1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
|
"""Template for the Chebyshev and Polynomial classes.
"""
import string
polytemplate = string.Template('''
from __future__ import division
import polyutils as pu
import numpy as np
class $name(pu.PolyBase) :
"""A $name series class.
Parameters
----------
coef : array_like
$name coefficients, in increasing order. For example,
``(1, 2, 3)`` implies ``P_0 + 2P_1 + 3P_2`` where the
``P_i`` are a graded polynomial basis.
domain : (2,) array_like
Domain to use. The interval ``[domain[0], domain[1]]`` is mapped to
the interval ``$domain`` by shifting and scaling.
Attributes
----------
coef : (N,) array
$name coefficients, from low to high.
domain : (2,) array_like
Domain that is mapped to ``$domain``.
Class Attributes
----------------
maxpower : int
Maximum power allowed, i.e., the largest number ``n`` such that
``p(x)**n`` is allowed. This is to limit runaway polynomial size.
domain : (2,) ndarray
Default domain of the class.
Notes
-----
It is important to specify the domain for many uses of graded polynomial,
for instance in fitting data. This is because many of the important
properties of the polynomial basis only hold in a specified interval and
thus the data must be mapped into that domain in order to benefit.
Examples
--------
"""
# Limit runaway size. T_n^m has degree n*2^m
maxpower = 16
# Default domain
domain = np.array($domain)
# Don't let participate in array operations. Value doesn't matter.
__array_priority__ = 0
def __init__(self, coef, domain=$domain) :
[coef, domain] = pu.as_series([coef, domain], trim=False)
if len(domain) != 2 :
raise ValueError("Domain has wrong number of elements.")
self.coef = coef
self.domain = domain
def __repr__(self):
format = "%s(%s, %s)"
coef = repr(self.coef)[6:-1]
domain = repr(self.domain)[6:-1]
return format % ('$name', coef, domain)
def __str__(self) :
format = "%s(%s, %s)"
return format % ('$nick', str(self.coef), str(self.domain))
# Pickle and copy
def __getstate__(self) :
ret = self.__dict__.copy()
ret['coef'] = self.coef.copy()
ret['domain'] = self.domain.copy()
return ret
def __setstate__(self, dict) :
self.__dict__ = dict
# Call
def __call__(self, arg) :
off, scl = pu.mapparms(self.domain, $domain)
arg = off + scl*arg
return ${nick}val(arg, self.coef)
def __iter__(self) :
return iter(self.coef)
def __len__(self) :
return len(self.coef)
# Numeric properties.
def __neg__(self) :
return self.__class__(-self.coef, self.domain)
def __pos__(self) :
return self
def __add__(self, other) :
"""Returns sum"""
if isinstance(other, self.__class__) :
if np.all(self.domain == other.domain) :
coef = ${nick}add(self.coef, other.coef)
else :
raise PolyDomainError()
else :
try :
coef = ${nick}add(self.coef, other)
except :
return NotImplemented
return self.__class__(coef, self.domain)
def __sub__(self, other) :
"""Returns difference"""
if isinstance(other, self.__class__) :
if np.all(self.domain == other.domain) :
coef = ${nick}sub(self.coef, other.coef)
else :
raise PolyDomainError()
else :
try :
coef = ${nick}sub(self.coef, other)
except :
return NotImplemented
return self.__class__(coef, self.domain)
def __mul__(self, other) :
"""Returns product"""
if isinstance(other, self.__class__) :
if np.all(self.domain == other.domain) :
coef = ${nick}mul(self.coef, other.coef)
else :
raise PolyDomainError()
else :
try :
coef = ${nick}mul(self.coef, other)
except :
return NotImplemented
return self.__class__(coef, self.domain)
def __div__(self, other):
# set to __floordiv__ /.
return self.__floordiv__(other)
def __truediv__(self, other) :
# there is no true divide if the rhs is not a scalar, although it
# could return the first n elements of an infinite series.
# It is hard to see where n would come from, though.
if isinstance(other, self.__class__) :
if len(other.coef) == 1 :
coef = div(self.coef, other.coef)
else :
return NotImplemented
elif np.isscalar(other) :
coef = self.coef/other
else :
return NotImplemented
return self.__class__(coef, self.domain)
def __floordiv__(self, other) :
"""Returns the quotient."""
if isinstance(other, self.__class__) :
if np.all(self.domain == other.domain) :
quo, rem = ${nick}div(self.coef, other.coef)
else :
raise PolyDomainError()
else :
try :
quo, rem = ${nick}div(self.coef, other)
except :
return NotImplemented
return self.__class__(quo, self.domain)
def __mod__(self, other) :
"""Returns the remainder."""
