1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
|
import numpy as np
import numpy.ma as ma
from numpy.ma.testutils import *
from numpy.testing import assert_warns
import StringIO
import gzip
import os
import threading
from tempfile import mkstemp, NamedTemporaryFile
import sys, time
from datetime import datetime
from numpy.lib._iotools import ConverterError, ConverterLockError, \
ConversionWarning
MAJVER, MINVER = sys.version_info[:2]
def strptime(s, fmt=None):
"""This function is available in the datetime module only
from Python >= 2.5.
"""
return datetime(*time.strptime(s, fmt)[:3])
class RoundtripTest(object):
def roundtrip(self, save_func, *args, **kwargs):
"""
save_func : callable
Function used to save arrays to file.
file_on_disk : bool
If true, store the file on disk, instead of in a
string buffer.
save_kwds : dict
Parameters passed to `save_func`.
load_kwds : dict
Parameters passed to `numpy.load`.
args : tuple of arrays
Arrays stored to file.
"""
save_kwds = kwargs.get('save_kwds', {})
load_kwds = kwargs.get('load_kwds', {})
file_on_disk = kwargs.get('file_on_disk', False)
if file_on_disk:
# Do not delete the file on windows, because we can't
# reopen an already opened file on that platform, so we
# need to close the file and reopen it, implying no
# automatic deletion.
if sys.platform == 'win32' and MAJVER >= 2 and MINVER >= 6:
target_file = NamedTemporaryFile(delete=False)
else:
target_file = NamedTemporaryFile()
load_file = target_file.name
else:
target_file = StringIO.StringIO()
load_file = target_file
arr = args
save_func(target_file, *arr, **save_kwds)
target_file.flush()
target_file.seek(0)
if sys.platform == 'win32' and not isinstance(target_file, StringIO.StringIO):
target_file.close()
arr_reloaded = np.load(load_file, **load_kwds)
self.arr = arr
self.arr_reloaded = arr_reloaded
def test_array(self):
a = np.array([[1, 2], [3, 4]], float)
self.roundtrip(a)
a = np.array([[1, 2], [3, 4]], int)
self.roundtrip(a)
a = np.array([[1 + 5j, 2 + 6j], [3 + 7j, 4 + 8j]], dtype=np.csingle)
self.roundtrip(a)
a = np.array([[1 + 5j, 2 + 6j], [3 + 7j, 4 + 8j]], dtype=np.cdouble)
self.roundtrip(a)
def test_1D(self):
a = np.array([1, 2, 3, 4], int)
self.roundtrip(a)
@np.testing.dec.knownfailureif(sys.platform == 'win32', "Fail on Win32")
def test_mmap(self):
a = np.array([[1, 2.5], [4, 7.3]])
self.roundtrip(a, file_on_disk=True, load_kwds={'mmap_mode': 'r'})
def test_record(self):
a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
self.roundtrip(a)
class TestSaveLoad(RoundtripTest, TestCase):
def roundtrip(self, *args, **kwargs):
RoundtripTest.roundtrip(self, np.save, *args, **kwargs)
assert_equal(self.arr[0], self.arr_reloaded)
class TestSavezLoad(RoundtripTest, TestCase):
def roundtrip(self, *args, **kwargs):
RoundtripTest.roundtrip(self, np.savez, *args, **kwargs)
for n, arr in enumerate(self.arr):
assert_equal(arr, self.arr_reloaded['arr_%d' % n])
def test_multiple_arrays(self):
a = np.array([[1, 2], [3, 4]], float)
b = np.array([[1 + 2j, 2 + 7j], [3 - 6j, 4 + 12j]], complex)
self.roundtrip(a, b)
def test_named_arrays(self):
a = np.array([[1, 2], [3, 4]], float)
b = np.array([[1 + 2j, 2 + 7j], [3 - 6j, 4 + 12j]], complex)
c = StringIO.StringIO()
np.savez(c, file_a=a, file_b=b)
c.seek(0)
l = np.load(c)
assert_equal(a, l['file_a'])
assert_equal(b, l['file_b'])
def test_savez_filename_clashes(self):
# Test that issue #852 is fixed
# and savez functions in multithreaded environment
def writer(error_list):
fd, tmp = mkstemp(suffix='.npz')
os.close(fd)
try:
arr = np.random.randn(500, 500)
try:
np.savez(tmp, arr=arr)
except OSError, err:
error_list.append(err)
finally:
os.remove(tmp)
errors = []
threads = [threading.Thread(target=writer, args=(errors,))
for j in xrange(3)]
for t in threads:
t.start()
for t in threads:
t.join()
if errors:
raise AssertionError(errors)
class TestSaveTxt(TestCase):
def test_array(self):
a = np.array([[1, 2], [3, 4]], float)
fmt = "%.18e"
c = StringIO.StringIO()
np.savetxt(c, a, fmt=fmt)
c.seek(0)
assert_equal(c.readlines(),
[(fmt + ' ' + fmt + '\n') % (1, 2),
(fmt + ' ' + fmt + '\n') % (3, 4)])
a = np.array([[1, 2], [3, 4]], int)
c = StringIO.StringIO()
np.savetxt(c, a, fmt='%d')
c.seek(0)
assert_equal(c.readlines(), ['1 2\n', '3 4\n'])
def test_1D(self):
a = np.array([1, 2, 3, 4], int)
c = StringIO.StringIO()
np.savetxt(c, a, fmt='%d')
c.seek(0)
lines = c.readlines()
assert_equal(lines, ['1\n', '2\n', '3\n', '4\n'])
def test_record(self):
a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
c = StringIO.StringIO()
np.savetxt(c, a, fmt='%d')
c.seek(0)
assert_equal(c.readlines(), ['1 2\n', '3 4\n'])
def test_delimiter(self):
a = np.array([[1., 2.], [3., 4.]])
