1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
|
import warnings
from numpy.testing import *
import numpy.lib
from numpy.lib import *
from numpy.core import *
from numpy import matrix, asmatrix
class TestAny(TestCase):
def test_basic(self):
y1 = [0,0,1,0]
y2 = [0,0,0,0]
y3 = [1,0,1,0]
assert(any(y1))
assert(any(y3))
assert(not any(y2))
def test_nd(self):
y1 = [[0,0,0],[0,1,0],[1,1,0]]
assert(any(y1))
assert_array_equal(sometrue(y1,axis=0),[1,1,0])
assert_array_equal(sometrue(y1,axis=1),[0,1,1])
class TestAll(TestCase):
def test_basic(self):
y1 = [0,1,1,0]
y2 = [0,0,0,0]
y3 = [1,1,1,1]
assert(not all(y1))
assert(all(y3))
assert(not all(y2))
assert(all(~array(y2)))
def test_nd(self):
y1 = [[0,0,1],[0,1,1],[1,1,1]]
assert(not all(y1))
assert_array_equal(alltrue(y1,axis=0),[0,0,1])
assert_array_equal(alltrue(y1,axis=1),[0,0,1])
class TestAverage(TestCase):
def test_basic(self):
y1 = array([1,2,3])
assert(average(y1,axis=0) == 2.)
y2 = array([1.,2.,3.])
assert(average(y2,axis=0) == 2.)
y3 = [0.,0.,0.]
assert(average(y3,axis=0) == 0.)
y4 = ones((4,4))
y4[0,1] = 0
y4[1,0] = 2
assert_almost_equal(y4.mean(0), average(y4, 0))
assert_almost_equal(y4.mean(1), average(y4, 1))
y5 = rand(5,5)
assert_almost_equal(y5.mean(0), average(y5, 0))
assert_almost_equal(y5.mean(1), average(y5, 1))
y6 = matrix(rand(5,5))
assert_array_equal(y6.mean(0), average(y6,0))
def test_weights(self):
y = arange(10)
w = arange(10)
assert_almost_equal(average(y, weights=w), (arange(10)**2).sum()*1./arange(10).sum())
y1 = array([[1,2,3],[4,5,6]])
w0 = [1,2]
actual = average(y1,weights=w0,axis=0)
desired = array([3.,4.,5.])
assert_almost_equal(actual, desired)
w1 = [0,0,1]
desired = array([3., 6.])
assert_almost_equal(average(y1, weights=w1, axis=1), desired)
# This should raise an error. Can we test for that ?
# assert_equal(average(y1, weights=w1), 9./2.)
# 2D Case
w2 = [[0,0,1],[0,0,2]]
desired = array([3., 6.])
assert_array_equal(average(y1, weights=w2, axis=1), desired)
assert_equal(average(y1, weights=w2), 5.)
def test_returned(self):
y = array([[1,2,3],[4,5,6]])
# No weights
avg, scl = average(y, returned=True)
assert_equal(scl, 6.)
avg, scl = average(y, 0, returned=True)
assert_array_equal(scl, array([2.,2.,2.]))
avg, scl = average(y, 1, returned=True)
assert_array_equal(scl, array([3.,3.]))
# With weights
w0 = [1,2]
avg, scl = average(y, weights=w0, axis=0, returned=True)
assert_array_equal(scl, array([3., 3., 3.]))
w1 = [1,2,3]
avg, scl = average(y, weights=w1, axis=1, returned=True)
assert_array_equal(scl, array([6., 6.]))
w2 = [[0,0,1],[1,2,3]]
avg, scl = average(y, weights=w2, axis=1, returned=True)
assert_array_equal(scl, array([1.,6.]))