if isinstance(other, self.__class__) :
if np.all(self.domain == other.domain) :
quo, rem = ${nick}div(self.coef, other.coef)
else :
raise PolyDomainError()
else :
try :
quo, rem = ${nick}div(self.coef, other)
except :
return NotImplemented
return self.__class__(rem, self.domain)
def __divmod__(self, other) :
"""Returns quo, remainder"""
if isinstance(other, self.__class__) :
if np.all(self.domain == other.domain) :
quo, rem = ${nick}div(self.coef, other.coef)
else :
raise PolyDomainError()
else :
try :
quo, rem = ${nick}div(self.coef, other)
except :
return NotImplemented
return self.__class__(quo, self.domain), self.__class__(rem, self.domain)
def __pow__(self, other) :
try :
coef = ${nick}pow(self.coef, other, maxpower = self.maxpower)
except :
raise
return self.__class__(coef, self.domain)
def __radd__(self, other) :
try :
coef = ${nick}add(other, self.coef)
except :
return NotImplemented
return self.__class__(coef, self.domain)
def __rsub__(self, other):
try :
coef = ${nick}sub(other, self.coef)
except :
return NotImplemented
return self.__class__(coef, self.domain)
def __rmul__(self, other) :
try :
coef = ${nick}mul(other, self.coef)
except :
return NotImplemented
return self.__class__(coef, self.domain)
def __rdiv__(self, other):
# set to __floordiv__ /.
return self.__rfloordiv__(other)
def __rtruediv__(self, other) :
# there is no true divide if the rhs is not a scalar, although it
# could return the first n elements of an infinite series.
# It is hard to see where n would come from, though.
if len(self.coef) == 1 :
try :
quo, rem = ${nick}div(other, self.coef[0])
except :
return NotImplemented
return self.__class__(quo, self.domain)
def __rfloordiv__(self, other) :
try :
quo, rem = ${nick}div(other, self.coef)
except :
return NotImplemented
return self.__class__(quo, self.domain)
def __rmod__(self, other) :
try :
quo, rem = ${nick}div(other, self.coef)
except :
return NotImplemented
return self.__class__(rem, self.domain)
def __rdivmod__(self, other) :
try :
quo, rem = ${nick}div(other, self.coef)
except :
return NotImplemented
return self.__class__(quo, self.domain), self.__class__(rem, self.domain)
# Enhance me
# some augmented arithmetic operations could be added here
def __eq__(self, other) :
res = isinstance(other, self.__class__) \
and len(self.coef) == len(other.coef) \
and np.all(self.domain == other.domain) \
and np.all(self.coef == other.coef)
return res
def __ne__(self, other) :
return not self.__eq__(other)
#
# Extra numeric functions.
#
def convert(self, domain=None, kind=None) :
"""Convert to different class and/or domain.
Parameters:
-----------
domain : {None, array_like}
The domain of the new series type instance. If the value is is
``None``, then the default domain of `kind` is used.
kind : {None, class}
The polynomial series type class to which the current instance
should be converted. If kind is ``None``, then the class of the
current instance is used.
Returns:
--------
new_series_instance : `kind`
The returned class can be of different type than the current
instance and/or have a different domain.
Examples:
---------
Notes:
------
Conversion between domains and class types can result in
numerically ill defined series.
"""
if kind is None :
kind = $name
if domain is None :
domain = kind.domain
return self(kind.identity(domain))
def mapparms(self) :
"""Return the mapping parameters.
The returned values define a linear map ``off + scl*x`` that is
applied to the input arguments before the series is evaluated. The
of the map depend on the domain; if the current domain is equal to
the default domain ``$domain`` the resulting map is the identity.
If the coeffients of the ``$name`` instance are to be used
separately, then the linear function must be substituted for the
``x`` in the standard representation of the base polynomials.
Returns:
--------
off, scl : floats or complex
The mapping function is defined by ``off + scl*x``.
Notes:
------
If the current domain is the interval ``[l_1, r_1]`` and the default
interval is ``[l_2, r_2]``, then the linear mapping function ``L`` is
defined by the equations:
L(l_1) = l_2
L(r_1) = r_2
"""
return pu.mapparms(self.domain, $domain)
def trim(self, tol=0) :
"""Remove small leading coefficients
Remove leading coefficients until a coefficient is reached whose
absolute value greater than `tol` or the beginning of the series is
reached. If all the coefficients would be removed the series is set to
``[0]``. A new $name instance is returned with the new coefficients.
The current instance remains unchanged.
Parameters:
-----------
tol : non-negative number.
All trailing coefficients less than `tol` will be removed.
Returns:
-------
new_instance : $name
Contains the new set of coefficients.
"""
return self.__class__(pu.trimcoef(self.coef, tol), self.domain)
def truncate(self, size) :
"""Truncate series by discarding trailing coefficients.
Reduce the $name series to length `size` by removing trailing
coefficients. The value of `size` must be greater than zero. This
is most likely to be useful in least squares fits when the high
order coefficients are very small.
Parameters:
-----------
size : int
The series is reduced to length `size` by discarding trailing
coefficients. The value of `size` must be greater than zero.
Returns:
-------
new_instance : $name
New instance of $name with truncated coefficients.
