1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
"""
=============
Miscellaneous
=============
IEEE 754 Floating Point Special Values:
-----------------------------------------------
Special values defined in numpy: nan, inf,
NaNs can be used as a poor-man's mask (if you don't care what the
original value was)
Note: cannot use equality to test NaNs. E.g.: ::
>>> np.where(myarr == np.nan)
>>> nan == nan # is always False! Use special numpy functions instead.
>>> np.nan == np.nan
False
>>> myarr = np.array([1., 0., np.nan, 3.])
>>> myarr[myarr == np.nan] = 0. # doesn't work
>>> myarr
array([ 1., 0., NaN, 3.])
>>> myarr[np.isnan(myarr)] = 0. # use this instead find
>>> myarr
array([ 1., 0., 0., 3.])
Other related special value functions: ::
isinf(): True if value is inf
isfinite(): True if not nan or inf
nan_to_num(): Map nan to 0, inf to max float, -inf to min float
The following corresponds to the usual functions except that nans are excluded from
the results: ::
nansum()
nanmax()
nanmin()
nanargmax()
nanargmin()
>>> x = np.arange(10.)
>>> x[3] = np.nan
>>> x.sum()
nan
>>> np.nansum(x)
42.0
How numpy handles numerical exceptions
Default is to "warn"
But this can be changed, and it can be set individually for different kinds
of exceptions. The different behaviors are: ::
'ignore' : ignore completely
'warn' : print a warning (once only)
'raise' : raise an exception
'call' : call a user-supplied function (set using seterrcall())
These behaviors can be set for all kinds of errors or specific ones: ::
all: apply to all numeric exceptions
invalid: when NaNs are generated
divide: divide by zero (for integers as well!)
overflow: floating point overflows
underflow: floating point underflows
Note that integer divide-by-zero is handled by the same machinery.
These behaviors are set on a per-thead basis.
Examples:
------------
::
>>> oldsettings = np.seterr(all='warn')
>>> np.zeros(5,dtype=np.float32)/0.
invalid value encountered in divide
>>> j = np.seterr(under='ignore')
>>> np.array([1.e-100])**10
>>> j = np.seterr(invalid='raise')
>>> np.sqrt(np.array([-1.]))
FloatingPointError: invalid value encountered in sqrt
>>> def errorhandler(errstr, errflag):
... print "saw stupid error!"
>>> np.seterrcall(errorhandler)
>>> j = np.seterr(all='call')
>>> np.zeros(5, dtype=np.int32)/0
FloatingPointError: invalid value encountered in divide
saw stupid error!
>>> j = np.seterr(**oldsettings) # restore previous
# error-handling settings
Interfacing to C:
-----------------
Only a survey of the choices. Little detail on how each works.
1) Bare metal, wrap your own C-code manually.
- Plusses:
- Efficient
- No dependencies on other tools
- Minuses:
- Lots of learning overhead:
- need to learn basics of Python C API
- need to learn basics of numpy C API
- need to learn how to handle reference counting and love it.
- Reference counting often difficult to get right.
- getting it wrong leads to memory leaks, and worse, segfaults
- API will change for Python 3.0!
2) pyrex
- Plusses:
- avoid learning C API's
- no dealing with reference counting
- can code in psuedo python and generate C code
- can also interface to existing C code
- should shield you from changes to Python C api
- become pretty popular within Python community
- Minuses:
- Can write code in non-standard form which may become obsolete
- Not as flexible as manual wrapping
- Maintainers not easily adaptable to new features
Thus:
3) cython - fork of pyrex to allow needed features for SAGE
- being considered as the standard scipy/numpy wrapping tool
- fast indexing support for arrays
4) ctypes
- Plusses:
- part of Python standard library
- good for interfacing to existing sharable libraries, particularly
Windows DLLs
- avoids API/reference counting issues
- good numpy support: arrays have all these in their ctypes
attribute: ::
a.ctypes.data a.ctypes.get_strides
a.ctypes.data_as a.ctypes.shape
a.ctypes.get_as_parameter a.ctypes.shape_as
a.ctypes.get_data a.ctypes.strides
a.ctypes.get_shape a.ctypes.strides_as
- Minuses:
- can't use for writing code to be turned into C extensions, only a wrapper tool.
5) SWIG (automatic wrapper generator)
- Plusses:
- around a long time
- multiple scripting language support
- C++ support
- Good for wrapping large (many functions) existing C libraries
- Minuses:
- generates lots of code between Python and the C code
- can cause performance problems that are nearly impossible to optimize out
- interface files can be hard to write
- doesn't necessarily avoid reference counting issues or needing to know API's
7) Weave
- Plusses:
- Phenomenal tool
- can turn many numpy expressions into C code
- dynamic compiling and loading of generated C code
- can embed pure C code in Python module and have weave extract, generate interfaces
and compile, etc.
- Minuses:
- Future uncertain--lacks a champion
8) Psyco
- Plusses:
- Turns pure python into efficient machine code through jit-like optimizations
- very fast when it optimizes well
- Minuses:
- Only on intel (windows?)
- Doesn't do much for numpy?
Interfacing to Fortran:
-----------------------
Fortran: Clear choice is f2py. (Pyfort is an older alternative, but not supported
any longer)
Interfacing to C++:
-------------------
1) CXX
2) Boost.python
3) SWIG
4) Sage has used cython to wrap C++ (not pretty, but it can be done)
5) SIP (used mainly in PyQT)
"""
|