File: README-pywrap.org

package info (click to toggle)
python-numpysane 0.42-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 536 kB
  • sloc: python: 4,953; ansic: 655; makefile: 61
file content (795 lines) | stat: -rw-r--r-- 30,797 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
* TALK
I just gave a talk about this at [[https://www.socallinuxexpo.org/scale/18x][SCaLE 18x]]. Here are the [[https://www.youtube.com/watch?v=YOOapXNtUWw][video of the talk]] and
the [[https://github.com/dkogan/talk-numpysane-gnuplotlib/raw/master/numpysane-gnuplotlib.pdf]["slides"]].

* NAME
numpysane_pywrap: Python-wrap C code with broadcasting awareness

* SYNOPSIS

Let's implement a broadcastable and type-checked inner product that is

- Written in C (i.e. it is fast)
- Callable from python using numpy arrays (i.e. it is convenient)

We write a bit of python to generate the wrapping code. "genpywrap.py":

#+BEGIN_EXAMPLE
import numpy     as np
import numpysane as nps
import numpysane_pywrap as npsp

m = npsp.module( name      = "innerlib",
                 docstring = "An inner product module in C")
m.function( "inner",
            "Inner product pywrapped with npsp",

            args_input       = ('a', 'b'),
            prototype_input  = (('n',), ('n',)),
            prototype_output = (),

            Ccode_slice_eval = \
                {np.float64:
                 r"""
                   double* out = (double*)data_slice__output;
                   const int N = dims_slice__a[0];

                   *out = 0.0;

                   for(int i=0; i<N; i++)
                     *out += *(const double*)(data_slice__a +
                                              i*strides_slice__a[0]) *
                             *(const double*)(data_slice__b +
                                              i*strides_slice__b[0]);
                   return true;""" })
m.write()
#+END_EXAMPLE

We run this, and save the output to "inner_pywrap.c":

#+BEGIN_EXAMPLE
python3 genpywrap.py > inner_pywrap.c
#+END_EXAMPLE

We build this into a python module:

#+BEGIN_EXAMPLE
COMPILE=(`python3 -c "
import sysconfig
conf = sysconfig.get_config_vars()
print('{} {} {} -I{}'.format(*[conf[x] for x in ('CC',
                                                 'CFLAGS',
                                                 'CCSHARED',
                                                 'INCLUDEPY')]))"`)
LINK=(`python3 -c "
import sysconfig
conf = sysconfig.get_config_vars()
print('{} {} {}'.format(*[conf[x] for x in ('BLDSHARED',
                                            'BLDLIBRARY',
                                            'LDFLAGS')]))"`)
EXT_SUFFIX=`python3 -c "
import sysconfig
print(sysconfig.get_config_vars('EXT_SUFFIX')[0])"`

${COMPILE[@]} -c -o inner_pywrap.o inner_pywrap.c
${LINK[@]} -o innerlib$EXT_SUFFIX inner_pywrap.o
#+END_EXAMPLE

Here we used the build commands directly. This could be done with
setuptools/distutils instead; it's a normal extension module. And now we can
compute broadcasted inner products from a python script "tst.py":

#+BEGIN_EXAMPLE
import numpy as np
import innerlib
print(innerlib.inner( np.arange(4, dtype=float),
                      np.arange(8, dtype=float).reshape( 2,4)))
#+END_EXAMPLE

Running it to compute inner([0,1,2,3],[0,1,2,3]) and inner([0,1,2,3],[4,5,6,7]):

#+BEGIN_EXAMPLE
$ python3 tst.py
[14. 38.]
#+END_EXAMPLE

* DESCRIPTION
This module provides routines to python-wrap existing C code by generating C
sources that define the wrapper python extension module.