class TestSelect(TestCase):
def _select(self,cond,values,default=0):
output = []
for m in range(len(cond)):
output += [V[m] for V,C in zip(values,cond) if C[m]] or [default]
return output
def test_basic(self):
choices = [array([1,2,3]),
array([4,5,6]),
array([7,8,9])]
conditions = [array([0,0,0]),
array([0,1,0]),
array([0,0,1])]
assert_array_equal(select(conditions,choices,default=15),
self._select(conditions,choices,default=15))
assert_equal(len(choices),3)
assert_equal(len(conditions),3)
class TestInsert(TestCase):
def test_basic(self):
a = [1,2,3]
assert_equal(insert(a,0,1), [1,1,2,3])
assert_equal(insert(a,3,1), [1,2,3,1])
assert_equal(insert(a,[1,1,1],[1,2,3]), [1,1,2,3,2,3])
class TestAmax(TestCase):
def test_basic(self):
a = [3,4,5,10,-3,-5,6.0]
assert_equal(amax(a),10.0)
b = [[3,6.0, 9.0],
[4,10.0,5.0],
[8,3.0,2.0]]
assert_equal(amax(b,axis=0),[8.0,10.0,9.0])
assert_equal(amax(b,axis=1),[9.0,10.0,8.0])
class TestAmin(TestCase):
def test_basic(self):
a = [3,4,5,10,-3,-5,6.0]
assert_equal(amin(a),-5.0)
b = [[3,6.0, 9.0],
[4,10.0,5.0],
[8,3.0,2.0]]
assert_equal(amin(b,axis=0),[3.0,3.0,2.0])
assert_equal(amin(b,axis=1),[3.0,4.0,2.0])
class TestPtp(TestCase):
def test_basic(self):
a = [3,4,5,10,-3,-5,6.0]
assert_equal(ptp(a,axis=0),15.0)
b = [[3,6.0, 9.0],
[4,10.0,5.0],
[8,3.0,2.0]]
assert_equal(ptp(b,axis=0),[5.0,7.0,7.0])
assert_equal(ptp(b,axis=-1),[6.0,6.0,6.0])
class TestCumsum(TestCase):
def test_basic(self):
ba = [1,2,10,11,6,5,4]
ba2 = [[1,2,3,4],[5,6,7,9],[10,3,4,5]]
for ctype in [int8,uint8,int16,uint16,int32,uint32,
float32,float64,complex64,complex128]:
a = array(ba,ctype)
a2 = array(ba2,ctype)
assert_array_equal(cumsum(a,axis=0), array([1,3,13,24,30,35,39],ctype))
assert_array_equal(cumsum(a2,axis=0), array([[1,2,3,4],[6,8,10,13],
[16,11,14,18]],ctype))
assert_array_equal(cumsum(a2,axis=1),
array([[1,3,6,10],
[5,11,18,27],
[10,13,17,22]],ctype))
class TestProd(TestCase):
def test_basic(self):
ba = [1,2,10,11,6,5,4]
ba2 = [[1,2,3,4],[5,6,7,9],[10,3,4,5]]
for ctype in [int16,uint16,int32,uint32,
float32,float64,complex64,complex128]:
a = array(ba,ctype)
a2 = array(ba2,ctype)
if ctype in ['1', 'b']:
self.failUnlessRaises(ArithmeticError, prod, a)
self.failUnlessRaises(ArithmeticError, prod, a2, 1)
self.failUnlessRaises(ArithmeticError, prod, a)
else:
assert_equal(prod(a,axis=0),26400)
assert_array_equal(prod(a2,axis=0),
array([50,36,84,180],ctype))
assert_array_equal(prod(a2,axis=-1),array([24, 1890, 600],ctype))
class TestCumprod(TestCase):
def test_basic(self):
ba = [1,2,10,11,6,5,4]
ba2 = [[1,2,3,4],[5,6,7,9],[10,3,4,5]]
for ctype in [int16,uint16,int32,uint32,
float32,float64,complex64,complex128]:
a = array(ba,ctype)
a2 = array(ba2,ctype)
if ctype in ['1', 'b']:
self.failUnlessRaises(ArithmeticError, cumprod, a)
self.failUnlessRaises(ArithmeticError, cumprod, a2, 1)
self.failUnlessRaises(ArithmeticError, cumprod, a)
else:
assert_array_equal(cumprod(a,axis=-1),
array([1, 2, 20, 220,
1320, 6600, 26400],ctype))
assert_array_equal(cumprod(a2,axis=0),
