1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
"""
>>> import numpy.core as nx
>>> from numpy.lib.polynomial import poly1d, polydiv
>>> p = poly1d([1.,2,3])
>>> p
poly1d([ 1., 2., 3.])
>>> print p
2
1 x + 2 x + 3
>>> q = poly1d([3.,2,1])
>>> q
poly1d([ 3., 2., 1.])
>>> print q
2
3 x + 2 x + 1
>>> print poly1d([1.89999+2j, -3j, -5.12345678, 2+1j])
3 2
(1.9 + 2j) x - 3j x - 5.123 x + (2 + 1j)
>>> print poly1d([100e-90, 1.234567e-9j+3, -1234.999e8])
2
1e-88 x + (3 + 1.235e-09j) x - 1.235e+11
>>> print poly1d([-3, -2, -1])
2
-3 x - 2 x - 1
>>> p(0)
3.0
>>> p(5)
38.0
>>> q(0)
1.0
>>> q(5)
86.0
>>> p * q
poly1d([ 3., 8., 14., 8., 3.])
>>> p / q
(poly1d([ 0.33333333]), poly1d([ 1.33333333, 2.66666667]))
>>> p + q
poly1d([ 4., 4., 4.])
>>> p - q
poly1d([-2., 0., 2.])
>>> p ** 4
poly1d([ 1., 8., 36., 104., 214., 312., 324., 216., 81.])
>>> p(q)
poly1d([ 9., 12., 16., 8., 6.])
>>> q(p)
poly1d([ 3., 12., 32., 40., 34.])
>>> nx.asarray(p)
array([ 1., 2., 3.])
>>> len(p)
2
>>> p[0], p[1], p[2], p[3]
(3.0, 2.0, 1.0, 0)
>>> p.integ()
poly1d([ 0.33333333, 1. , 3. , 0. ])
>>> p.integ(1)
poly1d([ 0.33333333, 1. , 3. , 0. ])
>>> p.integ(5)
poly1d([ 0.00039683, 0.00277778, 0.025 , 0. , 0. ,
0. , 0. , 0. ])
>>> p.deriv()
poly1d([ 2., 2.])
>>> p.deriv(2)
poly1d([ 2.])
>>> q = poly1d([1.,2,3], variable='y')
>>> print q
2
1 y + 2 y + 3
>>> q = poly1d([1.,2,3], variable='lambda')
>>> print q
2
1 lambda + 2 lambda + 3
>>> polydiv(poly1d([1,0,-1]), poly1d([1,1]))
(poly1d([ 1., -1.]), poly1d([ 0.]))
"""
from numpy.testing import *
import numpy as np
class TestDocs(TestCase):
def test_doctests(self):
return rundocs()
def test_roots(self):
assert_array_equal(np.roots([1,0,0]), [0,0])
def test_str_leading_zeros(self):
p = np.poly1d([4,3,2,1])
p[3] = 0
assert_equal(str(p),
" 2\n"
"3 x + 2 x + 1")
p = np.poly1d([1,2])
p[0] = 0
p[1] = 0
assert_equal(str(p), " \n0")
def test_polyfit(self) :
c = np.array([3., 2., 1.])
x = np.linspace(0,2,5)
y = np.polyval(c,x)
# check 1D case
assert_almost_equal(c, np.polyfit(x,y,2))
# check 2D (n,1) case
y = y[:,np.newaxis]
c = c[:,np.newaxis]
assert_almost_equal(c, np.polyfit(x,y,2))
# check 2D (n,2) case
yy = np.concatenate((y,y), axis=1)
cc = np.concatenate((c,c), axis=1)
assert_almost_equal(cc, np.polyfit(x,yy,2))
def test_objects(self):
from decimal import Decimal
p = np.poly1d([Decimal('4.0'), Decimal('3.0'), Decimal('2.0')])
p2 = p * Decimal('1.333333333333333')
assert p2[1] == Decimal("3.9999999999999990")
p2 = p.deriv()
assert p2[1] == Decimal('8.0')
p2 = p.integ()
assert p2[3] == Decimal("1.333333333333333333333333333")
assert p2[2] == Decimal('1.5')
assert np.issubdtype(p2.coeffs.dtype, np.object_)
def test_complex(self):
p = np.poly1d([3j, 2j, 1j])
p2 = p.integ()
assert (p2.coeffs == [1j,1j,1j,0]).all()
p2 = p.deriv()
assert (p2.coeffs == [6j,2j]).all()
def test_integ_coeffs(self):
p = np.poly1d([3,2,1])
p2 = p.integ(3, k=[9,7,6])
assert (p2.coeffs == [1/4./5.,1/3./4.,1/2./3.,9/1./2.,7,6]).all()
if __name__ == "__main__":
run_module_suite()
|