To create the wrappers we

1. Instantiate a new numpysane_pywrap.module class
2. Call module.function() for each wrapper function we want to add to this
   module
3. Call module.write() to write the C sources defining this module to standard
   output

The sources can then be built and executed normally, as any other python
extension module. The resulting functions are called as one would expect:

#+BEGIN_EXAMPLE
output                  = f_one_output      (input0, input1, ...)
(output0, output1, ...) = f_multiple_outputs(input0, input1, ...)
#+END_EXAMPLE

depending on whether we declared a single output, or multiple outputs (see
below). It is also possible to pre-allocate the output array(s), and call the
functions like this (see below):

#+BEGIN_EXAMPLE
output = np.zeros(...)
f_one_output      (input0, input1, ..., out = output)

output0 = np.zeros(...)
output1 = np.zeros(...)
f_multiple_outputs(input0, input1, ..., out = (output0, output1))
#+END_EXAMPLE

Each wrapped function is broadcasting-aware. The normal numpy broadcasting rules
(as described in 'broadcast_define' and on the numpy website:
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) apply. In
summary:

- Dimensions are aligned at the end of the shape list, and must match the
  prototype

- Extra dimensions left over at the front must be consistent for all the
  input arguments, meaning:

  - All dimensions of length != 1 must match
  - Dimensions of length 1 match corresponding dimensions of any length in
    other arrays
  - Missing leading dimensions are implicitly set to length 1

- The output(s) have a shape where
  - The trailing dimensions match the prototype
  - The leading dimensions come from the extra dimensions in the inputs

When we create a wrapper function, we only define how to compute a single
broadcasted slice. If the generated function is called with higher-dimensional
inputs, this slice code will be called multiple times. This broadcast loop is
produced by the numpysane_pywrap generator automatically. The generated code
also

- parses the python arguments
- generates python return values
- validates the inputs (and any pre-allocated outputs) to make sure the given
  shapes and types all match the declared shapes and types. For instance,
  computing an inner product of a 5-vector and a 3-vector is illegal
- creates the output arrays as necessary

This code-generator module does NOT produce any code to implicitly make copies
of the input. If the inputs fail validation (unknown types given, contiguity
checks failed, etc) then an exception is raised. Copying the input is
potentially slow, so we require the user to do that, if necessary.

** Explicated example

In the synopsis we declared the wrapper module like this:

#+BEGIN_EXAMPLE
m = npsp.module( name      = "innerlib",
                 docstring = "An inner product module in C")
#+END_EXAMPLE

This produces a module named "innerlib". Note that the python importer will look
for this module in a file called "innerlib$EXT_SUFFIX" where EXT_SUFFIX comes
from the python configuration. This is normal behavior for python extension
modules.

A module can contain many wrapper functions. Each one is added by calling
'm.function()'. We did this:

#+BEGIN_EXAMPLE
m.function( "inner",
            "Inner product pywrapped with numpysane_pywrap",

            args_input       = ('a', 'b'),
            prototype_input  = (('n',), ('n',)),
            prototype_output = (),

            Ccode_slice_eval = \
                {np.float64:
                 r"""
                   double* out = (double*)data_slice__output;
                   const int N = dims_slice__a[0];

                   *out = 0.0;

                   for(int i=0; i<N; i++)
                     *out += *(const double*)(data_slice__a +
                                              i*strides_slice__a[0]) *
                             *(const double*)(data_slice__b +
                                              i*strides_slice__b[0]);
                   return true;""" })
#+END_EXAMPLE

We declared:

- A function "inner" with the given docstring
- two inputs to this function: named 'a' and 'b'. Each is a 1-dimensional array
  of length 'n', same 'n' for both arrays
- one output: a scalar
- how to compute a single inner product where all inputs and outputs are 64-bit
  floating-point values: this snippet of C is included in the generated sources
  verbatim

It is possible to support multiple sets of types by passing more key/value
combinations in 'Ccode_slice_eval'. Each set of types requires a different C
snippet. If the input doesn't match any known type set, an exception will be
thrown. More on the type matching below.

The length of the inner product is defined by the length of the input, in this
case 'dims_slice__a[0]'. I could have looked at 'dims_slice__b[0]' instead, but
I know it's identical: the 'prototype_input' says that both 'a' and 'b' have
length 'n', and if we're running the slice code snippet, we know that the inputs
have already been checked, and have compatible dimensionality. More on this
below.