array([[ 1, 2, 3, 4],
[ 5, 12, 21, 36],
[50, 36, 84, 180]],ctype))
assert_array_equal(cumprod(a2,axis=-1),
array([[ 1, 2, 6, 24],
[ 5, 30, 210, 1890],
[10, 30, 120, 600]],ctype))
class TestDiff(TestCase):
def test_basic(self):
x = [1,4,6,7,12]
out = array([3,2,1,5])
out2 = array([-1,-1,4])
out3 = array([0,5])
assert_array_equal(diff(x),out)
assert_array_equal(diff(x,n=2),out2)
assert_array_equal(diff(x,n=3),out3)
def test_nd(self):
x = 20*rand(10,20,30)
out1 = x[:,:,1:] - x[:,:,:-1]
out2 = out1[:,:,1:] - out1[:,:,:-1]
out3 = x[1:,:,:] - x[:-1,:,:]
out4 = out3[1:,:,:] - out3[:-1,:,:]
assert_array_equal(diff(x),out1)
assert_array_equal(diff(x,n=2),out2)
assert_array_equal(diff(x,axis=0),out3)
assert_array_equal(diff(x,n=2,axis=0),out4)
class TestGradient(TestCase):
def test_basic(self):
x = array([[1,1],[3,4]])
dx = [array([[2.,3.],[2.,3.]]),
array([[0.,0.],[1.,1.]])]
assert_array_equal(gradient(x), dx)
def test_badargs(self):
# for 2D array, gradient can take 0,1, or 2 extra args
x = array([[1,1],[3,4]])
assert_raises(SyntaxError, gradient, x, array([1.,1.]),
array([1.,1.]), array([1.,1.]))
class TestAngle(TestCase):
def test_basic(self):
x = [1+3j,sqrt(2)/2.0+1j*sqrt(2)/2,1,1j,-1,-1j,1-3j,-1+3j]
y = angle(x)
yo = [arctan(3.0/1.0),arctan(1.0),0,pi/2,pi,-pi/2.0,
-arctan(3.0/1.0),pi-arctan(3.0/1.0)]
z = angle(x,deg=1)
zo = array(yo)*180/pi
assert_array_almost_equal(y,yo,11)
assert_array_almost_equal(z,zo,11)
class TestTrimZeros(TestCase):
""" only testing for integer splits.
"""
def test_basic(self):
a= array([0,0,1,2,3,4,0])
res = trim_zeros(a)
assert_array_equal(res,array([1,2,3,4]))
def test_leading_skip(self):
a= array([0,0,1,0,2,3,4,0])
res = trim_zeros(a)
assert_array_equal(res,array([1,0,2,3,4]))
def test_trailing_skip(self):
a= array([0,0,1,0,2,3,0,4,0])
res = trim_zeros(a)
assert_array_equal(res,array([1,0,2,3,0,4]))
class TestExtins(TestCase):
def test_basic(self):
a = array([1,3,2,1,2,3,3])
b = extract(a>1,a)
assert_array_equal(b,[3,2,2,3,3])
def test_place(self):
a = array([1,4,3,2,5,8,7])
place(a,[0,1,0,1,0,1,0],[2,4,6])
assert_array_equal(a,[1,2,3,4,5,6,7])
def test_both(self):
a = rand(10)
mask = a > 0.5
ac = a.copy()
c = extract(mask, a)
place(a,mask,0)
place(a,mask,c)
assert_array_equal(a,ac)
class TestVectorize(TestCase):
def test_simple(self):
def addsubtract(a,b):
if a > b:
return a - b
else:
return a + b
f = vectorize(addsubtract)
r = f([0,3,6,9],[1,3,5,7])
assert_array_equal(r,[1,6,1,2])
def test_scalar(self):
def addsubtract(a,b):
if a > b:
return a - b
else:
return a + b
f = vectorize(addsubtract)
r = f([0,3,6,9],5)
assert_array_equal(r,[5,8,1,4])
def test_large(self):
x = linspace(-3,2,10000)
f = vectorize(lambda x: x)
y = f(x)
assert_array_equal(y, x)
class TestDigitize(TestCase):
def test_forward(self):
x = arange(-6,5)
bins = arange(-5,5)
assert_array_equal(digitize(x,bins),arange(11))
def test_reverse(self):
x = arange(5,-6,-1)
bins = arange(5,-5,-1)
assert_array_equal(digitize(x,bins),arange(11))
def test_random(self):
x = rand(10)
