File: test_indexing.py

package info (click to toggle)
python-numpy 1%3A1.8.2-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 21,336 kB
  • ctags: 18,503
  • sloc: ansic: 149,662; python: 85,440; cpp: 968; makefile: 367; f90: 164; sh: 130; fortran: 125; perl: 58
file content (570 lines) | stat: -rw-r--r-- 23,019 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
from __future__ import division, absolute_import, print_function

import numpy as np
from itertools import product
from numpy.compat import asbytes
from numpy.testing import *
import sys, warnings, gc


class TestIndexing(TestCase):
    def test_none_index(self):
        # `None` index adds newaxis
        a = np.array([1, 2, 3])
        assert_equal(a[None], a[np.newaxis])
        assert_equal(a[None].ndim, a.ndim + 1)

    def test_empty_tuple_index(self):
        # Empty tuple index creates a view
        a = np.array([1, 2, 3])
        assert_equal(a[()], a)
        assert_(a[()].base is a)
        a = np.array(0)
        assert_(isinstance(a[()], np.int_))

    def test_scalar_return_type(self):
        # Full scalar indices should return scalars and object
        # arrays should not call PyArray_Return on their items
        class Zero(object):
            # The most basic valid indexing
            def __index__(self):
                return 0
        z = Zero()

        a = np.zeros(())
        assert_(isinstance(a[()], np.float_))
        a = np.zeros(1)
        assert_(isinstance(a[z], np.float_))
        a = np.zeros((1, 1))
        assert_(isinstance(a[z, np.array(0)], np.float_))

        # And object arrays do not call it too often:
        b = np.array(0)
        a = np.array(0, dtype=object)
        a[()] = b
        assert_(isinstance(a[()], np.ndarray))
        a = np.array([b, None])
        assert_(isinstance(a[z], np.ndarray))
        a = np.array([[b, None]])
        assert_(isinstance(a[z, np.array(0)], np.ndarray))

        # Regression, it needs to fall through integer and fancy indexing
        # cases, so need the with statement to ignore the non-integer error.
        with warnings.catch_warnings():
            warnings.filterwarnings('ignore', '', DeprecationWarning)
            a = np.array([1.])
            assert_(isinstance(a[0.], np.float_))

            a = np.array([np.array(1)], dtype=object)
            assert_(isinstance(a[0.], np.ndarray))


    def test_empty_fancy_index(self):
        # Empty list index creates an empty array
        # with the same dtype (but with weird shape)
        a = np.array([1, 2, 3])
        assert_equal(a[[]], [])
        assert_equal(a[[]].dtype, a.dtype)

        b = np.array([], dtype=np.intp)
        assert_equal(a[[]], [])
        assert_equal(a[[]].dtype, a.dtype)

        b = np.array([])
        assert_raises(IndexError, a.__getitem__, b)

    def test_ellipsis_index(self):
        # Ellipsis index does not create a view
        a = np.array([[1, 2, 3],
                      [4, 5, 6],
                      [7, 8, 9]])
        assert_equal(a[...], a)
        assert_(a[...] is a)

        # Slicing with ellipsis can skip an
        # arbitrary number of dimensions
        assert_equal(a[0, ...], a[0])
        assert_equal(a[0, ...], a[0,:])
        assert_equal(a[..., 0], a[:, 0])

        # Slicing with ellipsis always results
        # in an array, not a scalar
        assert_equal(a[0, ..., 1], np.array(2))

    def test_single_int_index(self):
        # Single integer index selects one row
        a = np.array([[1, 2, 3],
                      [4, 5, 6],
                      [7, 8, 9]])

        assert_equal(a[0], [1, 2, 3])
        assert_equal(a[-1], [7, 8, 9])

        # Index out of bounds produces IndexError
        assert_raises(IndexError, a.__getitem__, 1<<30)
        # Index overflow produces IndexError
        assert_raises(IndexError, a.__getitem__, 1<<64)

    def test_single_bool_index(self):
        # Single boolean index
        a = np.array([[1, 2, 3],
                      [4, 5, 6],
                      [7, 8, 9]])

        # Python boolean converts to integer
        # These are being deprecated (and test in test_deprecations)
        #assert_equal(a[True], a[1])
        #assert_equal(a[False], a[0])

