, np.arcsinh, [-2j,  2j], [-1,   1], -1, 1
        yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j,  1j], 1, -1
        yield _check_branch_cut, np.arctanh, [ -2,   2], [1j, -1j], 1, -1

        # check against bogus branch cuts: assert continuity between quadrants
        yield _check_branch_cut, np.arcsin, [-2j, 2j], [ 1,  1], 1, 1
        yield _check_branch_cut, np.arccos, [-2j, 2j], [ 1,  1], 1, 1
        yield _check_branch_cut, np.arctan, [ -2,  2], [1j, 1j], 1, 1

        yield _check_branch_cut, np.arcsinh, [ -2,  2, 0], [1j, 1j, 1 ], 1, 1
        yield _check_branch_cut, np.arccosh, [-2j, 2j, 2], [1,  1,  1j], 1, 1
        yield _check_branch_cut, np.arctanh, [-2j, 2j, 0], [1,  1,  1j], 1, 1

    @dec.knownfailureif(True, "These branch cuts are known to fail")
    def test_branch_cuts_failing(self):
        # XXX: signed zero not OK with ICC on 64-bit platform for log, see
        # http://permalink.gmane.org/gmane.comp.python.numeric.general/25335
        yield _check_branch_cut, np.log,   -0.5, 1j, 1, -1, True
        yield _check_branch_cut, np.log2,  -0.5, 1j, 1, -1, True
        yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True
        yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True
        # XXX: signed zeros are not OK for sqrt or for the arc* functions
        yield _check_branch_cut, np.sqrt,  -0.5, 1j, 1, -1, True
        yield _check_branch_cut, np.arcsin, [ -2, 2],   [1j, -1j], 1, -1, True
        yield _check_branch_cut, np.arccos, [ -2, 2],   [1j, -1j], 1, -1, True
        yield _check_branch_cut, np.arctan, [-2j, 2j],  [1,  -1 ], -1, 1, True
        yield _check_branch_cut, np.arcsinh, [-2j,  2j], [-1,   1], -1, 1, True
        yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j,  1j], 1, -1, True
        yield _check_branch_cut, np.arctanh, [ -2,   2], [1j, -1j], 1, -1, True

    def test_against_cmath(self):
        import cmath, sys

        # cmath.asinh is broken in some versions of Python, see
        # http://bugs.python.org/issue1381
        broken_cmath_asinh = False
        if sys.version_info < (2,6):
            broken_cmath_asinh = True

        points = [-1-1j, -1+1j, +1-1j, +1+1j]
        name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
                    'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
        atol = 4*np.finfo(np.complex).eps
        for func in self.funcs:
            fname = func.__name__.split('.')[-1]
            cname = name_map.get(fname, fname)
            try:
                cfunc = getattr(cmath, cname)
            except AttributeError:
                continue
            for p in points:
                a = complex(func(np.complex_(p)))
                b = cfunc(p)

                if cname == 'asinh' and broken_cmath_asinh:
                    continue

                assert abs(a - b) < atol, "%s %s: %s; cmath: %s"%(fname,p,a,b)

    def check_loss_of_precision(self, dtype):
        """Check loss of precision in complex arc* functions"""

        # Check against known-good functions

        info = np.finfo(dtype)
        real_dtype = dtype(0.).real.dtype
        eps = info.eps

        def check(x, rtol):
            x = x.astype(real_dtype)

            z = x.astype(dtype)
            d = np.absolute(np.arcsinh(x)/np.arcsinh(z).real - 1)
            assert np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                      'arcsinh')

            z = (1j*x).astype(dtype)
            d = np.absolute(np.arcsinh(x)/np.arcsin(z).imag - 1)
            assert np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                      'arcsin')

            z = x.astype(dtype)
            d = np.absolute(np.arctanh(x)/np.arctanh(z).real - 1)
            assert np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                      'arctanh')

            z = (1j*x).astype(dtype)
            d = np.absolute(np.arctanh(x)/np.arctan(z).imag - 1)
            assert np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                      'arctan')

        # The switchover was chosen as 1e-3; hence there can be up to
        # ~eps/1e-3 of relative cancellation error before it

        x_series = np.logspace(-20, -3.001, 200)
        x_basic = np.logspace(-2.999, 0, 10, endpoint=False)

        if dtype is np.longcomplex:
            # It's not guaranteed that the system-provided arc functions
            # are accurate down to a few epsilons. (Eg. on Linux 64-bit)
            # So, give more leeway for long complex tests here:
            check(x_series, 50*eps)
        else:
            check(x_series, 2*eps)
        check(x_basic, 2*eps/1e-3)