bin = linspace(x.min(), x.max(), 10)
assert all(digitize(x,bin) != 0)
class TestUnwrap(TestCase):
def test_simple(self):
#check that unwrap removes jumps greather that 2*pi
assert_array_equal(unwrap([1,1+2*pi]),[1,1])
#check that unwrap maintans continuity
assert(all(diff(unwrap(rand(10)*100))<pi))
class TestFilterwindows(TestCase):
def test_hanning(self):
#check symmetry
w=hanning(10)
assert_array_almost_equal(w,flipud(w),7)
#check known value
assert_almost_equal(sum(w,axis=0),4.500,4)
def test_hamming(self):
#check symmetry
w=hamming(10)
assert_array_almost_equal(w,flipud(w),7)
#check known value
assert_almost_equal(sum(w,axis=0),4.9400,4)
def test_bartlett(self):
#check symmetry
w=bartlett(10)
assert_array_almost_equal(w,flipud(w),7)
#check known value
assert_almost_equal(sum(w,axis=0),4.4444,4)
def test_blackman(self):
#check symmetry
w=blackman(10)
assert_array_almost_equal(w,flipud(w),7)
#check known value
assert_almost_equal(sum(w,axis=0),3.7800,4)
class TestTrapz(TestCase):
def test_simple(self):
r=trapz(exp(-1.0/2*(arange(-10,10,.1))**2)/sqrt(2*pi),dx=0.1)
#check integral of normal equals 1
assert_almost_equal(sum(r,axis=0),1,7)
def test_ndim(self):
x = linspace(0, 1, 3)
y = linspace(0, 2, 8)
z = linspace(0, 3, 13)
wx = ones_like(x) * (x[1]-x[0])
wx[0] /= 2
wx[-1] /= 2
wy = ones_like(y) * (y[1]-y[0])
wy[0] /= 2
wy[-1] /= 2
wz = ones_like(z) * (z[1]-z[0])
wz[0] /= 2
wz[-1] /= 2
q = x[:,None,None] + y[None,:,None] + z[None,None,:]
qx = (q*wx[:,None,None]).sum(axis=0)
qy = (q*wy[None,:,None]).sum(axis=1)
qz = (q*wz[None,None,:]).sum(axis=2)
# n-d `x`
r = trapz(q, x=x[:,None,None], axis=0)
assert_almost_equal(r, qx)
r = trapz(q, x=y[None,:,None], axis=1)
assert_almost_equal(r, qy)
r = trapz(q, x=z[None,None,:], axis=2)
assert_almost_equal(r, qz)
# 1-d `x`
r = trapz(q, x=x, axis=0)
assert_almost_equal(r, qx)
r = trapz(q, x=y, axis=1)
assert_almost_equal(r, qy)
r = trapz(q, x=z, axis=2)
assert_almost_equal(r, qz)
class TestSinc(TestCase):
def test_simple(self):
assert(sinc(0)==1)
w=sinc(linspace(-1,1,100))
#check symmetry
assert_array_almost_equal(w,flipud(w),7)
class TestHistogram(TestCase):
def setUp(self):
warnings.simplefilter('ignore', DeprecationWarning)
def tearDown(self):
warnings.resetwarnings()
def test_simple_old(self):
n=100
v=rand(n)
(a,b)=histogram(v, new=False)
#check if the sum of the bins equals the number of samples
assert_equal(sum(a,axis=0), n)
#check that the bin counts are evenly spaced when the data is from a
# linear function
(a,b)=histogram(linspace(0,10,100), new=False)
assert_array_equal(a, 10)
def test_simple(self):
n=100
v=rand(n)
(a,b)=histogram(v)
#check if the sum of the bins equals the number of samples
assert_equal(sum(a,axis=0), n)
#check that the bin counts are evenly spaced when the data is from a
# linear function
(a,b)=histogram(linspace(0,10,100))
assert_array_equal(a, 10)
def test_one_bin(self):
# Ticket 632
hist,edges = histogram([1,2,3,4],[1,2])
assert_array_equal(hist,[2, ])
assert_array_equal(edges,[1,2])
def test_normed(self):