        # Same with NumPy boolean scalar
        assert_equal(a[np.array(True)], a[1])
        assert_equal(a[np.array(False)], a[0])

    def test_boolean_indexing_onedim(self):
        # Indexing a 2-dimensional array with
        # boolean array of length one
        a = np.array([[ 0.,  0.,  0.]])
        b = np.array([ True], dtype=bool)
        assert_equal(a[b], a)
        # boolean assignment
        a[b] = 1.
        assert_equal(a, [[1., 1., 1.]])

    def test_boolean_assignment_value_mismatch(self):
        # A boolean assignment should fail when the shape of the values
        # cannot be broadcasted to the subscription. (see also gh-3458)
        a = np.arange(4)
        def f(a, v):
            a[a > -1] = v

        assert_raises(ValueError, f, a, [])
        assert_raises(ValueError, f, a, [1, 2, 3])
        assert_raises(ValueError, f, a[:1], [1, 2, 3])

    def test_boolean_indexing_twodim(self):
        # Indexing a 2-dimensional array with
        # 2-dimensional boolean array
        a = np.array([[1, 2, 3],
                      [4, 5, 6],
                      [7, 8, 9]])
        b = np.array([[ True, False,  True],
                      [False,  True, False],
                      [ True, False,  True]])
        assert_equal(a[b], [1, 3, 5, 7, 9])
        assert_equal(a[b[1]], [[4, 5, 6]])
        assert_equal(a[b[0]], a[b[2]])

        # boolean assignment
        a[b] = 0
        assert_equal(a, [[0, 2, 0],
                         [4, 0, 6],
                         [0, 8, 0]])


class TestFieldIndexing(TestCase):
    def test_scalar_return_type(self):
        # Field access on an array should return an array, even if it
        # is 0-d.
        a = np.zeros((), [('a','f8')])
        assert_(isinstance(a['a'], np.ndarray))
        assert_(isinstance(a[['a']], np.ndarray))


class TestMultiIndexingAutomated(TestCase):
    """
     These test use code to mimic the C-Code indexing for selection.

     NOTE: * This still lacks tests for complex item setting.
           * If you change behavoir of indexing, you might want to modify
             these tests to try more combinations.
           * Behavior was written to match numpy version 1.8. (though a
             first version matched 1.7.)
           * Only tuple indicies are supported by the mimicing code.
             (and tested as of writing this)
           * Error types should match most of the time as long as there
             is only one error. For multiple errors, what gets raised
             will usually not be the same one. They are *not* tested.
    """
    def setUp(self):
        self.a = np.arange(np.prod([3, 1, 5, 6])).reshape(3, 1, 5, 6)
        self.b = np.empty((3, 0, 5, 6))
        self.complex_indices = ['skip', Ellipsis,
            0,
            # Boolean indices, up to 3-d for some special cases of eating up
            # dimensions, also need to test all False
            np.array(False),
            np.array([True, False, False]),
            np.array([[True, False], [False, True]]),
            np.array([[[False, False], [False, False]]]),
            # Some slices:
            slice(-5, 5, 2),
            slice(1, 1, 100),
            slice(4, -1, -2),
            slice(None, None, -3),
            # Some Fancy indexes:
            np.empty((0, 1, 1), dtype=np.intp), # empty broadcastable
            np.array([0, 1, -2]),
            np.array([[2], [0], [1]]),
            np.array([[0, -1], [0, 1]]),
            np.array([2, -1]),
            np.zeros([1]*31, dtype=int), # trigger too large array.
            np.array([0., 1.])] # invalid datatype
        # Some simpler indices that still cover a bit more
        self.simple_indices = [Ellipsis, None, -1, [1], np.array([True]), 'skip']
        # Very simple ones to fill the rest:
        self.fill_indices = [slice(None, None), 0]


    def _get_multi_index(self, arr, indices):
        """Mimic multi dimensional indexing.

        Parameters
        ----------
        arr : ndarray
            Array to be indexed.
        indices : tuple of index objects

        Returns
        -------
        out : ndarray
            An array equivalent to the indexing operation (but always a copy).
            `arr[indices]` should be identical.
        no_copy : bool
            Whether the indexing operation requires a copy. If this is `True`,
            `np.may_share_memory(arr, arr[indicies])` should be `True` (with
            some exceptions for scalars and possibly 0-d arrays).

