File: test_records.py

package info (click to toggle)
python-numpy 1%3A1.8.2-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 21,336 kB
  • ctags: 18,503
  • sloc: ansic: 149,662; python: 85,440; cpp: 968; makefile: 367; f90: 164; sh: 130; fortran: 125; perl: 58
file content (176 lines) | stat: -rw-r--r-- 6,308 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from __future__ import division, absolute_import, print_function

from os import path
import numpy as np
from numpy.testing import *
from numpy.compat import asbytes, asunicode

import warnings
import collections
import pickle


class TestFromrecords(TestCase):
    def test_fromrecords(self):
        r = np.rec.fromrecords([[456, 'dbe', 1.2], [2, 'de', 1.3]],
                            names='col1,col2,col3')
        assert_equal(r[0].item(), (456, 'dbe', 1.2))

    def test_method_array(self):
        r = np.rec.array(asbytes('abcdefg') * 100, formats='i2,a3,i4', shape=3, byteorder='big')
        assert_equal(r[1].item(), (25444, asbytes('efg'), 1633837924))

    def test_method_array2(self):
        r = np.rec.array([(1, 11, 'a'), (2, 22, 'b'), (3, 33, 'c'), (4, 44, 'd'), (5, 55, 'ex'),
                     (6, 66, 'f'), (7, 77, 'g')], formats='u1,f4,a1')
        assert_equal(r[1].item(), (2, 22.0, asbytes('b')))

    def test_recarray_slices(self):
        r = np.rec.array([(1, 11, 'a'), (2, 22, 'b'), (3, 33, 'c'), (4, 44, 'd'), (5, 55, 'ex'),
                     (6, 66, 'f'), (7, 77, 'g')], formats='u1,f4,a1')
        assert_equal(r[1::2][1].item(), (4, 44.0, asbytes('d')))

    def test_recarray_fromarrays(self):
        x1 = np.array([1, 2, 3, 4])
        x2 = np.array(['a', 'dd', 'xyz', '12'])
        x3 = np.array([1.1, 2, 3, 4])
        r = np.rec.fromarrays([x1, x2, x3], names='a,b,c')
        assert_equal(r[1].item(), (2, 'dd', 2.0))
        x1[1] = 34
        assert_equal(r.a, np.array([1, 2, 3, 4]))

    def test_recarray_fromfile(self):
        data_dir = path.join(path.dirname(__file__), 'data')
        filename = path.join(data_dir, 'recarray_from_file.fits')
        fd = open(filename, 'rb')
        fd.seek(2880 * 2)
        r = np.rec.fromfile(fd, formats='f8,i4,a5', shape=3, byteorder='big')
        fd.seek(2880 * 2)
        r = np.rec.array(fd, formats='f8,i4,a5', shape=3, byteorder='big')
        fd.close()

    def test_recarray_from_obj(self):
        count = 10
        a = np.zeros(count, dtype='O')
        b = np.zeros(count, dtype='f8')
        c = np.zeros(count, dtype='f8')
        for i in range(len(a)):
            a[i] = list(range(1, 10))

        mine = np.rec.fromarrays([a, b, c], names='date,data1,data2')
        for i in range(len(a)):
            assert_((mine.date[i] == list(range(1, 10))))
            assert_((mine.data1[i] == 0.0))
            assert_((mine.data2[i] == 0.0))

    def test_recarray_from_repr(self):
        x = np.rec.array([ (1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
        y = eval("np." + repr(x))
        assert_(isinstance(y, np.recarray))
        assert_equal(y, x)

    def test_recarray_from_names(self):
        ra = np.rec.array([
            (1, 'abc', 3.7000002861022949, 0),
            (2, 'xy', 6.6999998092651367, 1),
            (0, ' ', 0.40000000596046448, 0)],
                       names='c1, c2, c3, c4')
        pa = np.rec.fromrecords([
            (1, 'abc', 3.7000002861022949, 0),
            (2, 'xy', 6.6999998092651367, 1),
            (0, ' ', 0.40000000596046448, 0)],
                       names='c1, c2, c3, c4')
        assert_(ra.dtype == pa.dtype)
        assert_(ra.shape == pa.shape)
        for k in range(len(ra)):
            assert_(ra[k].item() == pa[k].item())