I did not assume the data is contiguous, so I use 'strides_slice__a' and
'strides_slice__b' to index the input arrays. We could add a validation function
that accepts only contiguous input; if we did that, the slice code snippet could
assume contiguous data and ignore the strides. More on that below.

Once all the functions have been added, we write out the generated code to
standard output by invoking

#+BEGIN_EXAMPLE
m.write()
#+END_EXAMPLE

** Dimension specification
The shapes of the inputs and outputs are given in the 'prototype_input' and
'prototype_output' arguments respectively. This is similar to how this is done
in 'numpysane.broadcast_define()': each prototype is a tuple of shapes, one for
each argument. Each shape is given as a tuple of sizes for each expected
dimension. Each size can be either

- a positive integer if we know the expected dimension size beforehand, and only
  those sizes are accepted

- a string that names the dimension. Any size could be accepted for a named
  dimension, but for any given named dimension, the sizes must match across all
  inputs and outputs

Unlike 'numpysane.broadcast_define()', the shapes of both inputs and outputs
must be defined here: the output shape may not be omitted.

The common special case of a single output is supported: this one output is
specified in 'prototype_output' as a single shape, instead of a tuple of shapes.
This also affects whether the resulting python function returns the one output
or a tuple of outputs.

Examples:

A function taking in some 2D vectors and the same number of 3D vectors:

#+BEGIN_EXAMPLE
prototype_input  = (('n',2), ('n',3))
#+END_EXAMPLE

A function producing a single 2D vector:

#+BEGIN_EXAMPLE
prototype_output = (2,)
#+END_EXAMPLE

A function producing 3 outputs: some number of 2D vectors, a single 3D vector
and a scalar:

#+BEGIN_EXAMPLE
prototype_output = (('n',2), (3,), ())
#+END_EXAMPLE

Note that when creating new output arrays, all the dimensions must be known from
the inputs. For instance, given this, we cannot create the output:

#+BEGIN_EXAMPLE
prototype_input  = ((2,), ('n',))
prototype_output = (('m',), ('m', 'm'))
#+END_EXAMPLE

I have the inputs, so I know 'n', but I don't know 'm'. When calling a function
like this, it is required to pass in pre-allocated output arrays instead of
asking the wrapper code to create new ones. See below.

** In-place outputs
As with 'numpysane.broadcast_define()', the caller of the generated python
function may pre-allocate the output and pass it in the 'out' kwarg to be
filled-in. Sometimes this is required if we want to avoid extra copying of data.
This is also required if the output prototypes have any named dimensions not
present in the input prototypes: in this case we dont know how large the output
arrays should be, so we can't create them.

If a wrapped function is called this way, we check that the dimensions and types
in the outputs match the prototype. Otherwise, we create a new output array with
the correct type and shape.

If we have multiple outputs, the in-place arrays are given as a tuple of arrays
in the 'out' kwarg. If any outputs are pre-allocated, all of them must be.

Example. Let's use the inner-product we defined earlier. We compute two sets of
inner products. We make two calls to inner(), each one broadcasted to produce
two inner products into a non-contiguous slice of an output array:

#+BEGIN_EXAMPLE
import numpy as np
import innerlib

out=np.zeros((2,2), dtype=float)
innerlib.inner( np.arange(4, dtype=float),
                np.arange(8, dtype=float).reshape( 2,4),
                out=out[:,0] )
innerlib.inner( 1+np.arange(4, dtype=float),
                np.arange(8, dtype=float).reshape( 2,4),
                out=out[:,1] )
print(out)
#+END_EXAMPLE

The first two inner products end up in the first column of the output, and the
next two inner products in the second column:

#+BEGIN_EXAMPLE
$ python3 tst.py

[[14. 20.]
 [38. 60.]]
#+END_EXAMPLE

If we have a function "f" that produces two outputs, we'd do this:

#+BEGIN_EXAMPLE
output0 = np.zeros(...)
output1 = np.zeros(...)
f( ..., out = (output0, output1) )
#+END_EXAMPLE

** Type checking
Since C code is involved, we must be very explicit about the types of our
arrays. These types are specified in the keys of the 'Ccode_slice_eval'
argument to 'function()'. For each type specification in a key, the
corresponding value is a C code snippet to use for that type spec. The type
specs can be either

- A type known by python and acceptable to numpy as a valid dtype. In this usage
  ALL inputs and ALL outputs must have this type
- A tuple of types. The elements of this tuple correspond to each input, in
  order, followed by each output, in order. This allows different arguments to
  have different types

It is up to the user to make sure that the C snippet they provide matches the
types that they declared.

Example. Let's extend the inner product to know about 32-bit floats and also
about producing a rounded integer inner product from 64-bit floats:

#+BEGIN_EXAMPLE
m = npsp.module( name      = "innerlib",
                 docstring = "An inner product module in C",
                 header    = "#include <stdint.h>")
m.function( "inner",
            "Inner product pywrapped with numpysane_pywrap",

            args_input       = ('a', 'b'),
            prototype_input  = (('n',), ('n',)),
            prototype_output = (),

            Ccode_slice_eval = \
                {np.float64:
                 r"""
                   double* out = (double*)data_slice__output;
                   const int N = dims_slice__a[0];

                   *out = 0.0;

                   for(int i=0; i<N; i++)
                     *out += *(const double*)(data_slice__a +
                                              i*strides_slice__a[0]) *
                             *(const double*)(data_slice__b +
                                              i*strides_slice__b[0]);
                   return true;""",
                 np.float32:
                 r"""
                   float* out = (float*)data_slice__output;
                   const int N = dims_slice__a[0];

                   *out = 0.0;

                   for(int i=0; i<N; i++)
                     *out += *(const float*)(data_slice__a +
                                             i*strides_slice__a[0]) *
                             *(const float*)(data_slice__b +
                                             i*strides_slice__b[0]);
                   return true;""",
                 (np.float64, np.float64, np.int32):
                 r"""
                   double out = 0.0;
                   const int N = dims_slice__a[0];

                   for(int i=0; i<N; i++)
                     out += *(const double*)(data_slice__a +
                                             i*strides_slice__a[0]) *
                            *(const double*)(data_slice__b +
                                             i*strides_slice__b[0]);
                   *(int32_t*)data_slice__output = (int32_t)round(out);
                   return true;""" })
#+END_EXAMPLE

** Argument validation
After the wrapping code confirms that all the shapes and types match the
prototype, it calls a user-provided validation routine once to flag any extra
conditions that are required. A common use case: we're wrapping some C code that
assumes the input data is stored contiguously in memory, so the validation
routine checks that this is true.

This code snippet is provided in the 'Ccode_validate' argument to 'function()'.
The result is returned as a boolean: if the checks pass, we return true. If the
checks fail, we return false, which will result in an exception being thrown. If
you want to throw your own, more informative exception, you can do that as usual
(by calling something like PyErr_Format()) before returning false.

If the 'Ccode_validate' argument is omitted, no additional checks are performed,
and we accept all calls that satisfied the broadcasting and type requirements.

** Contiguity checking
Since checking for memory contiguity is a very common use case for argument
validation, there are convenience macros provided:

#+BEGIN_EXAMPLE
CHECK_CONTIGUOUS__NAME()
CHECK_CONTIGUOUS_AND_SETERROR__NAME()

CHECK_CONTIGUOUS_ALL()
CHECK_CONTIGUOUS_AND_SETERROR_ALL()
#+END_EXAMPLE

The strictest, and most common usage will accept only those calls where ALL
inputs and ALL outputs are stored in contiguous memory. This can be accomplished
by defining the function like

#+BEGIN_EXAMPLE
m.function( ...,
           Ccode_validate = 'return CHECK_CONTIGUOUS_AND_SETERROR_ALL();' )
#+END_EXAMPLE

As before, "NAME" refers to each individual input or output, and "ALL" checks
all of them. These all evaluate to true if the argument in question IS
contiguous. The ..._AND_SETERROR_... flavor does that, but ALSO raises an
informative exception.