        Notes
        -----
        While the function may mostly match the errors of normal indexing this
        is generally not the case.
        """
        in_indices = list(indices)
        indices = []
        # if False, this is a fancy or boolean index
        no_copy = True
        # number of fancy/scalar indexes that are not consecutive
        num_fancy = 0
        # number of dimensions indexed by a "fancy" index
        fancy_dim = 0
        # NOTE: This is a funny twist (and probably OK to change).
        # The boolean array has illegal indexes, but this is
        # allowed if the broadcasted fancy-indices are 0-sized.
        # This variable is to catch that case.
        error_unless_broadcast_to_empty = False

        # We need to handle Ellipsis and make arrays from indices, also
        # check if this is fancy indexing (set no_copy).
        ndim = 0
        ellipsis_pos = None # define here mostly to replace all but first.
        for i, indx in enumerate(in_indices):
            if indx is None:
                continue
            if isinstance(indx, np.ndarray) and indx.dtype == bool:
                no_copy = False
                if indx.ndim == 0:
                    raise IndexError
                # boolean indices can have higher dimensions
                ndim += indx.ndim
                fancy_dim += indx.ndim
                continue
            if indx is Ellipsis:
                if ellipsis_pos is None:
                    ellipsis_pos = i
                    continue # do not increment ndim counter
                in_indices[i] = slice(None, None)
                ndim += 1
                continue
            if isinstance(indx, slice):
                ndim += 1
                continue
            if not isinstance(indx, np.ndarray):
                # This could be open for changes in numpy.
                # numpy should maybe raise an error if casting to intp
                # is not safe. It rejects np.array([1., 2.]) but not
                # [1., 2.] as index (same for ie. np.take).
                # (Note the importance of empty lists if changing this here)
                indx = np.array(indx, dtype=np.intp)
                in_indices[i] = indx
            elif indx.dtype.kind != 'b' and indx.dtype.kind != 'i':
                raise IndexError('arrays used as indices must be of integer (or boolean) type')
            if indx.ndim != 0:
                no_copy = False
            ndim += 1
            fancy_dim += 1

        if arr.ndim - ndim < 0:
            # we can't take more dimensions then we have, not even for 0-d arrays.
            # since a[()] makes sense, but not a[(),]. We will raise an error
            # lateron, unless a broadcasting error occurs first.
            raise IndexError

        if ndim == 0 and not None in in_indices:
            # Well we have no indexes or one Ellipsis. This is legal.
            return arr.copy(), no_copy

        if ellipsis_pos is not None:
            in_indices[ellipsis_pos:ellipsis_pos+1] = [slice(None, None)] * (arr.ndim - ndim)

        for ax, indx in enumerate(in_indices):
            if isinstance(indx, slice):
                # convert to an index array anways:
                indx = np.arange(*indx.indices(arr.shape[ax]))
                indices.append(['s', indx])
                continue
            elif indx is None:
                # this is like taking a slice with one element from a new axis:
                indices.append(['n', np.array([0], dtype=np.intp)])
                arr = arr.reshape((arr.shape[:ax] + (1,) + arr.shape[ax:]))
                continue
            if isinstance(indx, np.ndarray) and indx.dtype == bool:
                # This may be open for improvement in numpy.
                # numpy should probably cast boolean lists to boolean indices
                # instead of intp!

                # Numpy supports for a boolean index with
                # non-matching shape as long as the True values are not
                # out of bounds. Numpy maybe should maybe not allow this,
                # (at least not array that are larger then the original one).
                try:
                    flat_indx = np.ravel_multi_index(np.nonzero(indx),
                                    arr.shape[ax:ax+indx.ndim], mode='raise')
                except:
                    error_unless_broadcast_to_empty = True
                    # fill with 0s instead, and raise error later
                    flat_indx = np.array([0]*indx.sum(), dtype=np.intp)
                # concatenate axis into a single one:
                if indx.ndim != 0:
                    arr = arr.reshape((arr.shape[:ax]
                                  + (np.prod(arr.shape[ax:ax+indx.ndim]),)
                                  + arr.shape[ax+indx.ndim:]))
                    indx = flat_indx
                else:
                    # This could be changed, a 0-d boolean index can
                    # make sense (even outide the 0-d indexed array case)
                    # Note that originally this is could be interpreted as
                    # integer in the full integer special case.
                    raise IndexError
            if len(indices) > 0 and indices[-1][0] == 'f' and ax != ellipsis_pos:
                # NOTE: There could still have been a 0-sized Ellipsis
                # between them. Checked that with ellipsis_pos.
                indices[-1].append(indx)
            else:
                # We have a fancy index that is not after an existing one.
                # NOTE: A 0-d array triggers this as well, while
                # one may expect it to not trigger it, since a scalar
                # would not be considered fancy indexing.
                num_fancy += 1
                indices.append(['f', indx])

