1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
""" Test functions for linalg module
"""
import numpy as np
from numpy.testing import *
from numpy import array, single, double, csingle, cdouble, dot, identity
from numpy import multiply, atleast_2d, inf, asarray, matrix
from numpy import linalg
from numpy.linalg import matrix_power, norm
def ifthen(a, b):
return not a or b
old_assert_almost_equal = assert_almost_equal
def imply(a, b):
return not a or b
def assert_almost_equal(a, b, **kw):
if asarray(a).dtype.type in (single, csingle):
decimal = 6
else:
decimal = 12
old_assert_almost_equal(a, b, decimal=decimal, **kw)
class LinalgTestCase:
def test_single(self):
a = array([[1.,2.], [3.,4.]], dtype=single)
b = array([2., 1.], dtype=single)
self.do(a, b)
def test_double(self):
a = array([[1.,2.], [3.,4.]], dtype=double)
b = array([2., 1.], dtype=double)
self.do(a, b)
def test_csingle(self):
a = array([[1.+2j,2+3j], [3+4j,4+5j]], dtype=csingle)
b = array([2.+1j, 1.+2j], dtype=csingle)
self.do(a, b)
def test_cdouble(self):
a = array([[1.+2j,2+3j], [3+4j,4+5j]], dtype=cdouble)
b = array([2.+1j, 1.+2j], dtype=cdouble)
self.do(a, b)
def test_empty(self):
a = atleast_2d(array([], dtype = double))
b = atleast_2d(array([], dtype = double))
try:
self.do(a, b)
raise AssertionError("%s should fail with empty matrices", self.__name__[5:])
except linalg.LinAlgError, e:
pass
def test_nonarray(self):
a = [[1,2], [3,4]]
b = [2, 1]
self.do(a,b)
def test_matrix_b_only(self):
"""Check that matrix type is preserved."""
a = array([[1.,2.], [3.,4.]])
b = matrix([2., 1.]).T
self.do(a, b)
def test_matrix_a_and_b(self):
"""Check that matrix type is preserved."""
a = matrix([[1.,2.], [3.,4.]])
b = matrix([2., 1.]).T
self.do(a, b)
class TestSolve(LinalgTestCase, TestCase):
def do(self, a, b):
x = linalg.solve(a, b)
assert_almost_equal(b, dot(a, x))
assert imply(isinstance(b, matrix), isinstance(x, matrix))
class TestInv(LinalgTestCase, TestCase):
def do(self, a, b):
a_inv = linalg.inv(a)
assert_almost_equal(dot(a, a_inv), identity(asarray(a).shape[0]))
assert imply(isinstance(a, matrix), isinstance(a_inv, matrix))
class TestEigvals(LinalgTestCase, TestCase):
def do(self, a, b):
ev = linalg.eigvals(a)
evalues, evectors = linalg.eig(a)
assert_almost_equal(ev, evalues)
class TestEig(LinalgTestCase, TestCase):
def do(self, a, b):
evalues, evectors = linalg.eig(a)
assert_almost_equal(dot(a, evectors), multiply(evectors, evalues))
assert imply(isinstance(a, matrix), isinstance(evectors, matrix))
class TestSVD(LinalgTestCase, TestCase):
def do(self, a, b):
u, s, vt = linalg.svd(a, 0)
assert_almost_equal(a, dot(multiply(u, s), vt))
assert imply(isinstance(a, matrix), isinstance(u, matrix))
assert imply(isinstance(a, matrix), isinstance(vt, matrix))
class TestCondSVD(LinalgTestCase, TestCase):
def do(self, a, b):
c = asarray(a) # a might be a matrix
s = linalg.svd(c, compute_uv=False)
old_assert_almost_equal(s[0]/s[-1], linalg.cond(a), decimal=5)
class TestCond2(LinalgTestCase, TestCase):
def do(self, a, b):
c = asarray(a) # a might be a matrix
s = linalg.svd(c, compute_uv=False)
old_assert_almost_equal(s[0]/s[-1], linalg.cond(a,2), decimal=5)
class TestCondInf(TestCase):
def test(self):
A = array([[1.,0,0],[0,-2.,0],[0,0,3.]])
assert_almost_equal(linalg.cond(A,inf),3.)