# Check that the integral of the density equals 1.
n = 100
v = rand(n)
a,b = histogram(v, normed=True)
area = sum(a*diff(b))
assert_almost_equal(area, 1)
# Check with non constant bin width
v = rand(n)*10
bins = [0,1,5, 9, 10]
a,b = histogram(v, bins, normed=True)
area = sum(a*diff(b))
assert_almost_equal(area, 1)
def test_outliers(self):
# Check that outliers are not tallied
a = arange(10)+.5
# Lower outliers
h,b = histogram(a, range=[0,9])
assert_equal(h.sum(),9)
# Upper outliers
h,b = histogram(a, range=[1,10])
assert_equal(h.sum(),9)
# Normalization
h,b = histogram(a, range=[1,9], normed=True)
assert_equal((h*diff(b)).sum(),1)
# Weights
w = arange(10)+.5
h,b = histogram(a, range=[1,9], weights=w, normed=True)
assert_equal((h*diff(b)).sum(),1)
h,b = histogram(a, bins=8, range=[1,9], weights=w)
assert_equal(h, w[1:-1])
def test_type(self):
# Check the type of the returned histogram
a = arange(10)+.5
h,b = histogram(a)
assert(issubdtype(h.dtype, int))
h,b = histogram(a, normed=True)
assert(issubdtype(h.dtype, float))
h,b = histogram(a, weights=ones(10, int))
assert(issubdtype(h.dtype, int))
h,b = histogram(a, weights=ones(10, float))
assert(issubdtype(h.dtype, float))
def test_weights(self):
v = rand(100)
w = ones(100)*5
a,b = histogram(v)
na,nb = histogram(v, normed=True)
wa,wb = histogram(v, weights=w)
nwa,nwb = histogram(v, weights=w, normed=True)
assert_array_almost_equal(a*5, wa)
assert_array_almost_equal(na, nwa)
# Check weights are properly applied.
v = linspace(0,10,10)
w = concatenate((zeros(5), ones(5)))
wa,wb = histogram(v, bins=arange(11),weights=w)
assert_array_almost_equal(wa, w)
# Check with integer weights
wa, wb = histogram([1,2,2,4], bins=4, weights=[4,3,2,1])
assert_array_equal(wa, [4,5,0,1])
wa, wb = histogram([1,2,2,4], bins=4, weights=[4,3,2,1], normed=True)
assert_array_equal(wa, array([4,5,0,1])/10./3.*4)
class TestHistogramdd(TestCase):
def test_simple(self):
x = array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5], \
[.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]])
H, edges = histogramdd(x, (2,3,3), range = [[-1,1], [0,3], [0,3]])
answer = asarray([[[0,1,0], [0,0,1], [1,0,0]], [[0,1,0], [0,0,1],
[0,0,1]]])
assert_array_equal(H,answer)
# Check normalization
ed = [[-2,0,2], [0,1,2,3], [0,1,2,3]]
H, edges = histogramdd(x, bins = ed, normed = True)
assert(all(H == answer/12.))
# Check that H has the correct shape.
H, edges = histogramdd(x, (2,3,4), range = [[-1,1], [0,3], [0,4]],
normed=True)
answer = asarray([[[0,1,0,0], [0,0,1,0], [1,0,0,0]], [[0,1,0,0],
[0,0,1,0], [0,0,1,0]]])
assert_array_almost_equal(H, answer/6., 4)
# Check that a sequence of arrays is accepted and H has the correct
# shape.
z = [squeeze(y) for y in split(x,3,axis=1)]
H, edges = histogramdd(z, bins=(4,3,2),range=[[-2,2], [0,3], [0,2]])
answer = asarray([[[0,0],[0,0],[0,0]],
[[0,1], [0,0], [1,0]],
[[0,1], [0,0],[0,0]],
[[0,0],[0,0],[0,0]]])
assert_array_equal(H, answer)
Z = zeros((5,5,5))
Z[range(5), range(5), range(5)] = 1.