        # Check a few points

        z = np.array([1e-5*(1+1j)], dtype=dtype)
        p = 9.999999999333333333e-6 + 1.000000000066666666e-5j
        d = np.absolute(1-np.arctanh(z)/p)
        assert np.all(d < 1e-15)

        p = 1.0000000000333333333e-5 + 9.999999999666666667e-6j
        d = np.absolute(1-np.arcsinh(z)/p)
        assert np.all(d < 1e-15)

        p = 9.999999999333333333e-6j + 1.000000000066666666e-5
        d = np.absolute(1-np.arctan(z)/p)
        assert np.all(d < 1e-15)

        p = 1.0000000000333333333e-5j + 9.999999999666666667e-6
        d = np.absolute(1-np.arcsin(z)/p)
        assert np.all(d < 1e-15)

        # Check continuity across switchover points

        def check(func, z0, d=1):
            z0 = np.asarray(z0, dtype=dtype)
            zp = z0 + abs(z0) * d * eps * 2
            zm = z0 - abs(z0) * d * eps * 2
            assert np.all(zp != zm), (zp, zm)

            # NB: the cancellation error at the switchover is at least eps
            good = (abs(func(zp) - func(zm)) < 2*eps)
            assert np.all(good), (func, z0[~good])

        for func in (np.arcsinh,np.arcsinh,np.arcsin,np.arctanh,np.arctan):
            pts = [rp+1j*ip for rp in (-1e-3,0,1e-3) for ip in(-1e-3,0,1e-3)
                   if rp != 0 or ip != 0]
            check(func, pts, 1)
            check(func, pts, 1j)
            check(func, pts, 1+1j)

    def test_loss_of_precision(self):
        for dtype in [np.complex64, np.complex_]:
            yield self.check_loss_of_precision, dtype

    @dec.knownfailureif(is_longdouble_finfo_bogus(), "Bogus long double finfo")
    def test_loss_of_precision_longcomplex(self):
        self.check_loss_of_precision(np.longcomplex)

class TestAttributes(TestCase):
    def test_attributes(self):
        add = ncu.add
        assert_equal(add.__name__, 'add')
        assert add.__doc__.startswith('add(x1, x2[, out])\n\n')
        self.failUnless(add.ntypes >= 18) # don't fail if types added
        self.failUnless('ii->i' in add.types)
        assert_equal(add.nin, 2)
        assert_equal(add.nout, 1)
        assert_equal(add.identity, 0)

class TestSubclass(TestCase):
    def test_subclass_op(self):
        class simple(np.ndarray):
            def __new__(subtype, shape):
                self = np.ndarray.__new__(subtype, shape, dtype=object)
                self.fill(0)
                return self
        a = simple((3,4))
        assert_equal(a+a, a)

def _check_branch_cut(f, x0, dx, re_sign=1, im_sign=-1, sig_zero_ok=False,
                      dtype=np.complex):
    """
    Check for a branch cut in a function.

    Assert that `x0` lies on a branch cut of function `f` and `f` is
    continuous from the direction `dx`.

    Parameters
    ----------
    f : func
        Function to check
    x0 : array-like
        Point on branch cut
    dx : array-like
        Direction to check continuity in
    re_sign, im_sign : {1, -1}
        Change of sign of the real or imaginary part expected
    sig_zero_ok : bool
        Whether to check if the branch cut respects signed zero (if applicable)
    dtype : dtype
        Dtype to check (should be complex)

    """
    x0 = np.atleast_1d(x0).astype(dtype)
    dx = np.atleast_1d(dx).astype(dtype)

    scale = np.finfo(dtype).eps * 1e3
    atol  = 1e-4

    y0 = f(x0)
    yp = f(x0 + dx*scale*np.absolute(x0)/np.absolute(dx))
    ym = f(x0 - dx*scale*np.absolute(x0)/np.absolute(dx))

    assert np.all(np.absolute(y0.real - yp.real) < atol), (y0, yp)
    assert np.all(np.absolute(y0.imag - yp.imag) < atol), (y0, yp)
    assert np.all(np.absolute(y0.real - ym.real*re_sign) < atol), (y0, ym)
    assert np.all(np.absolute(y0.imag - ym.imag*im_sign) < atol), (y0, ym)

    if sig_zero_ok:
        # check that signed zeros also work as a displacement
        jr = (x0.real == 0) & (dx.real != 0)
        ji = (x0.imag == 0) & (dx.imag != 0)

        x = -x0
        x.real[jr] = 0.*dx.real
        x.imag[ji] = 0.*dx.imag
        x = -x
        ym = f(x)
        ym = ym[jr | ji]
        y0 = y0[jr | ji]
        assert np.all(np.absolute(y0.real - ym.real*re_sign) < atol), (y0, ym)
        assert np.all(np.absolute(y0.imag - ym.imag*im_sign) < atol), (y0, ym)