c = StringIO.StringIO()
np.savetxt(c, a, delimiter=',', fmt='%d')
c.seek(0)
assert_equal(c.readlines(), ['1,2\n', '3,4\n'])
def test_format(self):
a = np.array([(1, 2), (3, 4)])
c = StringIO.StringIO()
# Sequence of formats
np.savetxt(c, a, fmt=['%02d', '%3.1f'])
c.seek(0)
assert_equal(c.readlines(), ['01 2.0\n', '03 4.0\n'])
# A single multiformat string
c = StringIO.StringIO()
np.savetxt(c, a, fmt='%02d : %3.1f')
c.seek(0)
lines = c.readlines()
assert_equal(lines, ['01 : 2.0\n', '03 : 4.0\n'])
# Specify delimiter, should be overiden
c = StringIO.StringIO()
np.savetxt(c, a, fmt='%02d : %3.1f', delimiter=',')
c.seek(0)
lines = c.readlines()
assert_equal(lines, ['01 : 2.0\n', '03 : 4.0\n'])
class TestLoadTxt(TestCase):
def test_record(self):
c = StringIO.StringIO()
c.write('1 2\n3 4')
c.seek(0)
x = np.loadtxt(c, dtype=[('x', np.int32), ('y', np.int32)])
a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
assert_array_equal(x, a)
d = StringIO.StringIO()
d.write('M 64.0 75.0\nF 25.0 60.0')
d.seek(0)
mydescriptor = {'names': ('gender', 'age', 'weight'),
'formats': ('S1',
'i4', 'f4')}
b = np.array([('M', 64.0, 75.0),
('F', 25.0, 60.0)], dtype=mydescriptor)
y = np.loadtxt(d, dtype=mydescriptor)
assert_array_equal(y, b)
def test_array(self):
c = StringIO.StringIO()
c.write('1 2\n3 4')
c.seek(0)
x = np.loadtxt(c, dtype=int)
a = np.array([[1, 2], [3, 4]], int)
assert_array_equal(x, a)
c.seek(0)
x = np.loadtxt(c, dtype=float)
a = np.array([[1, 2], [3, 4]], float)
assert_array_equal(x, a)
def test_1D(self):
c = StringIO.StringIO()
c.write('1\n2\n3\n4\n')
c.seek(0)
x = np.loadtxt(c, dtype=int)
a = np.array([1, 2, 3, 4], int)
assert_array_equal(x, a)
c = StringIO.StringIO()
c.write('1,2,3,4\n')
c.seek(0)
x = np.loadtxt(c, dtype=int, delimiter=',')
a = np.array([1, 2, 3, 4], int)
assert_array_equal(x, a)
def test_missing(self):
c = StringIO.StringIO()
c.write('1,2,3,,5\n')
c.seek(0)
x = np.loadtxt(c, dtype=int, delimiter=',', \
converters={3:lambda s: int(s or - 999)})
a = np.array([1, 2, 3, -999, 5], int)
assert_array_equal(x, a)
def test_converters_with_usecols(self):
c = StringIO.StringIO()
c.write('1,2,3,,5\n6,7,8,9,10\n')
c.seek(0)
x = np.loadtxt(c, dtype=int, delimiter=',', \
converters={3:lambda s: int(s or - 999)}, \
usecols=(1, 3,))
a = np.array([[2, -999], [7, 9]], int)
assert_array_equal(x, a)
def test_comments(self):
c = StringIO.StringIO()
c.write('# comment\n1,2,3,5\n')
c.seek(0)
x = np.loadtxt(c, dtype=int, delimiter=',', \
comments='#')
a = np.array([1, 2, 3, 5], int)
assert_array_equal(x, a)
def test_skiprows(self):
c = StringIO.StringIO()
c.write('comment\n1,2,3,5\n')
c.seek(0)
x = np.loadtxt(c, dtype=int, delimiter=',', \
skiprows=1)
a = np.array([1, 2, 3, 5], int)
assert_array_equal(x, a)
c = StringIO.StringIO()
c.write('# comment\n1,2,3,5\n')
c.seek(0)
x = np.loadtxt(c, dtype=int, delimiter=',', \
skiprows=1)
a = np.array([1, 2, 3, 5], int)
assert_array_equal(x, a)
def test_usecols(self):
a = np.array([[1, 2], [3, 4]], float)
c = StringIO.StringIO()
np.savetxt(c, a)
c.seek(0)
x = np.loadtxt(c, dtype=float, usecols=(1,))
assert_array_equal(x, a[:, 1])
a = np.array([[1, 2, 3], [3, 4, 5]], float)
c = StringIO.StringIO()
np.savetxt(c, a)
c.seek(0)
x = np.loadtxt(c, dtype=float, usecols=(1, 2))
assert_array_equal(x, a[:, 1:])
# Testing with arrays instead of tuples.
c.seek(0)
x = np.loadtxt(c, dtype=float, usecols=np.array([1, 2]))
assert_array_equal(x, a[:, 1:])