Generally you want to do this in the validation routine only, since it runs only
once. But there's nothing stopping you from checking this in the computation
function too.

Note that each broadcasted slice is processed separately, so the C code being
wrapped usually only cares about each SLICE being contiguous. If the dimensions
above each slice (those being broadcasted) are not contiguous, this doesn't
break the underlying assumptions. Thus the CHECK_CONTIGUOUS_... macros only
check and report the in-slice contiguity. If for some reason you need more than
this, you should write the check yourself, using the strides_full__... and
dims_full__... arrays.

** Slice computation
The code to evaluate each broadcasted slice is provided in the required
'Ccode_slice_eval' argument to 'function()'. This argument is a dict, specifying
different flavors of the available computation, with each code snippet present
in the values of this dict. Each code snippet is wrapped into a function which
returns a boolean: true on success, false on failure. If false is ever returned,
all subsequent slices are abandoned, and an exception is thrown. As with the
validation code, you can just return false, and a generic Exception will be
thrown. Or you can throw a more informative exception yourself prior to
returning false.

** Values available to the code snippets
Each of the user-supplied code blocks is placed into a separate function in the
generated code, with identical arguments in both cases. These arguments describe
the inputs and outputs, and are meant to be used by the user code. We have
dimensionality information:

#+BEGIN_EXAMPLE
const int       Ndims_full__NAME
const npy_intp* dims_full__NAME
const int       Ndims_slice__NAME
const npy_intp* dims_slice__NAME
#+END_EXAMPLE

where "NAME" is the name of the input or output. The input names are given in
the 'args_input' argument to 'function()'. If we have a single output, the
output name is "output". If we have multiple outputs, their names are "output0",
"output1", ... The ...full... arguments describe the full array, that describes
ALL the broadcasted slices. The ...slice... arguments describe each broadcasted
slice separately. Under most usages, you want the ...slice... information
because the C code we're wrapping only sees one slice at a time. Ndims...
describes how many dimensions we have in the corresponding dims... arrays.
npy_intp is a long integer used internally by numpy for dimension information.

We have memory layout information:

#+BEGIN_EXAMPLE
const npy_intp* strides_full__NAME
const npy_intp* strides_slice__NAME
npy_intp        sizeof_element__NAME
#+END_EXAMPLE

NAME and full/slice and npy_intp have the same meanings as before. The
strides... arrays each have length described by the corresponding dims... The
strides contain the step size in bytes, of each dimension. sizeof_element...
describes the size in bytes, of a single data element.

Finally, I have a pointer to the data itself. The validation code gets a pointer
to the start of the whole data array:

#+BEGIN_EXAMPLE
void*           data__NAME
#+END_EXAMPLE

but the computation code gets a pointer to the start of the slice we're
currently looking at:

#+BEGIN_EXAMPLE
void*           data_slice__NAME
#+END_EXAMPLE

If the data in the arrays is representable as a basic C type (most integers,
floats and complex numbers), then convenience macros are available to index
elements in the sliced arrays and to conveniently access the C type of the data.
These macros take into account the data type and the strides.

#+BEGIN_EXAMPLE
#define         ctype__NAME     ...
#define         item__NAME(...) ...
#+END_EXAMPLE

For instance, if we have a 2D array 'x' containing 64-bit floats, we'll have
this:

#+BEGIN_EXAMPLE
#define         ctype__x     npy_float64 /* "double" on most platforms */
#define         item__x(i,j) (*(ctype__x*)(data_slice__x + ...))
#+END_EXAMPLE

For more complex types (objects, vectors, strings) you'll need to deal with the
strides and the pointers yourself.