def test_copysign():
    assert np.copysign(1, -1) == -1
    assert 1 / np.copysign(0, -1) < 0
    assert 1 / np.copysign(0, 1) > 0
    assert np.signbit(np.copysign(np.nan, -1))
    assert not np.signbit(np.copysign(np.nan, 1))

def _test_nextafter(t):
    one = t(1)
    two = t(2)
    zero = t(0)
    eps = np.finfo(t).eps
    assert np.nextafter(one, two) - one == eps
    assert np.nextafter(one, zero) - one < 0
    assert np.isnan(np.nextafter(np.nan, one))
    assert np.isnan(np.nextafter(one, np.nan))
    assert np.nextafter(one, one) == one

def test_nextafter():
    return _test_nextafter(np.float64)

def test_nextafterf():
    return _test_nextafter(np.float32)

@dec.knownfailureif(sys.platform == 'win32', "Long double support buggy on win32")
def test_nextafterl():
    return _test_nextafter(np.longdouble)

def _test_spacing(t):
    one = t(1)
    eps = np.finfo(t).eps
    nan = t(np.nan)
    inf = t(np.inf)
    assert np.spacing(one) == eps
    assert np.isnan(np.spacing(nan))
    assert np.isnan(np.spacing(inf))
    assert np.isnan(np.spacing(-inf))
    assert np.spacing(t(1e30)) != 0

def test_spacing():
    return _test_spacing(np.float64)

def test_spacingf():
    return _test_spacing(np.float32)

@dec.knownfailureif(sys.platform == 'win32', "Long double support buggy on win32")
def test_spacingl():
    return _test_spacing(np.longdouble)

def test_spacing_gfortran():
    # Reference from this fortran file, built with gfortran 4.3.3 on linux
    # 32bits:
    #       PROGRAM test_spacing
    #        INTEGER, PARAMETER :: SGL = SELECTED_REAL_KIND(p=6, r=37)
    #        INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(p=13, r=200)
    #
    #        WRITE(*,*) spacing(0.00001_DBL)
    #        WRITE(*,*) spacing(1.0_DBL)
    #        WRITE(*,*) spacing(1000._DBL)
    #        WRITE(*,*) spacing(10500._DBL)
    #
    #        WRITE(*,*) spacing(0.00001_SGL)
    #        WRITE(*,*) spacing(1.0_SGL)
    #        WRITE(*,*) spacing(1000._SGL)
    #        WRITE(*,*) spacing(10500._SGL)
    #       END PROGRAM
    ref = {}
    ref[np.float64] = [1.69406589450860068E-021,
           2.22044604925031308E-016,
           1.13686837721616030E-013,
           1.81898940354585648E-012]
    ref[np.float32] = [
            9.09494702E-13,
            1.19209290E-07,
            6.10351563E-05,
            9.76562500E-04]

    for dt, dec in zip([np.float32, np.float64], (10, 20)):
        x = np.array([1e-5, 1, 1000, 10500], dtype=dt)
        assert_array_almost_equal(np.spacing(x), ref[dt], decimal=dec)

def test_nextafter_vs_spacing():
    # XXX: spacing does not handle long double yet
    for t in [np.float32, np.float64]:
        for _f in [1, 1e-5, 1000]:
            f = t(_f)
            f1 = t(_f + 1)
            assert np.nextafter(f, f1) - f == np.spacing(f)

def test_pos_nan():
    """Check np.nan is a positive nan."""
    assert np.signbit(np.nan) == 0

def test_reduceat():
    """Test bug in reduceat with structured arrays copied for speed."""
    db = np.dtype([('name', 'S11'),('time', np.int64), ('value', np.float32)])
    a = np.empty([100], dtype=db)
    a['name'] = 'Simple'
    a['time'] = 10
    a['value'] = 100
    indx = [0,7,15,25]

    h2 = []
    val1 = indx[0]
    for val2 in indx[1:]:
        h2.append(np.add.reduce(a['value'][val1:val2]))
        val1 = val2
    h2.append(np.add.reduce(a['value'][val1:]))
    h2 = np.array(h2)

    # test buffered
    res = np.setbufsize(32)
    h1 = np.add.reduceat(a['value'], indx)
    assert_array_almost_equal(h1, h2)
    
    # test nobuffer
    np.setbufsize(res)
    h1 = np.add.reduceat(a['value'], indx)    
    assert_array_almost_equal(h1, h2)
    

if __name__ == "__main__":
    run_module_suite()