# Checking with dtypes defined converters.
data = '''JOE 70.1 25.3
BOB 60.5 27.9
'''
c = StringIO.StringIO(data)
names = ['stid', 'temp']
dtypes = ['S4', 'f8']
arr = np.loadtxt(c, usecols=(0, 2), dtype=zip(names, dtypes))
assert_equal(arr['stid'], ["JOE", "BOB"])
assert_equal(arr['temp'], [25.3, 27.9])
def test_fancy_dtype(self):
c = StringIO.StringIO()
c.write('1,2,3.0\n4,5,6.0\n')
c.seek(0)
dt = np.dtype([('x', int), ('y', [('t', int), ('s', float)])])
x = np.loadtxt(c, dtype=dt, delimiter=',')
a = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dt)
assert_array_equal(x, a)
def test_shaped_dtype(self):
c = StringIO.StringIO("aaaa 1.0 8.0 1 2 3 4 5 6")
dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
('block', int, (2, 3))])
x = np.loadtxt(c, dtype=dt)
a = np.array([('aaaa', 1.0, 8.0, [[1, 2, 3], [4, 5, 6]])],
dtype=dt)
assert_array_equal(x, a)
def test_empty_file(self):
c = StringIO.StringIO()
assert_raises(IOError, np.loadtxt, c)
def test_unused_converter(self):
c = StringIO.StringIO()
c.writelines(['1 21\n', '3 42\n'])
c.seek(0)
data = np.loadtxt(c, usecols=(1,),
converters={0: lambda s: int(s, 16)})
assert_array_equal(data, [21, 42])
c.seek(0)
data = np.loadtxt(c, usecols=(1,),
converters={1: lambda s: int(s, 16)})
assert_array_equal(data, [33, 66])
def test_dtype_with_object(self):
"Test using an explicit dtype with an object"
from datetime import date
import time
data = """
1; 2001-01-01
2; 2002-01-31
"""
ndtype = [('idx', int), ('code', np.object)]
func = lambda s: strptime(s.strip(), "%Y-%m-%d")
converters = {1: func}
test = np.loadtxt(StringIO.StringIO(data), delimiter=";", dtype=ndtype,
converters=converters)
control = np.array([(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))],
dtype=ndtype)
assert_equal(test, control)
class Testfromregex(TestCase):
def test_record(self):
c = StringIO.StringIO()
c.write('1.312 foo\n1.534 bar\n4.444 qux')
c.seek(0)
dt = [('num', np.float64), ('val', 'S3')]
x = np.fromregex(c, r"([0-9.]+)\s+(...)", dt)
a = np.array([(1.312, 'foo'), (1.534, 'bar'), (4.444, 'qux')],
dtype=dt)
assert_array_equal(x, a)
def test_record_2(self):
c = StringIO.StringIO()
c.write('1312 foo\n1534 bar\n4444 qux')
c.seek(0)
dt = [('num', np.int32), ('val', 'S3')]
x = np.fromregex(c, r"(\d+)\s+(...)", dt)
a = np.array([(1312, 'foo'), (1534, 'bar'), (4444, 'qux')],
dtype=dt)
assert_array_equal(x, a)
def test_record_3(self):
c = StringIO.StringIO()
c.write('1312 foo\n1534 bar\n4444 qux')
c.seek(0)
dt = [('num', np.float64)]
x = np.fromregex(c, r"(\d+)\s+...", dt)
a = np.array([(1312,), (1534,), (4444,)], dtype=dt)
assert_array_equal(x, a)
#####--------------------------------------------------------------------------
class TestFromTxt(TestCase):
#
def test_record(self):
"Test w/ explicit dtype"
data = StringIO.StringIO('1 2\n3 4')
# data.seek(0)
test = np.ndfromtxt(data, dtype=[('x', np.int32), ('y', np.int32)])
control = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
assert_equal(test, control)
#
data = StringIO.StringIO('M 64.0 75.0\nF 25.0 60.0')
# data.seek(0)
descriptor = {'names': ('gender', 'age', 'weight'),
'formats': ('S1', 'i4', 'f4')}
control = np.array([('M', 64.0, 75.0), ('F', 25.0, 60.0)],
dtype=descriptor)
test = np.ndfromtxt(data, dtype=descriptor)
assert_equal(test, control)
def test_array(self):
"Test outputing a standard ndarray"
data = StringIO.StringIO('1 2\n3 4')
control = np.array([[1, 2], [3, 4]], dtype=int)
test = np.ndfromtxt(data, dtype=int)
assert_array_equal(test, control)
#
data.seek(0)
control = np.array([[1, 2], [3, 4]], dtype=float)
test = np.loadtxt(data, dtype=float)
assert_array_equal(test, control)
def test_1D(self):
"Test squeezing to 1D"
control = np.array([1, 2, 3, 4], int)
#
data = StringIO.StringIO('1\n2\n3\n4\n')
test = np.ndfromtxt(data, dtype=int)
assert_array_equal(test, control)
#
data = StringIO.StringIO('1,2,3,4\n')
test = np.ndfromtxt(data, dtype=int, delimiter=',')
assert_array_equal(test, control)
def test_comments(self):
"Test the stripping of comments"
control = np.array([1, 2, 3, 5], int)
# Comment on its own line
data = StringIO.StringIO('# comment\n1,2,3,5\n')
test = np.ndfromtxt(data, dtype=int, delimiter=',', comments='#')
assert_equal(test, control)
# Comment at the end of a line
data = StringIO.StringIO('1,2,3,5# comment\n')
test = np.ndfromtxt(data, dtype=int, delimiter=',', comments='#')
assert_equal(test, control)
def test_skiprows(self):
"Test row skipping"