"""
if size < 1 :
raise ValueError("size must be > 0")
if size >= len(self.coef) :
return self.__class__(self.coef, self.domain)
else :
return self.__class__(self.coef[:size], self.domain)
def copy(self) :
"""Return a copy.
A new instance of $name is returned that has the same
coefficients and domain as the current instance.
Returns:
--------
new_instance : $name
New instance of $name with the same coefficients and domain.
"""
return self.__class__(self.coef, self.domain)
def integ(self, m=1, k=[], lbnd=None) :
"""Integrate.
Return an instance of $name that is the definite integral of the
current series. Refer to `${nick}int` for full documentation.
Parameters:
-----------
m : positive integer
The number of integrations to perform.
k : array_like
Integration constants. The first constant is applied to the
first integration, the second to the second, and so on. The
list of values must less than or equal to `m` in length and any
missing values are set to zero.
lbnd : Scalar
The lower bound of the definite integral.
Returns:
--------
integral : $name
The integral of the original series defined with the same
domain.
See Also
--------
`${nick}int` : similar function.
`${nick}der` : similar function for derivative.
"""
off, scl = self.mapparms()
if lbnd is None :
lbnd = 0
else :
lbnd = off + scl*lbnd
coef = ${nick}int(self.coef, m, k, lbnd, 1./scl)
return self.__class__(coef, self.domain)
def deriv(self, m=1):
"""Differentiate.
Return an instance of $name that is the derivative of the current
series. Refer to `${nick}der` for full documentation.
Parameters:
-----------
m : positive integer
The number of integrations to perform.
Returns:
--------
derivative : $name
The derivative of the original series defined with the same
domain.
See Also
--------
`${nick}der` : similar function.
`${nick}int` : similar function for integration.
"""
off, scl = self.mapparms()
coef = ${nick}der(self.coef, m, scl)
return self.__class__(coef, self.domain)
def roots(self) :
"""Return list of roots.
Return ndarray of roots for this series. See `${nick}roots` for
full documentation. Note that the accuracy of the roots is likely to
decrease the further outside the domain they lie.
See Also
--------
`${nick}roots` : similar function
`${nick}fromroots` : function to go generate series from roots.
"""
roots = ${nick}roots(self.coef)
return pu.mapdomain(roots, $domain, self.domain)
@staticmethod
def fit(x, y, deg, domain=$domain, rcond=None, full=False) :
"""Least squares fit to data.
Return a `$name` instance that is the least squares fit to the data
`y` sampled at `x`. Unlike ${nick}fit, the domain of the returned
instance can be specified and this will often result in a superior
fit with less chance of ill conditioning. See ${nick}fit for full
documentation of the implementation.
Parameters
----------
x : array_like, shape (M,)
x-coordinates of the M sample points ``(x[i], y[i])``.
y : array_like, shape (M,) or (M, K)
y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.
deg : int
Degree of the fitting polynomial
domain : {None, [beg, end]}, optional
Domain to use for the returned $name instance. If ``None``,
then a minimal domain that covers the points `x` is chosen. The
default value is ``$domain``.
rcond : float, optional
Relative condition number of the fit. Singular values smaller
than this relative to the largest singular value will be
ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most
cases.
full : bool, optional
Switch determining nature of return value. When it is False
(the default) just the coefficients are returned, when True
diagnostic information from the singular value decomposition is
also returned.
Returns
-------
least_squares_fit : instance of $name
The $name instance is the least squares fit to the data and
has the domain specified in the call.
[residuals, rank, singular_values, rcond] : only if `full` = True
Residuals of the least-squares fit, the effective rank of the
scaled Vandermonde matrix and its singular values, and the
specified value of `rcond`. For more details, see
`linalg.lstsq`.
See Also
--------
${nick}fit : similar function
"""
if domain is None :
domain = pu.getdomain(x)
xnew = pu.mapdomain(x, domain, $domain)
res = ${nick}fit(xnew, y, deg, rcond=None, full=full)
if full :
[coef, status] = res
return $name(coef, domain=domain), status
else :
coef = res
return $name(coef, domain=domain)
@staticmethod
def fromroots(roots, domain=$domain) :
"""Return $name object with specified roots.
See ${nick}fromroots for full documentation.
See Also
--------
${nick}fromroots : equivalent function
"""
if domain is None :
domain = pu.getdomain(roots)
rnew = pu.mapdomain(roots, domain, $domain)
coef = ${nick}fromroots(rnew)
return $name(coef, domain=domain)
@staticmethod
def identity(domain=$domain) :
"""Identity function.
If ``p`` is the returned $name object, then ``p(x) == x`` for all
values of x.
Parameters:
-----------
domain : array_like
The resulting array must be if the form ``[beg, end]``, where
``beg`` and ``end`` are the endpoints of the domain.
Returns:
--------
identity : $name object
"""
off, scl = pu.mapparms($domain, domain)
coef = ${nick}line(off, scl)
return $name(coef, domain)
''')
|