H,edges = histogramdd([arange(5), arange(5), arange(5)], 5)
assert_array_equal(H, Z)
def test_shape_3d(self):
# All possible permutations for bins of different lengths in 3D.
bins = ((5, 4, 6), (6, 4, 5), (5, 6, 4), (4, 6, 5), (6, 5, 4),
(4, 5, 6))
r = rand(10,3)
for b in bins:
H, edges = histogramdd(r, b)
assert(H.shape == b)
def test_shape_4d(self):
# All possible permutations for bins of different lengths in 4D.
bins = ((7, 4, 5, 6), (4, 5, 7, 6), (5, 6, 4, 7), (7, 6, 5, 4),
(5, 7, 6, 4), (4, 6, 7, 5), (6, 5, 7, 4), (7, 5, 4, 6),
(7, 4, 6, 5), (6, 4, 7, 5), (6, 7, 5, 4), (4, 6, 5, 7),
(4, 7, 5, 6), (5, 4, 6, 7), (5, 7, 4, 6), (6, 7, 4, 5),
(6, 5, 4, 7), (4, 7, 6, 5), (4, 5, 6, 7), (7, 6, 4, 5),
(5, 4, 7, 6), (5, 6, 7, 4), (6, 4, 5, 7), (7, 5, 6, 4))
r = rand(10,4)
for b in bins:
H, edges = histogramdd(r, b)
assert(H.shape == b)
def test_weights(self):
v = rand(100,2)
hist, edges = histogramdd(v)
n_hist, edges = histogramdd(v, normed=True)
w_hist, edges = histogramdd(v, weights=ones(100))
assert_array_equal(w_hist, hist)
w_hist, edges = histogramdd(v, weights=ones(100)*2, normed=True)
assert_array_equal(w_hist, n_hist)
w_hist, edges = histogramdd(v, weights=ones(100, int)*2)
assert_array_equal(w_hist, 2*hist)
def test_identical_samples(self):
x = zeros((10,2),int)
hist, edges = histogramdd(x, bins=2)
assert_array_equal(edges[0],array([-0.5, 0. , 0.5]))
class TestUnique(TestCase):
def test_simple(self):
x = array([4,3,2,1,1,2,3,4, 0])
assert(all(unique(x) == [0,1,2,3,4]))
assert(unique(array([1,1,1,1,1])) == array([1]))
x = ['widget', 'ham', 'foo', 'bar', 'foo', 'ham']
assert(all(unique(x) == ['bar', 'foo', 'ham', 'widget']))
x = array([5+6j, 1+1j, 1+10j, 10, 5+6j])
assert(all(unique(x) == [1+1j, 1+10j, 5+6j, 10]))
class TestCheckFinite(TestCase):
def test_simple(self):
a = [1,2,3]
b = [1,2,inf]
c = [1,2,nan]
numpy.lib.asarray_chkfinite(a)
assert_raises(ValueError, numpy.lib.asarray_chkfinite, b)
assert_raises(ValueError, numpy.lib.asarray_chkfinite, c)
class TestNaNFuncts(TestCase):
def setUp(self):
self.A = array([[[ nan, 0.01319214, 0.01620964],
[ 0.11704017, nan, 0.75157887],
[ 0.28333658, 0.1630199 , nan ]],
[[ 0.59541557, nan, 0.37910852],
[ nan, 0.87964135, nan ],
[ 0.70543747, nan, 0.34306596]],
[[ 0.72687499, 0.91084584, nan ],
[ 0.84386844, 0.38944762, 0.23913896],
[ nan, 0.37068164, 0.33850425]]])
def test_nansum(self):
assert_almost_equal(nansum(self.A), 8.0664079100000006)
assert_almost_equal(nansum(self.A,0),
array([[ 1.32229056, 0.92403798, 0.39531816],
[ 0.96090861, 1.26908897, 0.99071783],
[ 0.98877405, 0.53370154, 0.68157021]]))
assert_almost_equal(nansum(self.A,1),
array([[ 0.40037675, 0.17621204, 0.76778851],
[ 1.30085304, 0.87964135, 0.72217448],
[ 1.57074343, 1.6709751 , 0.57764321]]))