control = np.array([1, 2, 3, 5], int)
kwargs = dict(dtype=int, delimiter=',')
#
data = StringIO.StringIO('comment\n1,2,3,5\n')
test = np.ndfromtxt(data, skip_header=1, **kwargs)
assert_equal(test, control)
#
data = StringIO.StringIO('# comment\n1,2,3,5\n')
test = np.loadtxt(data, skiprows=1, **kwargs)
assert_equal(test, control)
def test_skip_footer(self):
data = ["# %i" % i for i in range(1, 6)]
data.append("A, B, C")
data.extend(["%i,%3.1f,%03s" % (i, i, i) for i in range(51)])
data[-1] = "99,99"
kwargs = dict(delimiter=",", names=True, skip_header=5, skip_footer=10)
test = np.genfromtxt(StringIO.StringIO("\n".join(data)), **kwargs)
ctrl = np.array([("%f" % i, "%f" % i, "%f" % i) for i in range(40)],
dtype=[(_, float) for _ in "ABC"])
assert_equal(test, ctrl)
def test_header(self):
"Test retrieving a header"
data = StringIO.StringIO('gender age weight\nM 64.0 75.0\nF 25.0 60.0')
test = np.ndfromtxt(data, dtype=None, names=True)
control = {'gender': np.array(['M', 'F']),
'age': np.array([64.0, 25.0]),
'weight': np.array([75.0, 60.0])}
assert_equal(test['gender'], control['gender'])
assert_equal(test['age'], control['age'])
assert_equal(test['weight'], control['weight'])
def test_auto_dtype(self):
"Test the automatic definition of the output dtype"
data = StringIO.StringIO('A 64 75.0 3+4j True\nBCD 25 60.0 5+6j False')
test = np.ndfromtxt(data, dtype=None)
control = [np.array(['A', 'BCD']),
np.array([64, 25]),
np.array([75.0, 60.0]),
np.array([3 + 4j, 5 + 6j]),
np.array([True, False]), ]
assert_equal(test.dtype.names, ['f0', 'f1', 'f2', 'f3', 'f4'])
for (i, ctrl) in enumerate(control):
assert_equal(test['f%i' % i], ctrl)
def test_auto_dtype_uniform(self):
"Tests whether the output dtype can be uniformized"
data = StringIO.StringIO('1 2 3 4\n5 6 7 8\n')
test = np.ndfromtxt(data, dtype=None)
control = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
assert_equal(test, control)
def test_fancy_dtype(self):
"Check that a nested dtype isn't MIA"
data = StringIO.StringIO('1,2,3.0\n4,5,6.0\n')
fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])])
test = np.ndfromtxt(data, dtype=fancydtype, delimiter=',')
control = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=fancydtype)
assert_equal(test, control)
def test_names_overwrite(self):
"Test overwriting the names of the dtype"
descriptor = {'names': ('g', 'a', 'w'),
'formats': ('S1', 'i4', 'f4')}
data = StringIO.StringIO('M 64.0 75.0\nF 25.0 60.0')
names = ('gender', 'age', 'weight')
test = np.ndfromtxt(data, dtype=descriptor, names=names)
descriptor['names'] = names
control = np.array([('M', 64.0, 75.0),
('F', 25.0, 60.0)], dtype=descriptor)
assert_equal(test, control)
def test_commented_header(self):
"Check that names can be retrieved even if the line is commented out."
data = StringIO.StringIO("""
#gender age weight
M 21 72.100000
F 35 58.330000
M 33 21.99
""")
# The # is part of the first name and should be deleted automatically.
test = np.genfromtxt(data, names=True, dtype=None)
ctrl = np.array([('M', 21, 72.1), ('F', 35, 58.33), ('M', 33, 21.99)],
dtype=[('gender', '|S1'), ('age', int), ('weight', float)])
assert_equal(test, ctrl)
# Ditto, but we should get rid of the first element
data = StringIO.StringIO("""
# gender age weight
M 21 72.100000
F 35 58.330000
M 33 21.99
""")
test = np.genfromtxt(data, names=True, dtype=None)
assert_equal(test, ctrl)
def test_autonames_and_usecols(self):
"Tests names and usecols"
data = StringIO.StringIO('A B C D\n aaaa 121 45 9.1')
test = np.ndfromtxt(data, usecols=('A', 'C', 'D'),
names=True, dtype=None)
control = np.array(('aaaa', 45, 9.1),
dtype=[('A', '|S4'), ('C', int), ('D', float)])
assert_equal(test, control)
def test_converters_with_usecols(self):
"Test the combination user-defined converters and usecol"
data = StringIO.StringIO('1,2,3,,5\n6,7,8,9,10\n')
test = np.ndfromtxt(data, dtype=int, delimiter=',',
converters={3:lambda s: int(s or - 999)},
usecols=(1, 3,))
control = np.array([[2, -999], [7, 9]], int)
assert_equal(test, control)
def test_converters_with_usecols_and_names(self):
"Tests names and usecols"
data = StringIO.StringIO('A B C D\n aaaa 121 45 9.1')
test = np.ndfromtxt(data, usecols=('A', 'C', 'D'), names=True,
dtype=None, converters={'C':lambda s: 2 * int(s)})
control = np.array(('aaaa', 90, 9.1),
dtype=[('A', '|S4'), ('C', int), ('D', float)])
assert_equal(test, control)
def test_converters_cornercases(self):
"Test the conversion to datetime."