Example: I'm computing a broadcasted slice. An input array 'x' is a
2-dimensional slice of dimension (3,4) of 64-bit floating-point values. I thus
have Ndims_slice__x == 2 and dims_slice__x[] = {3,4} and sizeof_element__x == 8.
An element of this array at i,j can be accessed with either

#+BEGIN_EXAMPLE
*((double*)(data_slice__a + i*strides_slice__a[0] + j*strides_slice__a[1]))

item__a(i,j)
#+END_EXAMPLE

Both are identical. If I defined a validation function that makes sure that 'a'
is stored in contiguous memory, the computation code doesn't need to look at the
strides at all, and element at i,j can be found more simply:

#+BEGIN_EXAMPLE
((double*)data_slice__a)[ i*dims_slice__a[1] + j ]

item__a(i,j)
#+END_EXAMPLE

As you can see, the item__...() macros are much simpler, less error-prone and
are thus the preferred form.

** Specifying extra, non-broadcasted arguments

Sometimes it is desired to pass extra arguments to the C code; ones that aren't
broadcasted in any way, but are just passed verbatim by the wrapping code down
to the inner C code. We can do that with the 'extra_args' argument to
'function()'. This argument is an tuple of tuples, where each inner tuple
represents an extra argument:

#+BEGIN_EXAMPLE
(c_type, arg_name, default_value, parse_arg)
#+END_EXAMPLE

Each element is a string.

- the "c_type" is the C type of the argument; something like "int" or "double",
  or "const char*"

- the "arg_name" is the name of the argument, used in both the Python and the C
  levels

- the "default_value" is the value the C wrapping code will use if this argument
  is omitted in the Python call. Note that this is a string used in generating
  the C code, so if we have an integer with a default value of 0, we use a
  string "0" and not the integer 0

- the "parse_arg" is the code used in the PyArg_ParseTupleAndKeywords() call.
  See the documentation for that function.

These extra arguments are expected to be read-only, and are passed as a const*
to the validation routines and the slice computation routines. If the C type is
already a pointer (most notably if it is a string), then we do NOT dereference
it a second time.

The generated code for parsing of Python arguments sets all of these extra
arguments as being optional, using the default_value if an argument is omitted.
If one of these arguments is actually required, the corresponding logic goes
into the validation function.

When calling the resulting Python function, the extra arguments MUST be
passed-in as kwargs. These will NOT work as positional arguments.

This is most clearly explained with an example. Let's update our inner product
example to accept a "scale" numerical argument and a "scale_string" string
argument, where the scale_string is required:

#+BEGIN_EXAMPLE
m.function( "inner",
            "Inner product pywrapped with numpysane_pywrap",

            args_input       = ('a', 'b'),
            prototype_input  = (('n',), ('n',)),
            prototype_output = (),
            extra_args = (("double",      "scale",          "1",    "d"),
                          ("const char*", "scale_string",   "NULL", "s")),
            Ccode_validate = r"""
                if(scale_string == NULL)
                {
                    PyErr_Format(PyExc_RuntimeError,
                        "The 'scale_string' argument is required" );
                    return false;
                }
                return true; """,
            Ccode_slice_eval = \
                {np.float64:
                 r"""
                   double* out = (double*)data_slice__output;
                   const int N = dims_slice__a[0];

                   *out = 0.0;

                   for(int i=0; i<N; i++)
                     *out += *(const double*)(data_slice__a +
                                              i*strides_slice__a[0]) *
                             *(const double*)(data_slice__b +
                                              i*strides_slice__b[0]);
                   *out *= *scale * atof(scale_string);

                   return true;""" }
)
#+END_EXAMPLE

Now I can optionally scale the result:

#+BEGIN_EXAMPLE
>>> print(innerlib.inner( np.arange(4, dtype=float),
                          np.arange(8, dtype=float).reshape( 2,4)),
                          scale_string = "1.0")
[14. 38.]