    def test_recarray_conflict_fields(self):
        ra = np.rec.array([(1, 'abc', 2.3), (2, 'xyz', 4.2),
                        (3, 'wrs', 1.3)],
                       names='field, shape, mean')
        ra.mean = [1.1, 2.2, 3.3]
        assert_array_almost_equal(ra['mean'], [1.1, 2.2, 3.3])
        assert_(type(ra.mean) is type(ra.var))
        ra.shape = (1, 3)
        assert_(ra.shape == (1, 3))
        ra.shape = ['A', 'B', 'C']
        assert_array_equal(ra['shape'], [['A', 'B', 'C']])
        ra.field = 5
        assert_array_equal(ra['field'], [[5, 5, 5]])
        assert_(isinstance(ra.field, collections.Callable))

    def test_fromrecords_with_explicit_dtype(self):
        a = np.rec.fromrecords([(1, 'a'), (2, 'bbb')],
                                dtype=[('a', int), ('b', np.object)])
        assert_equal(a.a, [1, 2])
        assert_equal(a[0].a, 1)
        assert_equal(a.b, ['a', 'bbb'])
        assert_equal(a[-1].b, 'bbb')
        #
        ndtype = np.dtype([('a', int), ('b', np.object)])
        a = np.rec.fromrecords([(1, 'a'), (2, 'bbb')], dtype=ndtype)
        assert_equal(a.a, [1, 2])
        assert_equal(a[0].a, 1)
        assert_equal(a.b, ['a', 'bbb'])
        assert_equal(a[-1].b, 'bbb')


class TestRecord(TestCase):
    def setUp(self):
        self.data = np.rec.fromrecords([(1, 2, 3), (4, 5, 6)],
                            dtype=[("col1", "<i4"),
                                   ("col2", "<i4"),
                                   ("col3", "<i4")])

    def test_assignment1(self):
        a = self.data
        assert_equal(a.col1[0], 1)
        a[0].col1 = 0
        assert_equal(a.col1[0], 0)

    def test_assignment2(self):
        a = self.data
        assert_equal(a.col1[0], 1)
        a.col1[0] = 0
        assert_equal(a.col1[0], 0)

    def test_invalid_assignment(self):
        a = self.data
        def assign_invalid_column(x):
            x[0].col5 = 1
        self.assertRaises(AttributeError, assign_invalid_column, a)

    def test_out_of_order_fields(self):
        """Ticket #1431."""
        x = self.data[['col1', 'col2']]
        y = self.data[['col2', 'col1']]
        assert_equal(x[0][0], y[0][1])

    def test_pickle_1(self):
        # Issue #1529
        a = np.array([(1, [])], dtype=[('a', np.int32), ('b', np.int32, 0)])
        assert_equal(a, pickle.loads(pickle.dumps(a)))
        assert_equal(a[0], pickle.loads(pickle.dumps(a[0])))

    def test_pickle_2(self):
        a = self.data
        assert_equal(a, pickle.loads(pickle.dumps(a)))
        assert_equal(a[0], pickle.loads(pickle.dumps(a[0])))


def test_find_duplicate():
    l1 = [1, 2, 3, 4, 5, 6]
    assert_(np.rec.find_duplicate(l1) == [])

    l2 = [1, 2, 1, 4, 5, 6]
    assert_(np.rec.find_duplicate(l2) == [1])

    l3 = [1, 2, 1, 4, 1, 6, 2, 3]
    assert_(np.rec.find_duplicate(l3) == [1, 2])

    l3 = [2, 2, 1, 4, 1, 6, 2, 3]
    assert_(np.rec.find_duplicate(l3) == [2, 1])

if __name__ == "__main__":
    run_module_suite()