converter = {'date': lambda s: strptime(s, '%Y-%m-%d %H:%M:%SZ')}
data = StringIO.StringIO('2009-02-03 12:00:00Z, 72214.0')
test = np.ndfromtxt(data, delimiter=',', dtype=None,
names=['date', 'stid'], converters=converter)
control = np.array((datetime(2009, 02, 03), 72214.),
dtype=[('date', np.object_), ('stid', float)])
assert_equal(test, control)
def test_unused_converter(self):
"Test whether unused converters are forgotten"
data = StringIO.StringIO("1 21\n 3 42\n")
test = np.ndfromtxt(data, usecols=(1,),
converters={0: lambda s: int(s, 16)})
assert_equal(test, [21, 42])
#
data.seek(0)
test = np.ndfromtxt(data, usecols=(1,),
converters={1: lambda s: int(s, 16)})
assert_equal(test, [33, 66])
def test_invalid_converter(self):
strip_rand = lambda x : float(('r' in x.lower() and x.split()[-1]) or
(not 'r' in x.lower() and x.strip() or 0.0))
strip_per = lambda x : float(('%' in x.lower() and x.split()[0]) or
(not '%' in x.lower() and x.strip() or 0.0))
s = StringIO.StringIO("D01N01,10/1/2003 ,1 %,R 75,400,600\r\n" \
"L24U05,12/5/2003, 2 %,1,300, 150.5\r\n"
"D02N03,10/10/2004,R 1,,7,145.55")
kwargs = dict(converters={2 : strip_per, 3 : strip_rand}, delimiter=",",
dtype=None)
assert_raises(ConverterError, np.genfromtxt, s, **kwargs)
def test_dtype_with_converters(self):
dstr = "2009; 23; 46"
test = np.ndfromtxt(StringIO.StringIO(dstr,),
delimiter=";", dtype=float, converters={0:str})
control = np.array([('2009', 23., 46)],
dtype=[('f0', '|S4'), ('f1', float), ('f2', float)])
assert_equal(test, control)
test = np.ndfromtxt(StringIO.StringIO(dstr,),
delimiter=";", dtype=float, converters={0:float})
control = np.array([2009., 23., 46],)
assert_equal(test, control)
def test_dtype_with_object(self):
"Test using an explicit dtype with an object"
from datetime import date
import time
data = """
1; 2001-01-01
2; 2002-01-31
"""
ndtype = [('idx', int), ('code', np.object)]
func = lambda s: strptime(s.strip(), "%Y-%m-%d")
converters = {1: func}
test = np.genfromtxt(StringIO.StringIO(data), delimiter=";", dtype=ndtype,
converters=converters)
control = np.array([(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))],
dtype=ndtype)
assert_equal(test, control)
#
ndtype = [('nest', [('idx', int), ('code', np.object)])]
try:
test = np.genfromtxt(StringIO.StringIO(data), delimiter=";",
dtype=ndtype, converters=converters)
except NotImplementedError:
pass
else:
errmsg = "Nested dtype involving objects should be supported."
raise AssertionError(errmsg)
def test_userconverters_with_explicit_dtype(self):
"Test user_converters w/ explicit (standard) dtype"
data = StringIO.StringIO('skip,skip,2001-01-01,1.0,skip')
test = np.genfromtxt(data, delimiter=",", names=None, dtype=float,
usecols=(2, 3), converters={2: str})
control = np.array([('2001-01-01', 1.)],
dtype=[('', '|S10'), ('', float)])
assert_equal(test, control)
def test_spacedelimiter(self):
"Test space delimiter"
data = StringIO.StringIO("1 2 3 4 5\n6 7 8 9 10")
test = np.ndfromtxt(data)
control = np.array([[ 1., 2., 3., 4., 5.],
[ 6., 7., 8., 9., 10.]])
assert_equal(test, control)
def test_missing(self):
data = StringIO.StringIO('1,2,3,,5\n')
test = np.ndfromtxt(data, dtype=int, delimiter=',', \
converters={3:lambda s: int(s or - 999)})
control = np.array([1, 2, 3, -999, 5], int)
assert_equal(test, control)
def test_missing_with_tabs(self):
"Test w/ a delimiter tab"
txt = "1\t2\t3\n\t2\t\n1\t\t3"
test = np.genfromtxt(StringIO.StringIO(txt), delimiter="\t",
usemask=True,)
ctrl_d = np.array([(1, 2, 3), (np.nan, 2, np.nan), (1, np.nan, 3)],)
ctrl_m = np.array([(0, 0, 0), (1, 0, 1), (0, 1, 0)], dtype=bool)
assert_equal(test.data, ctrl_d)
assert_equal(test.mask, ctrl_m)
def test_usecols(self):
"Test the selection of columns"
# Select 1 column
control = np.array([[1, 2], [3, 4]], float)
data = StringIO.StringIO()
np.savetxt(data, control)
data.seek(0)
test = np.ndfromtxt(data, dtype=float, usecols=(1,))
assert_equal(test, control[:, 1])
#
control = np.array([[1, 2, 3], [3, 4, 5]], float)
data = StringIO.StringIO()
np.savetxt(data, control)
data.seek(0)
test = np.ndfromtxt(data, dtype=float, usecols=(1, 2))
assert_equal(test, control[:, 1:])
# Testing with arrays instead of tuples.
data.seek(0)
test = np.ndfromtxt(data, dtype=float, usecols=np.array([1, 2]))
assert_equal(test, control[:, 1:])
def test_usecols_as_css(self):
"Test giving usecols with a comma-separated string"
data = "1 2 3\n4 5 6"
test = np.genfromtxt(StringIO.StringIO(data),
names="a, b, c", usecols="a, c")
ctrl = np.array([(1, 3), (4, 6)], dtype=[(_, float) for _ in "ac"])
assert_equal(test, ctrl)
def test_usecols_with_structured_dtype(self):
"Test usecols with an explicit structured dtype"
data = StringIO.StringIO("""JOE 70.1 25.3\nBOB 60.5 27.9""")
names = ['stid', 'temp']
dtypes = ['S4', 'f8']
test = np.ndfromtxt(data, usecols=(0, 2), dtype=zip(names, dtypes))
assert_equal(test['stid'], ["JOE", "BOB"])
assert_equal(test['temp'], [25.3, 27.9])
def test_usecols_with_integer(self):
"Test usecols with an integer"
test = np.genfromtxt(StringIO.StringIO("1 2 3\n4 5 6"), usecols=0)
assert_equal(test, np.array([1., 4.]))