assert_almost_equal(nansum(self.A,2),
array([[ 0.02940178, 0.86861904, 0.44635648],
[ 0.97452409, 0.87964135, 1.04850343],
[ 1.63772083, 1.47245502, 0.70918589]]))
def test_nanmin(self):
assert_almost_equal(nanmin(self.A), 0.01319214)
assert_almost_equal(nanmin(self.A,0),
array([[ 0.59541557, 0.01319214, 0.01620964],
[ 0.11704017, 0.38944762, 0.23913896],
[ 0.28333658, 0.1630199 , 0.33850425]]))
assert_almost_equal(nanmin(self.A,1),
array([[ 0.11704017, 0.01319214, 0.01620964],
[ 0.59541557, 0.87964135, 0.34306596],
[ 0.72687499, 0.37068164, 0.23913896]]))
assert_almost_equal(nanmin(self.A,2),
array([[ 0.01319214, 0.11704017, 0.1630199 ],
[ 0.37910852, 0.87964135, 0.34306596],
[ 0.72687499, 0.23913896, 0.33850425]]))
assert nanmin([nan, nan]) is nan
def test_nanargmin(self):
assert_almost_equal(nanargmin(self.A), 1)
assert_almost_equal(nanargmin(self.A,0),
array([[1, 0, 0],
[0, 2, 2],
[0, 0, 2]]))
assert_almost_equal(nanargmin(self.A,1),
array([[1, 0, 0],
[0, 1, 2],
[0, 2, 1]]))
assert_almost_equal(nanargmin(self.A,2),
array([[1, 0, 1],
[2, 1, 2],
[0, 2, 2]]))
def test_nanmax(self):
assert_almost_equal(nanmax(self.A), 0.91084584000000002)
assert_almost_equal(nanmax(self.A,0),
array([[ 0.72687499, 0.91084584, 0.37910852],
[ 0.84386844, 0.87964135, 0.75157887],
[ 0.70543747, 0.37068164, 0.34306596]]))
assert_almost_equal(nanmax(self.A,1),
array([[ 0.28333658, 0.1630199 , 0.75157887],
[ 0.70543747, 0.87964135, 0.37910852],
[ 0.84386844, 0.91084584, 0.33850425]]))
assert_almost_equal(nanmax(self.A,2),
array([[ 0.01620964, 0.75157887, 0.28333658],
[ 0.59541557, 0.87964135, 0.70543747],
[ 0.91084584, 0.84386844, 0.37068164]]))
def test_nanmin_allnan_on_axis(self):
assert_array_equal(isnan(nanmin([[nan]*2]*3, axis=1)),
[True, True, True])
class TestCorrCoef(TestCase):
def test_simple(self):
A = array([[ 0.15391142, 0.18045767, 0.14197213],
[ 0.70461506, 0.96474128, 0.27906989],
[ 0.9297531 , 0.32296769, 0.19267156]])
B = array([[ 0.10377691, 0.5417086 , 0.49807457],
[ 0.82872117, 0.77801674, 0.39226705],
[ 0.9314666 , 0.66800209, 0.03538394]])
assert_almost_equal(corrcoef(A),
array([[ 1. , 0.9379533 , -0.04931983],
[ 0.9379533 , 1. , 0.30007991],
[-0.04931983, 0.30007991, 1. ]]))
assert_almost_equal(corrcoef(A,B),
array([[ 1. , 0.9379533 , -0.04931983,
0.30151751, 0.66318558, 0.51532523],
[ 0.9379533 , 1. , 0.30007991,
-0.04781421, 0.88157256, 0.78052386],
[-0.04931983, 0.30007991, 1. ,
-0.96717111, 0.71483595, 0.83053601],
[ 0.30151751, -0.04781421, -0.96717111,
1. , -0.51366032, -0.66173113],
[ 0.66318558, 0.88157256, 0.71483595,
-0.51366032, 1. , 0.98317823],
[ 0.51532523, 0.78052386, 0.83053601,
-0.66173113, 0.98317823, 1. ]]))
class Test_i0(TestCase):
def test_simple(self):