        if num_fancy > 1 and not no_copy:
            # We have to flush the fancy indexes left
            new_indices = indices[:]
            axes = list(range(arr.ndim))
            fancy_axes = []
            new_indices.insert(0, ['f'])
            ni = 0
            ai = 0
            for indx in indices:
                ni += 1
                if indx[0] == 'f':
                    new_indices[0].extend(indx[1:])
                    del new_indices[ni]
                    ni -= 1
                    for ax in range(ai, ai + len(indx[1:])):
                        fancy_axes.append(ax)
                        axes.remove(ax)
                ai += len(indx) - 1 # axis we are at
            indices = new_indices
            # and now we need to transpose arr:
            arr = arr.transpose(*(fancy_axes + axes))

        # We only have one 'f' index now and arr is transposed accordingly.
        # Now handle newaxes by reshaping...
        ax = 0
        for indx in indices:
            if indx[0] == 'f':
                if len(indx) == 1:
                    continue
                # First of all, reshape arr to combine fancy axes into one:
                orig_shape = arr.shape
                orig_slice = orig_shape[ax:ax + len(indx[1:])]
                arr = arr.reshape((arr.shape[:ax]
                                    + (np.prod(orig_slice).astype(int),)
                                    + arr.shape[ax + len(indx[1:]):]))

                # Check if broadcasting works
                if len(indx[1:]) != 1:
                    res = np.broadcast(*indx[1:]) # raises ValueError...
                else:
                    res = indx[1]
                # unfortunatly the indices might be out of bounds. So check
                # that first, and use mode='wrap' then. However only if
                # there are any indices...
                if res.size != 0:
                    if error_unless_broadcast_to_empty:
                        raise IndexError
                    for _indx, _size in zip(indx[1:], orig_slice):
                        if _indx.size == 0:
                            continue
                        if np.any(_indx >= _size) or np.any(_indx < -_size):
                                raise IndexError
                if len(indx[1:]) == len(orig_slice):
                    if np.product(orig_slice) == 0:
                        # Work around for a crash or IndexError with 'wrap'
                        # in some 0-sized cases.
                        try:
                            mi = np.ravel_multi_index(indx[1:], orig_slice, mode='raise')
                        except:
                            # This happens with 0-sized orig_slice (sometimes?)
                            # here it is a ValueError, but indexing gives a:
                            raise IndexError('invalid index into 0-sized')
                    else:
                        mi = np.ravel_multi_index(indx[1:], orig_slice, mode='wrap')
                else:
                    # Maybe never happens...
                    raise ValueError
                arr = arr.take(mi.ravel(), axis=ax)
                arr = arr.reshape((arr.shape[:ax]
                                    + mi.shape
                                    + arr.shape[ax+1:]))
                ax += mi.ndim
                continue

            # If we are here, we have a 1D array for take:
            arr = arr.take(indx[1], axis=ax)
            ax += 1

        return arr, no_copy


    def _check_multi_index(self, arr, index):
        """Check a multi index item getting and simple setting.

        Parameters
        ----------
        arr : ndarray
            Array to be indexed, must be a reshaped arange.
        index : tuple of indexing objects
            Index being tested.
        """
        # Test item getting
        try:
            mimic_get, no_copy = self._get_multi_index(arr, index)
        except Exception as e:
            prev_refcount = sys.getrefcount(arr)
            assert_raises(Exception, arr.__getitem__, index)
            assert_raises(Exception, arr.__setitem__, index, 0)
            assert_equal(prev_refcount, sys.getrefcount(arr))
            return

        self._compare_index_result(arr, index, mimic_get, no_copy)


    def _check_single_index(self, arr, index):
        """Check a single index item getting and simple setting.