def test_usecols_with_named_columns(self):
"Test usecols with named columns"
ctrl = np.array([(1, 3), (4, 6)], dtype=[('a', float), ('c', float)])
data = "1 2 3\n4 5 6"
kwargs = dict(names="a, b, c")
test = np.genfromtxt(StringIO.StringIO(data), usecols=(0, -1), **kwargs)
assert_equal(test, ctrl)
test = np.genfromtxt(StringIO.StringIO(data),
usecols=('a', 'c'), **kwargs)
assert_equal(test, ctrl)
def test_empty_file(self):
"Test that an empty file raises the proper exception"
data = StringIO.StringIO()
assert_raises(IOError, np.ndfromtxt, data)
def test_fancy_dtype_alt(self):
"Check that a nested dtype isn't MIA"
data = StringIO.StringIO('1,2,3.0\n4,5,6.0\n')
fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])])
test = np.mafromtxt(data, dtype=fancydtype, delimiter=',')
control = ma.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=fancydtype)
assert_equal(test, control)
def test_shaped_dtype(self):
c = StringIO.StringIO("aaaa 1.0 8.0 1 2 3 4 5 6")
dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
('block', int, (2, 3))])
x = np.ndfromtxt(c, dtype=dt)
a = np.array([('aaaa', 1.0, 8.0, [[1, 2, 3], [4, 5, 6]])],
dtype=dt)
assert_array_equal(x, a)
def test_withmissing(self):
data = StringIO.StringIO('A,B\n0,1\n2,N/A')
kwargs = dict(delimiter=",", missing_values="N/A", names=True)
test = np.mafromtxt(data, dtype=None, **kwargs)
control = ma.array([(0, 1), (2, -1)],
mask=[(False, False), (False, True)],
dtype=[('A', np.int), ('B', np.int)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
#
data.seek(0)
test = np.mafromtxt(data, **kwargs)
control = ma.array([(0, 1), (2, -1)],
mask=[(False, False), (False, True)],
dtype=[('A', np.float), ('B', np.float)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
def test_user_missing_values(self):
data = "A, B, C\n0, 0., 0j\n1, N/A, 1j\n-9, 2.2, N/A\n3, -99, 3j"
basekwargs = dict(dtype=None, delimiter=",", names=True,)
mdtype = [('A', int), ('B', float), ('C', complex)]
#
test = np.mafromtxt(StringIO.StringIO(data), missing_values="N/A",
**basekwargs)
control = ma.array([(0, 0.0, 0j), (1, -999, 1j),
(-9, 2.2, -999j), (3, -99, 3j)],
mask=[(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)],
dtype=mdtype)
assert_equal(test, control)
#
basekwargs['dtype'] = mdtype
test = np.mafromtxt(StringIO.StringIO(data),
missing_values={0:-9, 1:-99, 2:-999j}, **basekwargs)
control = ma.array([(0, 0.0, 0j), (1, -999, 1j),
(-9, 2.2, -999j), (3, -99, 3j)],
mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)],
dtype=mdtype)
assert_equal(test, control)
#
test = np.mafromtxt(StringIO.StringIO(data),
missing_values={0:-9, 'B':-99, 'C':-999j},
**basekwargs)
control = ma.array([(0, 0.0, 0j), (1, -999, 1j),
(-9, 2.2, -999j), (3, -99, 3j)],
mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)],
dtype=mdtype)
assert_equal(test, control)
def test_user_filling_values(self):
"Test with missing and filling values"
ctrl = np.array([(0, 3), (4, -999)], dtype=[('a', int), ('b', int)])
data = "N/A, 2, 3\n4, ,???"
kwargs = dict(delimiter=",",
dtype=int,
names="a,b,c",
missing_values={0:"N/A", 'b':" ", 2:"???"},
filling_values={0:0, 'b':0, 2:-999})
test = np.genfromtxt(StringIO.StringIO(data), **kwargs)
ctrl = np.array([(0, 2, 3), (4, 0, -999)],
dtype=[(_, int) for _ in "abc"])
assert_equal(test, ctrl)
#
test = np.genfromtxt(StringIO.StringIO(data), usecols=(0, -1), **kwargs)
ctrl = np.array([(0, 3), (4, -999)], dtype=[(_, int) for _ in "ac"])
assert_equal(test, ctrl)
def test_withmissing_float(self):
data = StringIO.StringIO('A,B\n0,1.5\n2,-999.00')
test = np.mafromtxt(data, dtype=None, delimiter=',',
missing_values='-999.0', names=True,)
control = ma.array([(0, 1.5), (2, -1.)],
mask=[(False, False), (False, True)],
dtype=[('A', np.int), ('B', np.float)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
def test_with_masked_column_uniform(self):
"Test masked column"
data = StringIO.StringIO('1 2 3\n4 5 6\n')
test = np.genfromtxt(data, dtype=None,
missing_values='2,5', usemask=True)
control = ma.array([[1, 2, 3], [4, 5, 6]], mask=[[0, 1, 0], [0, 1, 0]])
assert_equal(test, control)
def test_with_masked_column_various(self):
"Test masked column"
data = StringIO.StringIO('True 2 3\nFalse 5 6\n')
test = np.genfromtxt(data, dtype=None,
missing_values='2,5', usemask=True)
control = ma.array([(1, 2, 3), (0, 5, 6)],
mask=[(0, 1, 0), (0, 1, 0)],
dtype=[('f0', bool), ('f1', bool), ('f2', int)])
assert_equal(test, control)
def test_invalid_raise(self):
"Test invalid raise"
data = ["1, 1, 1, 1, 1"] * 50
for i in range(5):
data[10 * i] = "2, 2, 2, 2 2"
data.insert(0, "a, b, c, d, e")
mdata = StringIO.StringIO("\n".join(data))
#
kwargs = dict(delimiter=",", dtype=None, names=True)