assert_almost_equal(i0(0.5), array(1.0634833707413234))
A = array([ 0.49842636, 0.6969809 , 0.22011976, 0.0155549])
assert_almost_equal(i0(A),
array([ 1.06307822, 1.12518299, 1.01214991, 1.00006049]))
B = array([[ 0.827002 , 0.99959078],
[ 0.89694769, 0.39298162],
[ 0.37954418, 0.05206293],
[ 0.36465447, 0.72446427],
[ 0.48164949, 0.50324519]])
assert_almost_equal(i0(B),
array([[ 1.17843223, 1.26583466],
[ 1.21147086, 1.0389829 ],
[ 1.03633899, 1.00067775],
[ 1.03352052, 1.13557954],
[ 1.0588429 , 1.06432317]]))
class TestKaiser(TestCase):
def test_simple(self):
assert_almost_equal(kaiser(0, 1.0), array([]))
assert isfinite(kaiser(1, 1.0))
assert_almost_equal(kaiser(2, 1.0), array([ 0.78984831, 0.78984831]))
assert_almost_equal(kaiser(5, 1.0),
array([ 0.78984831, 0.94503323, 1. ,
0.94503323, 0.78984831]))
assert_almost_equal(kaiser(5, 1.56789),
array([ 0.58285404, 0.88409679, 1. ,
0.88409679, 0.58285404]))
def test_int_beta(self):
kaiser(3, 4)
class TestMsort(TestCase):
def test_simple(self):
A = array([[ 0.44567325, 0.79115165, 0.5490053 ],
[ 0.36844147, 0.37325583, 0.96098397],
[ 0.64864341, 0.52929049, 0.39172155]])
assert_almost_equal(msort(A),
array([[ 0.36844147, 0.37325583, 0.39172155],
[ 0.44567325, 0.52929049, 0.5490053 ],
[ 0.64864341, 0.79115165, 0.96098397]]))
class TestMeshgrid(TestCase):
def test_simple(self):
[X, Y] = meshgrid([1,2,3], [4,5,6,7])
assert all(X == array([[1, 2, 3],
[1, 2, 3],
[1, 2, 3],
[1, 2, 3]]))
assert all(Y == array([[4, 4, 4],
[5, 5, 5],
[6, 6, 6],
[7, 7, 7]]))
class TestPiecewise(TestCase):
def test_simple(self):
# Condition is single bool list
x = piecewise([0, 0], [True, False], [1])
assert_array_equal(x, [1, 0])
# List of conditions: single bool list
x = piecewise([0, 0], [[True, False]], [1])
assert_array_equal(x, [1, 0])
# Conditions is single bool array
x = piecewise([0, 0], array([True, False]), [1])
assert_array_equal(x, [1, 0])
# Condition is single int array
x = piecewise([0, 0], array([1, 0]), [1])
assert_array_equal(x, [1, 0])
# List of conditions: int array
x = piecewise([0, 0], [array([1, 0])], [1])
assert_array_equal(x, [1, 0])
x = piecewise([0, 0], [[False, True]], [lambda x: -1])
assert_array_equal(x, [0, -1])
x = piecewise([1, 2], [[True, False], [False, True]], [3, 4])
assert_array_equal(x, [3, 4])
def test_default(self):
# No value specified for x[1], should be 0
x = piecewise([1, 2], [True, False], [2])
assert_array_equal(x, [2, 0])
# Should set x[1] to 3
x = piecewise([1, 2], [True, False], [2, 3])
assert_array_equal(x, [2, 3])
def test_0d(self):
x = array(3)
y = piecewise(x, x>3, [4, 0])
assert y.ndim == 0
assert y == 0
def compare_results(res,desired):
for i in range(len(desired)):
assert_array_equal(res[i],desired[i])
if __name__ == "__main__":
run_module_suite()
|