1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
"""
Tests related to deprecation warnings. Also a convenient place
to document how deprecations should eventually be turned into errors.
"""
from __future__ import division, absolute_import, print_function
import sys
import operator
import warnings
from nose.plugins.skip import SkipTest
import numpy as np
from numpy.testing import dec, run_module_suite, assert_raises
class _DeprecationTestCase(object):
# Just as warning: warnings uses re.match, so the start of this message
# must match.
message = ''
def setUp(self):
self.warn_ctx = warnings.catch_warnings(record=True)
self.log = self.warn_ctx.__enter__()
# Do *not* ignore other DeprecationWarnings. Ignoring warnings
# can give very confusing results because of
# http://bugs.python.org/issue4180 and it is probably simplest to
# try to keep the tests cleanly giving only the right warning type.
# (While checking them set to "error" those are ignored anyway)
# We still have them show up, because otherwise they would be raised
warnings.filterwarnings("always", category=DeprecationWarning)
warnings.filterwarnings("always", message=self.message,
category=DeprecationWarning)
def tearDown(self):
self.warn_ctx.__exit__()
def assert_deprecated(self, function, num=1, ignore_others=False,
function_fails=False,
exceptions=(DeprecationWarning,), args=(), kwargs={}):
"""Test if DeprecationWarnings are given and raised.
This first checks if the function when called gives `num`
DeprecationWarnings, after that it tries to raise these
DeprecationWarnings and compares them with `exceptions`.
The exceptions can be different for cases where this code path
is simply not anticipated and the exception is replaced.
Parameters
----------
f : callable
The function to test
num : int
Number of DeprecationWarnings to expect. This should normally be 1.
ignore_other : bool
Whether warnings of the wrong type should be ignored (note that
the message is not checked)
function_fails : bool
If the function would normally fail, setting this will check for
warnings inside a try/except block.
exceptions : Exception or tuple of Exceptions
Exception to expect when turning the warnings into an error.
The default checks for DeprecationWarnings. If exceptions is
empty the function is expected to run successfull.
args : tuple
Arguments for `f`
kwargs : dict
Keyword arguments for `f`
"""
# reset the log
self.log[:] = []
try:
function(*args, **kwargs)
except (Exception if function_fails else tuple()):
pass
# just in case, clear the registry
num_found = 0
for warning in self.log:
if warning.category is DeprecationWarning:
num_found += 1
elif not ignore_others:
raise AssertionError("expected DeprecationWarning but %s given"
% warning.category)
if num_found != num:
raise AssertionError("%i warnings found but %i expected"
% (len(self.log), num))
with warnings.catch_warnings():
warnings.filterwarnings("error", message=self.message,
category=DeprecationWarning)
try:
function(*args, **kwargs)
if exceptions != tuple():
raise AssertionError("No error raised during function call")
except exceptions:
if exceptions == tuple():
raise AssertionError("Error raised during function call")
def assert_not_deprecated(self, function, args=(), kwargs={}):
"""Test if DeprecationWarnings are given and raised.
This is just a shorthand for:
self.assert_deprecated(function, num=0, ignore_others=True,
exceptions=tuple(), args=args, kwargs=kwargs)
"""
self.assert_deprecated(function, num=0, ignore_others=True,
exceptions=tuple(), args=args, kwargs=kwargs)
class TestFloatNonIntegerArgumentDeprecation(_DeprecationTestCase):
"""
These test that ``DeprecationWarning`` is given when you try to use
non-integers as arguments to for indexing and slicing e.g. ``a[0.0:5]``
and ``a[0.5]``, or other functions like ``array.reshape(1., -1)``.
After deprecation, changes need to be done inside conversion_utils.c
in PyArray_PyIntAsIntp and possibly PyArray_IntpConverter.
In iterators.c the function slice_GetIndices could be removed in favor
of its python equivalent and in mapping.c the function _tuple_of_integers
can be simplified (if ``np.array([1]).__index__()`` is also deprecated).
As for the deprecation time-frame: via Ralf Gommers,
"Hard to put that as a version number, since we don't know if the
version after 1.8 will be 6 months or 2 years after. I'd say 2
years is reasonable."
I interpret this to mean 2 years after the 1.8 release. Possibly
giving a PendingDeprecationWarning before that (which is visible
by default)
"""
message = "using a non-integer number instead of an integer " \
"will result in an error in the future"
def test_indexing(self):
a = np.array([[[5]]])
def assert_deprecated(*args, **kwargs):
self.assert_deprecated(*args, exceptions=(IndexError,), **kwargs)
assert_deprecated(lambda: a[0.0])
assert_deprecated(lambda: a[0, 0.0])
assert_deprecated(lambda: a[0.0, 0])
assert_deprecated(lambda: a[0.0,:])
assert_deprecated(lambda: a[:, 0.0])
assert_deprecated(lambda: a[:, 0.0,:])
assert_deprecated(lambda: a[0.0,:,:], num=2) # [1]
assert_deprecated(lambda: a[0, 0, 0.0])
assert_deprecated(lambda: a[0.0, 0, 0])
assert_deprecated(lambda: a[0, 0.0, 0])
assert_deprecated(lambda: a[-1.4])
assert_deprecated(lambda: a[0, -1.4])
assert_deprecated(lambda: a[-1.4, 0])
assert_deprecated(lambda: a[-1.4,:])
assert_deprecated(lambda: a[:, -1.4])
assert_deprecated(lambda: a[:, -1.4,:])
assert_deprecated(lambda: a[-1.4,:,:], num=2) # [1]
assert_deprecated(lambda: a[0, 0, -1.4])
assert_deprecated(lambda: a[-1.4, 0, 0])
assert_deprecated(lambda: a[0, -1.4, 0])