# XXX: is there a better way to get the return value of the callable in
# assert_warns ?
ret = {}
def f(_ret={}):
_ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
assert_warns(ConversionWarning, f, _ret=ret)
mtest = ret['mtest']
assert_equal(len(mtest), 45)
assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
#
mdata.seek(0)
assert_raises(ValueError, np.ndfromtxt, mdata,
delimiter=",", names=True)
def test_invalid_raise_with_usecols(self):
"Test invalid_raise with usecols"
data = ["1, 1, 1, 1, 1"] * 50
for i in range(5):
data[10 * i] = "2, 2, 2, 2 2"
data.insert(0, "a, b, c, d, e")
mdata = StringIO.StringIO("\n".join(data))
kwargs = dict(delimiter=",", dtype=None, names=True,
invalid_raise=False)
# XXX: is there a better way to get the return value of the callable in
# assert_warns ?
ret = {}
def f(_ret={}):
_ret['mtest'] = np.ndfromtxt(mdata, usecols=(0, 4), **kwargs)
assert_warns(ConversionWarning, f, _ret=ret)
mtest = ret['mtest']
assert_equal(len(mtest), 45)
assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'ae']))
#
mdata.seek(0)
mtest = np.ndfromtxt(mdata, usecols=(0, 1), **kwargs)
assert_equal(len(mtest), 50)
control = np.ones(50, dtype=[(_, int) for _ in 'ab'])
control[[10 * _ for _ in range(5)]] = (2, 2)
assert_equal(mtest, control)
def test_inconsistent_dtype(self):
"Test inconsistent dtype"
data = ["1, 1, 1, 1, -1.1"] * 50
mdata = StringIO.StringIO("\n".join(data))
converters = {4: lambda x:"(%s)" % x}
kwargs = dict(delimiter=",", converters=converters,
dtype=[(_, int) for _ in 'abcde'],)
assert_raises(TypeError, np.genfromtxt, mdata, **kwargs)
def test_default_field_format(self):
"Test default format"
data = "0, 1, 2.3\n4, 5, 6.7"
mtest = np.ndfromtxt(StringIO.StringIO(data),
delimiter=",", dtype=None, defaultfmt="f%02i")
ctrl = np.array([(0, 1, 2.3), (4, 5, 6.7)],
dtype=[("f00", int), ("f01", int), ("f02", float)])
assert_equal(mtest, ctrl)
def test_single_dtype_wo_names(self):
"Test single dtype w/o names"
data = "0, 1, 2.3\n4, 5, 6.7"
mtest = np.ndfromtxt(StringIO.StringIO(data),
delimiter=",", dtype=float, defaultfmt="f%02i")
ctrl = np.array([[0., 1., 2.3], [4., 5., 6.7]], dtype=float)
assert_equal(mtest, ctrl)
def test_single_dtype_w_explicit_names(self):
"Test single dtype w explicit names"
data = "0, 1, 2.3\n4, 5, 6.7"
mtest = np.ndfromtxt(StringIO.StringIO(data),
delimiter=",", dtype=float, names="a, b, c")
ctrl = np.array([(0., 1., 2.3), (4., 5., 6.7)],
dtype=[(_, float) for _ in "abc"])
assert_equal(mtest, ctrl)
def test_single_dtype_w_implicit_names(self):
"Test single dtype w implicit names"
data = "a, b, c\n0, 1, 2.3\n4, 5, 6.7"
mtest = np.ndfromtxt(StringIO.StringIO(data),
delimiter=",", dtype=float, names=True)
ctrl = np.array([(0., 1., 2.3), (4., 5., 6.7)],
dtype=[(_, float) for _ in "abc"])
assert_equal(mtest, ctrl)
def test_easy_structured_dtype(self):
"Test easy structured dtype"
data = "0, 1, 2.3\n4, 5, 6.7"
mtest = np.ndfromtxt(StringIO.StringIO(data), delimiter=",",
dtype=(int, float, float), defaultfmt="f_%02i")
ctrl = np.array([(0, 1., 2.3), (4, 5., 6.7)],
dtype=[("f_00", int), ("f_01", float), ("f_02", float)])
assert_equal(mtest, ctrl)
def test_autostrip(self):
"Test autostrip"
data = "01/01/2003 , 1.3, abcde"
kwargs = dict(delimiter=",", dtype=None)
mtest = np.ndfromtxt(StringIO.StringIO(data), **kwargs)
ctrl = np.array([('01/01/2003 ', 1.3, ' abcde')],
dtype=[('f0', '|S12'), ('f1', float), ('f2', '|S8')])
assert_equal(mtest, ctrl)
mtest = np.ndfromtxt(StringIO.StringIO(data), autostrip=True, **kwargs)
ctrl = np.array([('01/01/2003', 1.3, 'abcde')],
dtype=[('f0', '|S10'), ('f1', float), ('f2', '|S5')])
assert_equal(mtest, ctrl)
def test_incomplete_names(self):
"Test w/ incomplete names"
data = "A,,C\n0,1,2\n3,4,5"
kwargs = dict(delimiter=",", names=True)
# w/ dtype=None
ctrl = np.array([(0, 1, 2), (3, 4, 5)],
dtype=[(_, int) for _ in ('A', 'f0', 'C')])
test = np.ndfromtxt(StringIO.StringIO(data), dtype=None, **kwargs)
assert_equal(test, ctrl)
# w/ default dtype
ctrl = np.array([(0, 1, 2), (3, 4, 5)],
dtype=[(_, float) for _ in ('A', 'f0', 'C')])
test = np.ndfromtxt(StringIO.StringIO(data), **kwargs)
def test_names_auto_completion(self):
"Make sure that names are properly completed"
data = "1 2 3\n 4 5 6"
test = np.genfromtxt(StringIO.StringIO(data),
dtype=(int, float, int), names="a")
ctrl = np.array([(1, 2, 3), (4, 5, 6)],
dtype=[('a', int), ('f0', float), ('f1', int)])
assert_equal(test, ctrl)
def test_fixed_width_names(self):
"Test fix-width w/ names"
data = " A B C\n 0 1 2.3\n 45 67 9."