class TestPinv(LinalgTestCase, TestCase):
def do(self, a, b):
a_ginv = linalg.pinv(a)
assert_almost_equal(dot(a, a_ginv), identity(asarray(a).shape[0]))
assert imply(isinstance(a, matrix), isinstance(a_ginv, matrix))
class TestDet(LinalgTestCase, TestCase):
def do(self, a, b):
d = linalg.det(a)
if asarray(a).dtype.type in (single, double):
ad = asarray(a).astype(double)
else:
ad = asarray(a).astype(cdouble)
ev = linalg.eigvals(ad)
assert_almost_equal(d, multiply.reduce(ev))
class TestLstsq(LinalgTestCase, TestCase):
def do(self, a, b):
u, s, vt = linalg.svd(a, 0)
x, residuals, rank, sv = linalg.lstsq(a, b)
assert_almost_equal(b, dot(a, x))
assert_equal(rank, asarray(a).shape[0])
assert_almost_equal(sv, sv.__array_wrap__(s))
assert imply(isinstance(b, matrix), isinstance(x, matrix))
assert imply(isinstance(b, matrix), isinstance(residuals, matrix))
class TestMatrixPower(TestCase):
R90 = array([[0,1],[-1,0]])
Arb22 = array([[4,-7],[-2,10]])
noninv = array([[1,0],[0,0]])
arbfloat = array([[0.1,3.2],[1.2,0.7]])
large = identity(10)
t = large[1,:].copy()
large[1,:] = large[0,:]
large[0,:] = t
def test_large_power(self):
assert_equal(matrix_power(self.R90,2L**100+2**10+2**5+1),self.R90)
def test_large_power_trailing_zero(self):
assert_equal(matrix_power(self.R90,2L**100+2**10+2**5),identity(2))
def testip_zero(self):
def tz(M):
mz = matrix_power(M,0)
assert_equal(mz, identity(M.shape[0]))
assert_equal(mz.dtype, M.dtype)
for M in [self.Arb22, self.arbfloat, self.large]:
yield tz, M
def testip_one(self):
def tz(M):
mz = matrix_power(M,1)
assert_equal(mz, M)
assert_equal(mz.dtype, M.dtype)
for M in [self.Arb22, self.arbfloat, self.large]:
yield tz, M
def testip_two(self):
def tz(M):
mz = matrix_power(M,2)
assert_equal(mz, dot(M,M))
assert_equal(mz.dtype, M.dtype)
for M in [self.Arb22, self.arbfloat, self.large]:
yield tz, M
def testip_invert(self):
def tz(M):
mz = matrix_power(M,-1)
assert_almost_equal(identity(M.shape[0]), dot(mz,M))
for M in [self.R90, self.Arb22, self.arbfloat, self.large]:
yield tz, M
def test_invert_noninvertible(self):
import numpy.linalg
self.assertRaises(numpy.linalg.linalg.LinAlgError,
lambda: matrix_power(self.noninv,-1))
class TestBoolPower(TestCase):
def test_square(self):
A = array([[True,False],[True,True]])
assert_equal(matrix_power(A,2),A)
class HermitianTestCase(object):
def test_single(self):
a = array([[1.,2.], [2.,1.]], dtype=single)
self.do(a)
def test_double(self):
a = array([[1.,2.], [2.,1.]], dtype=double)
self.do(a)
def test_csingle(self):
a = array([[1.,2+3j], [2-3j,1]], dtype=csingle)
self.do(a)
def test_cdouble(self):
a = array([[1.,2+3j], [2-3j,1]], dtype=cdouble)
self.do(a)
def test_empty(self):
a = atleast_2d(array([], dtype = double))
assert_raises(linalg.LinAlgError, self.do, a)
def test_nonarray(self):
a = [[1,2], [2,1]]
self.do(a)
def test_matrix_b_only(self):
"""Check that matrix type is preserved."""
a = array([[1.,2.], [2.,1.]])
self.do(a)
def test_matrix_a_and_b(self):
"""Check that matrix type is preserved."""
a = matrix([[1.,2.], [2.,1.]])
self.do(a)
class TestEigvalsh(HermitianTestCase, TestCase):
def do(self, a):
# note that eigenvalue arrays must be sorted since
# their order isn't guaranteed.
ev = linalg.eigvalsh(a)
evalues, evectors = linalg.eig(a)
ev.sort()
evalues.sort()
assert_almost_equal(ev, evalues)
class TestEigh(HermitianTestCase, TestCase):
def do(self, a):
# note that eigenvalue arrays must be sorted since
# their order isn't guaranteed.
ev, evc = linalg.eigh(a)
evalues, evectors = linalg.eig(a)
ev.sort()
evalues.sort()
assert_almost_equal(ev, evalues)
class _TestNorm(TestCase):
dt = None
dec = None
def test_empty(self):
assert_equal(norm([]), 0.0)
assert_equal(norm(array([], dtype=self.dt)), 0.0)
assert_equal(norm(atleast_2d(array([], dtype=self.dt))), 0.0)
def test_vector(self):
a = [1.0,2.0,3.0,4.0]
b = [-1.0,-2.0,-3.0,-4.0]
c = [-1.0, 2.0,-3.0, 4.0]
def _test(v):
np.testing.assert_almost_equal(norm(v), 30**0.5, decimal=self.dec)
np.testing.assert_almost_equal(norm(v,inf), 4.0, decimal=self.dec)
np.testing.assert_almost_equal(norm(v,-inf), 1.0, decimal=self.dec)
np.testing.assert_almost_equal(norm(v,1), 10.0, decimal=self.dec)
np.testing.assert_almost_equal(norm(v,-1), 12.0/25,
decimal=self.dec)
np.testing.assert_almost_equal(norm(v,2), 30**0.5,
decimal=self.dec)
np.testing.assert_almost_equal(norm(v,-2), ((205./144)**-0.5),
decimal=self.dec)
np.testing.assert_almost_equal(norm(v,0), 4, decimal=self.dec)
for v in (a, b, c,):
_test(v)
for v in (array(a, dtype=self.dt), array(b, dtype=self.dt),
array(c, dtype=self.dt)):
_test(v)
def test_matrix(self):
A = matrix([[1.,3.],[5.,7.]], dtype=self.dt)
A = matrix([[1.,3.],[5.,7.]], dtype=self.dt)
assert_almost_equal(norm(A), 84**0.5)
assert_almost_equal(norm(A,'fro'), 84**0.5)
assert_almost_equal(norm(A,inf), 12.0)
assert_almost_equal(norm(A,-inf), 4.0)
assert_almost_equal(norm(A,1), 10.0)
assert_almost_equal(norm(A,-1), 6.0)
assert_almost_equal(norm(A,2), 9.1231056256176615)
assert_almost_equal(norm(A,-2), 0.87689437438234041)
self.assertRaises(ValueError, norm, A, 'nofro')
self.assertRaises(ValueError, norm, A, -3)
self.assertRaises(ValueError, norm, A, 0)
class TestNormDouble(_TestNorm):
dt = np.double
dec= 12
class TestNormSingle(_TestNorm):
dt = np.float32
dec = 6
if __name__ == "__main__":
run_module_suite()
|