# [1] These are duplicate because of the _tuple_of_integers quick check
# Test that the slice parameter deprecation warning doesn't mask
# the scalar index warning.
assert_deprecated(lambda: a[0.0:, 0.0], num=2)
assert_deprecated(lambda: a[0.0:, 0.0,:], num=2)
def test_valid_indexing(self):
a = np.array([[[5]]])
assert_not_deprecated = self.assert_not_deprecated
assert_not_deprecated(lambda: a[np.array([0])])
assert_not_deprecated(lambda: a[[0, 0]])
assert_not_deprecated(lambda: a[:, [0, 0]])
assert_not_deprecated(lambda: a[:, 0,:])
assert_not_deprecated(lambda: a[:,:,:])
def test_slicing(self):
a = np.array([[5]])
def assert_deprecated(*args, **kwargs):
self.assert_deprecated(*args, exceptions=(IndexError,), **kwargs)
# start as float.
assert_deprecated(lambda: a[0.0:])
assert_deprecated(lambda: a[0:, 0.0:2])
assert_deprecated(lambda: a[0.0::2, :0])
assert_deprecated(lambda: a[0.0:1:2,:])
assert_deprecated(lambda: a[:, 0.0:])
# stop as float.
assert_deprecated(lambda: a[:0.0])
assert_deprecated(lambda: a[:0, 1:2.0])
assert_deprecated(lambda: a[:0.0:2, :0])
assert_deprecated(lambda: a[:0.0,:])
assert_deprecated(lambda: a[:, 0:4.0:2])
# step as float.
assert_deprecated(lambda: a[::1.0])
assert_deprecated(lambda: a[0:, :2:2.0])
assert_deprecated(lambda: a[1::4.0, :0])
assert_deprecated(lambda: a[::5.0,:])
assert_deprecated(lambda: a[:, 0:4:2.0])
# mixed.
assert_deprecated(lambda: a[1.0:2:2.0], num=2)
assert_deprecated(lambda: a[1.0::2.0], num=2)
assert_deprecated(lambda: a[0:, :2.0:2.0], num=2)
assert_deprecated(lambda: a[1.0:1:4.0, :0], num=2)
assert_deprecated(lambda: a[1.0:5.0:5.0,:], num=3)
assert_deprecated(lambda: a[:, 0.4:4.0:2.0], num=3)
# should still get the DeprecationWarning if step = 0.
assert_deprecated(lambda: a[::0.0], function_fails=True)
def test_valid_slicing(self):
a = np.array([[[5]]])
assert_not_deprecated = self.assert_not_deprecated
assert_not_deprecated(lambda: a[::])
assert_not_deprecated(lambda: a[0:])
assert_not_deprecated(lambda: a[:2])
assert_not_deprecated(lambda: a[0:2])
assert_not_deprecated(lambda: a[::2])
assert_not_deprecated(lambda: a[1::2])
assert_not_deprecated(lambda: a[:2:2])
assert_not_deprecated(lambda: a[1:2:2])
def test_non_integer_argument_deprecations(self):
a = np.array([[5]])
self.assert_deprecated(np.reshape, args=(a, (1., 1., -1)), num=2)
self.assert_deprecated(np.reshape, args=(a, (np.array(1.), -1)))
self.assert_deprecated(np.take, args=(a, [0], 1.))
self.assert_deprecated(np.take, args=(a, [0], np.float64(1.)))
class TestBooleanArgumentDeprecation(_DeprecationTestCase):
"""This tests that using a boolean as integer argument/indexing is
deprecated.
This should be kept in sync with TestFloatNonIntegerArgumentDeprecation
and like it is handled in PyArray_PyIntAsIntp.
"""
message = "using a boolean instead of an integer " \
"will result in an error in the future"
def test_bool_as_int_argument(self):
a = np.array([[[1]]])
self.assert_deprecated(np.reshape, args=(a, (True, -1)))
self.assert_deprecated(np.reshape, args=(a, (np.bool_(True), -1)))
# Note that operator.index(np.array(True)) does not work, a boolean
# array is thus also deprecated, but not with the same message:
assert_raises(TypeError, operator.index, np.array(True))
self.assert_deprecated(np.take, args=(a, [0], False))
self.assert_deprecated(lambda: a[False:True:True], exceptions=IndexError, num=3)
self.assert_deprecated(lambda: a[False, 0], exceptions=IndexError)
self.assert_deprecated(lambda: a[False, 0, 0], exceptions=IndexError)
class TestArrayToIndexDeprecation(_DeprecationTestCase):
"""This tests that creating an an index from an array is deprecated
if the array is not 0d.
This can probably be deprecated somewhat faster then the integer
deprecations. The deprecation period started with NumPy 1.8.
For deprecation this needs changing of array_index in number.c
"""
message = "converting an array with ndim \> 0 to an index will result " \
"in an error in the future"
def test_array_to_index_deprecation(self):
# This drops into the non-integer deprecation, which is ignored here,
# so no exception is expected. The raising is effectively tested above.
a = np.array([[[1]]])
self.assert_deprecated(operator.index, args=(np.array([1]),))
self.assert_deprecated(np.reshape, args=(a, (a, -1)), exceptions=())
self.assert_deprecated(np.take, args=(a, [0], a), exceptions=())
# Check slicing. Normal indexing checks arrays specifically.
self.assert_deprecated(lambda: a[a:a:a], exceptions=(), num=3)
if __name__ == "__main__":
run_module_suite()
|