kwargs = dict(delimiter=(5, 5, 4), names=True, dtype=None)
ctrl = np.array([(0, 1, 2.3), (45, 67, 9.)],
dtype=[('A', int), ('B', int), ('C', float)])
test = np.ndfromtxt(StringIO.StringIO(data), **kwargs)
assert_equal(test, ctrl)
#
kwargs = dict(delimiter=5, names=True, dtype=None)
ctrl = np.array([(0, 1, 2.3), (45, 67, 9.)],
dtype=[('A', int), ('B', int), ('C', float)])
test = np.ndfromtxt(StringIO.StringIO(data), **kwargs)
assert_equal(test, ctrl)
def test_filling_values(self):
"Test missing values"
data = "1, 2, 3\n1, , 5\n0, 6, \n"
kwargs = dict(delimiter=",", dtype=None, filling_values= -999)
ctrl = np.array([[1, 2, 3], [1, -999, 5], [0, 6, -999]], dtype=int)
test = np.ndfromtxt(StringIO.StringIO(data), **kwargs)
assert_equal(test, ctrl)
def test_recfromtxt(self):
#
data = StringIO.StringIO('A,B\n0,1\n2,3')
kwargs = dict(delimiter=",", missing_values="N/A", names=True)
test = np.recfromtxt(data, **kwargs)
control = np.array([(0, 1), (2, 3)],
dtype=[('A', np.int), ('B', np.int)])
self.failUnless(isinstance(test, np.recarray))
assert_equal(test, control)
#
data = StringIO.StringIO('A,B\n0,1\n2,N/A')
test = np.recfromtxt(data, dtype=None, usemask=True, **kwargs)
control = ma.array([(0, 1), (2, -1)],
mask=[(False, False), (False, True)],
dtype=[('A', np.int), ('B', np.int)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
assert_equal(test.A, [0, 2])
def test_recfromcsv(self):
#
data = StringIO.StringIO('A,B\n0,1\n2,3')
kwargs = dict(missing_values="N/A", names=True, case_sensitive=True)
test = np.recfromcsv(data, dtype=None, **kwargs)
control = np.array([(0, 1), (2, 3)],
dtype=[('A', np.int), ('B', np.int)])
self.failUnless(isinstance(test, np.recarray))
assert_equal(test, control)
#
data = StringIO.StringIO('A,B\n0,1\n2,N/A')
test = np.recfromcsv(data, dtype=None, usemask=True, **kwargs)
control = ma.array([(0, 1), (2, -1)],
mask=[(False, False), (False, True)],
dtype=[('A', np.int), ('B', np.int)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
assert_equal(test.A, [0, 2])
#
data = StringIO.StringIO('A,B\n0,1\n2,3')
test = np.recfromcsv(data, missing_values='N/A',)
control = np.array([(0, 1), (2, 3)],
dtype=[('a', np.int), ('b', np.int)])
self.failUnless(isinstance(test, np.recarray))
assert_equal(test, control)
def test_gzip_load():
a = np.random.random((5, 5))
s = StringIO.StringIO()
f = gzip.GzipFile(fileobj=s, mode="w")
np.save(f, a)
f.close()
s.seek(0)
f = gzip.GzipFile(fileobj=s, mode="r")
assert_array_equal(np.load(f), a)
def test_gzip_loadtxt():
# Thanks to another windows brokeness, we can't use
# NamedTemporaryFile: a file created from this function cannot be
# reopened by another open call. So we first put the gzipped string
# of the test reference array, write it to a securely opened file,
# which is then read from by the loadtxt function
s = StringIO.StringIO()
g = gzip.GzipFile(fileobj=s, mode='w')
g.write('1 2 3\n')
g.close()
s.seek(0)
f, name = mkstemp(suffix='.gz')
try:
os.write(f, s.read())
s.close()
assert_array_equal(np.loadtxt(name), [1, 2, 3])
finally:
os.close(f)
os.unlink(name)
def test_gzip_loadtxt_from_string():
s = StringIO.StringIO()
f = gzip.GzipFile(fileobj=s, mode="w")
f.write('1 2 3\n')
f.close()
s.seek(0)
f = gzip.GzipFile(fileobj=s, mode="r")
assert_array_equal(np.loadtxt(f), [1, 2, 3])
def test_npzfile_dict():
s = StringIO.StringIO()
x = np.zeros((3, 3))
y = np.zeros((3, 3))
np.savez(s, x=x, y=y)
s.seek(0)
z = np.load(s)
assert 'x' in z
assert 'y' in z
assert 'x' in z.keys()
assert 'y' in z.keys()
for f, a in z.iteritems():
assert f in ['x', 'y']
assert_equal(a.shape, (3, 3))
assert len(z.items()) == 2
for f in z:
assert f in ['x', 'y']
assert 'x' in list(z.iterkeys())
if __name__ == "__main__":
run_module_suite()
|