        Parameters
        ----------
        arr : ndarray
            Array to be indexed, must be an arange.
        index : indexing object
            Index being tested. Must be a single index and not a tuple
            of indexing objects (see also `_check_multi_index`).
        """
        try:
            mimic_get, no_copy = self._get_multi_index(arr, (index,))
        except Exception as e:
            prev_refcount = sys.getrefcount(arr)
            assert_raises(Exception, arr.__getitem__, index)
            assert_raises(Exception, arr.__setitem__, index, 0)
            assert_equal(prev_refcount, sys.getrefcount(arr))
            return

        self._compare_index_result(arr, index, mimic_get, no_copy)


    def _compare_index_result(self, arr, index, mimic_get, no_copy):
        """Compare mimicked result to indexing result.
        """
        arr = arr.copy()
        indexed_arr = arr[index]
        assert_array_equal(indexed_arr, mimic_get)
        # Check if we got a view, unless its a 0-sized or 0-d array.
        # (then its not a view, and that does not matter)
        if indexed_arr.size != 0 and indexed_arr.ndim != 0:
            assert_(np.may_share_memory(indexed_arr, arr) == no_copy)
            # Check reference count of the original array
            if no_copy:
                # refcount increases by one:
                assert_equal(sys.getrefcount(arr), 3)
            else:
                assert_equal(sys.getrefcount(arr), 2)

        # Test non-broadcast setitem:
        b = arr.copy()
        b[index] = mimic_get + 1000
        if b.size == 0:
            return # nothing to compare here...
        if no_copy and indexed_arr.ndim != 0:
            # change indexed_arr in-place to manipulate original:
            indexed_arr += 1000
            assert_array_equal(arr, b)
            return
        # Use the fact that the array is originally an arange:
        arr.flat[indexed_arr.ravel()] += 1000
        assert_array_equal(arr, b)


    def test_boolean(self):
        a = np.array(5)
        assert_equal(a[np.array(True)], 5)
        a[np.array(True)] = 1
        assert_equal(a, 1)
        # NOTE: This is different from normal broadcasting, as
        # arr[boolean_array] works like in a multi index. Which means
        # it is aligned to the left. This is probably correct for
        # consistency with arr[boolean_array,] also no broadcasting
        # is done at all
        self._check_multi_index(self.a, (np.zeros_like(self.a, dtype=bool),))
        self._check_multi_index(self.a, (np.zeros_like(self.a, dtype=bool)[..., 0],))
        self._check_multi_index(self.a, (np.zeros_like(self.a, dtype=bool)[None, ...],))


    def test_multidim(self):
        # Automatically test combinations with complex indexes on 2nd (or 1st)
        # spot and the simple ones in one other spot.
        with warnings.catch_warnings():
            # This is so that np.array(True) is not accepted in a full integer
            # index, when running the file seperatly.
            warnings.filterwarnings('error', '', DeprecationWarning)
            for simple_pos in [0, 2, 3]:
                tocheck = [self.fill_indices, self.complex_indices,
                           self.fill_indices, self.fill_indices]
                tocheck[simple_pos] = self.simple_indices
                for index in product(*tocheck):
                    index = tuple(i for i in index if i != 'skip')
                    self._check_multi_index(self.a, index)
                    self._check_multi_index(self.b, index)

        # Check very simple item getting:
        self._check_multi_index(self.a, (0, 0, 0, 0))
        self._check_multi_index(self.b, (0, 0, 0, 0))
        # Also check (simple cases of) too many indices:
        assert_raises(IndexError, self.a.__getitem__, (0, 0, 0, 0, 0))
        assert_raises(IndexError, self.a.__setitem__, (0, 0, 0, 0, 0), 0)
        assert_raises(IndexError, self.a.__getitem__, (0, 0, [1], 0, 0))
        assert_raises(IndexError, self.a.__setitem__, (0, 0, [1], 0, 0), 0)


    def test_1d(self):
        a = np.arange(10)
        with warnings.catch_warnings():
            warnings.filterwarnings('error', '', DeprecationWarning)
            for index in self.complex_indices:
                self._check_single_index(a, index)



if __name__ == "__main__":
    run_module_suite()