1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
|
* TALK
I just gave a talk about this at [[https://www.socallinuxexpo.org/scale/18x][SCaLE 18x]]. Here are the [[https://www.youtube.com/watch?v=YOOapXNtUWw][video of the talk]] and
the [[https://github.com/dkogan/talk-numpysane-gnuplotlib/raw/master/numpysane-gnuplotlib.pdf]["slides"]].
* NAME
numpysane_pywrap: Python-wrap C code with broadcasting awareness
* SYNOPSIS
Let's implement a broadcastable and type-checked inner product that is
- Written in C (i.e. it is fast)
- Callable from python using numpy arrays (i.e. it is convenient)
We write a bit of python to generate the wrapping code. "genpywrap.py":
#+BEGIN_EXAMPLE
import numpy as np
import numpysane as nps
import numpysane_pywrap as npsp
m = npsp.module( name = "innerlib",
docstring = "An inner product module in C")
m.function( "inner",
"Inner product pywrapped with npsp",
args_input = ('a', 'b'),
prototype_input = (('n',), ('n',)),
prototype_output = (),
Ccode_slice_eval = \
{np.float64:
r"""
double* out = (double*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
return true;""" })
m.write()
#+END_EXAMPLE
We run this, and save the output to "inner_pywrap.c":
#+BEGIN_EXAMPLE
python3 genpywrap.py > inner_pywrap.c
#+END_EXAMPLE
We build this into a python module:
#+BEGIN_EXAMPLE
COMPILE=(`python3 -c "
import sysconfig
conf = sysconfig.get_config_vars()
print('{} {} {} -I{}'.format(*[conf[x] for x in ('CC',
'CFLAGS',
'CCSHARED',
'INCLUDEPY')]))"`)
LINK=(`python3 -c "
import sysconfig
conf = sysconfig.get_config_vars()
print('{} {} {}'.format(*[conf[x] for x in ('BLDSHARED',
'BLDLIBRARY',
'LDFLAGS')]))"`)
EXT_SUFFIX=`python3 -c "
import sysconfig
print(sysconfig.get_config_vars('EXT_SUFFIX')[0])"`
${COMPILE[@]} -c -o inner_pywrap.o inner_pywrap.c
${LINK[@]} -o innerlib$EXT_SUFFIX inner_pywrap.o
#+END_EXAMPLE
Here we used the build commands directly. This could be done with
setuptools/distutils instead; it's a normal extension module. And now we can
compute broadcasted inner products from a python script "tst.py":
#+BEGIN_EXAMPLE
import numpy as np
import innerlib
print(innerlib.inner( np.arange(4, dtype=float),
np.arange(8, dtype=float).reshape( 2,4)))
#+END_EXAMPLE
Running it to compute inner([0,1,2,3],[0,1,2,3]) and inner([0,1,2,3],[4,5,6,7]):
#+BEGIN_EXAMPLE
$ python3 tst.py
[14. 38.]
#+END_EXAMPLE
* DESCRIPTION
This module provides routines to python-wrap existing C code by generating C
sources that define the wrapper python extension module.
To create the wrappers we
1. Instantiate a new numpysane_pywrap.module class
2. Call module.function() for each wrapper function we want to add to this
module
3. Call module.write() to write the C sources defining this module to standard
output
The sources can then be built and executed normally, as any other python
extension module. The resulting functions are called as one would expect:
#+BEGIN_EXAMPLE
output = f_one_output (input0, input1, ...)
(output0, output1, ...) = f_multiple_outputs(input0, input1, ...)
#+END_EXAMPLE
depending on whether we declared a single output, or multiple outputs (see
below). It is also possible to pre-allocate the output array(s), and call the
functions like this (see below):
#+BEGIN_EXAMPLE
output = np.zeros(...)
f_one_output (input0, input1, ..., out = output)
output0 = np.zeros(...)
output1 = np.zeros(...)
f_multiple_outputs(input0, input1, ..., out = (output0, output1))
#+END_EXAMPLE
Each wrapped function is broadcasting-aware. The normal numpy broadcasting rules
(as described in 'broadcast_define' and on the numpy website:
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) apply. In
summary:
- Dimensions are aligned at the end of the shape list, and must match the
prototype
- Extra dimensions left over at the front must be consistent for all the
input arguments, meaning:
- All dimensions of length != 1 must match
- Dimensions of length 1 match corresponding dimensions of any length in
other arrays
- Missing leading dimensions are implicitly set to length 1
- The output(s) have a shape where
- The trailing dimensions match the prototype
- The leading dimensions come from the extra dimensions in the inputs
When we create a wrapper function, we only define how to compute a single
broadcasted slice. If the generated function is called with higher-dimensional
inputs, this slice code will be called multiple times. This broadcast loop is
produced by the numpysane_pywrap generator automatically. The generated code
also
- parses the python arguments
- generates python return values
- validates the inputs (and any pre-allocated outputs) to make sure the given
shapes and types all match the declared shapes and types. For instance,
computing an inner product of a 5-vector and a 3-vector is illegal
- creates the output arrays as necessary
This code-generator module does NOT produce any code to implicitly make copies
of the input. If the inputs fail validation (unknown types given, contiguity
checks failed, etc) then an exception is raised. Copying the input is
potentially slow, so we require the user to do that, if necessary.