>>> print(innerlib.inner( np.arange(4, dtype=float),
                          np.arange(8, dtype=float).reshape( 2,4),
                          scale        = 2.0,
                          scale_string = "10.0"))
[280. 760.]
#+END_EXAMPLE

** Precomputing a cookie outside the slice computation
Sometimes it is useful to generate some resource once, before any of the
broadcasted slices were evaluated. The slice evaluation code could then make use
of this resource. Example: allocating memory, opening files. This is supported
using a 'cookie'. We define a structure that contains data that will be
available to all the generated functions. This structure is initialized at the
beginning, used by the slice computation functions, and then cleaned up at the
end. This is most easily described with an example. The scaled inner product
demonstrated immediately above has an inefficiency: we compute
'atof(scale_string)' once for every slice, even though the string does not
change. We should compute the atof() ONCE, and use the resulting value each
time. And we can:

#+BEGIN_EXAMPLE
m.function( "inner",
            "Inner product pywrapped with numpysane_pywrap",

            args_input       = ('a', 'b'),
            prototype_input  = (('n',), ('n',)),
            prototype_output = (),
            extra_args = (("double",      "scale",          "1",    "d"),
                          ("const char*", "scale_string",   "NULL", "s")),
            Ccode_cookie_struct = r"""
              double scale; /* from BOTH scale arguments: "scale", "scale_string" */
            """,
            Ccode_validate = r"""
                if(scale_string == NULL)
                {
                    PyErr_Format(PyExc_RuntimeError,
                        "The 'scale_string' argument is required" );
                    return false;
                }
                cookie->scale = *scale * (scale_string ? atof(scale_string) : 1.0);
                return true; """,
            Ccode_slice_eval = \
                {np.float64:
                 r"""
                   double* out = (double*)data_slice__output;
                   const int N = dims_slice__a[0];

                   *out = 0.0;

                   for(int i=0; i<N; i++)
                     *out += *(const double*)(data_slice__a +
                                              i*strides_slice__a[0]) *
                             *(const double*)(data_slice__b +
                                              i*strides_slice__b[0]);
                   *out *= cookie->scale;

                   return true;""" },

            // Cleanup, such as free() or close() goes here
            Ccode_cookie_cleanup = ''
)
#+END_EXAMPLE

We defined a cookie structure that contains one element: 'double scale'. We
compute the scale factor (from BOTH of the extra arguments) before any of the
slices are evaluated: in the validation function. Then we apply the
already-computed scale with each slice. Both the validation and slice
computation functions have the whole cookie structure available in '*cookie'. It
is expected that the validation function will write something to the cookie, and
the slice functions will read it, but this is not enforced: this structure is
not const, and both functions can do whatever they like.

If the cookie initialization did something that must be cleaned up (like a
malloc() for instance), the cleanup code can be specified in the
'Ccode_cookie_cleanup' argument to function(). Note: this cleanup code is ALWAYS
executed, even if there were errors that raise an exception, EVEN if we haven't
initialized the cookie yet. When the cookie object is first initialized, it is
filled with 0, so the cleanup code can detect whether the cookie has been
initialized or not:

#+BEGIN_EXAMPLE
m.function( ...
            Ccode_cookie_struct = r"""
              ...
              bool initialized;
            """,
            Ccode_validate = r"""
              ...
              cookie->initialized = true;
              return true;
            """,
            Ccode_cookie_cleanup = r"""
              if(cookie->initialized) cleanup();
            """ )
#+END_EXAMPLE

** Examples
For some sample usage, see the wrapper-generator used in the test suite:
https://github.com/dkogan/numpysane/blob/master/test/genpywrap.py

** Planned functionality
Currently, each broadcasted slice is computed sequentially. But since the slices
are inherently independent, this is a natural place to add parallelism. And
implemention this with something like OpenMP should be straightforward. I'll get
around to doing this eventually, but in the meantime, patches are welcome.

* COMPATIBILITY

Python 2 and Python 3 should both be supported. Please report a bug if either
one doesn't work.

* REPOSITORY

https://github.com/dkogan/numpysane

* AUTHOR

Dima Kogan <dima@secretsauce.net>

* LICENSE AND COPYRIGHT

Copyright 2016-2020 Dima Kogan.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (any version) as published by
the Free Software Foundation

See https://www.gnu.org/licenses/lgpl.html