** Explicated example
In the synopsis we declared the wrapper module like this:
#+BEGIN_EXAMPLE
m = npsp.module( name = "innerlib",
docstring = "An inner product module in C")
#+END_EXAMPLE
This produces a module named "innerlib". Note that the python importer will look
for this module in a file called "innerlib$EXT_SUFFIX" where EXT_SUFFIX comes
from the python configuration. This is normal behavior for python extension
modules.
A module can contain many wrapper functions. Each one is added by calling
'm.function()'. We did this:
#+BEGIN_EXAMPLE
m.function( "inner",
"Inner product pywrapped with numpysane_pywrap",
args_input = ('a', 'b'),
prototype_input = (('n',), ('n',)),
prototype_output = (),
Ccode_slice_eval = \
{np.float64:
r"""
double* out = (double*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
return true;""" })
#+END_EXAMPLE
We declared:
- A function "inner" with the given docstring
- two inputs to this function: named 'a' and 'b'. Each is a 1-dimensional array
of length 'n', same 'n' for both arrays
- one output: a scalar
- how to compute a single inner product where all inputs and outputs are 64-bit
floating-point values: this snippet of C is included in the generated sources
verbatim
It is possible to support multiple sets of types by passing more key/value
combinations in 'Ccode_slice_eval'. Each set of types requires a different C
snippet. If the input doesn't match any known type set, an exception will be
thrown. More on the type matching below.
The length of the inner product is defined by the length of the input, in this
case 'dims_slice__a[0]'. I could have looked at 'dims_slice__b[0]' instead, but
I know it's identical: the 'prototype_input' says that both 'a' and 'b' have
length 'n', and if we're running the slice code snippet, we know that the inputs
have already been checked, and have compatible dimensionality. More on this
below.
I did not assume the data is contiguous, so I use 'strides_slice__a' and
'strides_slice__b' to index the input arrays. We could add a validation function
that accepts only contiguous input; if we did that, the slice code snippet could
assume contiguous data and ignore the strides. More on that below.
Once all the functions have been added, we write out the generated code to
standard output by invoking
#+BEGIN_EXAMPLE
m.write()
#+END_EXAMPLE
** Dimension specification
The shapes of the inputs and outputs are given in the 'prototype_input' and
'prototype_output' arguments respectively. This is similar to how this is done
in 'numpysane.broadcast_define()': each prototype is a tuple of shapes, one for
each argument. Each shape is given as a tuple of sizes for each expected
dimension. Each size can be either
- a positive integer if we know the expected dimension size beforehand, and only
those sizes are accepted
- a string that names the dimension. Any size could be accepted for a named
dimension, but for any given named dimension, the sizes must match across all
inputs and outputs
Unlike 'numpysane.broadcast_define()', the shapes of both inputs and outputs
must be defined here: the output shape may not be omitted.
The common special case of a single output is supported: this one output is
specified in 'prototype_output' as a single shape, instead of a tuple of shapes.
This also affects whether the resulting python function returns the one output
or a tuple of outputs.
Examples:
A function taking in some 2D vectors and the same number of 3D vectors:
#+BEGIN_EXAMPLE
prototype_input = (('n',2), ('n',3))
#+END_EXAMPLE
A function producing a single 2D vector:
#+BEGIN_EXAMPLE
prototype_output = (2,)
#+END_EXAMPLE
A function producing 3 outputs: some number of 2D vectors, a single 3D vector
and a scalar:
#+BEGIN_EXAMPLE
prototype_output = (('n',2), (3,), ())
#+END_EXAMPLE
Note that when creating new output arrays, all the dimensions must be known from
the inputs. For instance, given this, we cannot create the output:
#+BEGIN_EXAMPLE
prototype_input = ((2,), ('n',))
prototype_output = (('m',), ('m', 'm'))
#+END_EXAMPLE
I have the inputs, so I know 'n', but I don't know 'm'. When calling a function
like this, it is required to pass in pre-allocated output arrays instead of
asking the wrapper code to create new ones. See below.
** In-place outputs
As with 'numpysane.broadcast_define()', the caller of the generated python
function may pre-allocate the output and pass it in the 'out' kwarg to be
filled-in. Sometimes this is required if we want to avoid extra copying of data.
This is also required if the output prototypes have any named dimensions not
present in the input prototypes: in this case we dont know how large the output
arrays should be, so we can't create them.
If a wrapped function is called this way, we check that the dimensions and types
in the outputs match the prototype. Otherwise, we create a new output array with
the correct type and shape.
If we have multiple outputs, the in-place arrays are given as a tuple of arrays
in the 'out' kwarg. If any outputs are pre-allocated, all of them must be.
Example. Let's use the inner-product we defined earlier. We compute two sets of
inner products. We make two calls to inner(), each one broadcasted to produce
two inner products into a non-contiguous slice of an output array:
#+BEGIN_EXAMPLE
import numpy as np
import innerlib
out=np.zeros((2,2), dtype=float)
innerlib.inner( np.arange(4, dtype=float),
np.arange(8, dtype=float).reshape( 2,4),
out=out[:,0] )
innerlib.inner( 1+np.arange(4, dtype=float),
np.arange(8, dtype=float).reshape( 2,4),
out=out[:,1] )
print(out)
#+END_EXAMPLE
The first two inner products end up in the first column of the output, and the
next two inner products in the second column:
#+BEGIN_EXAMPLE
$ python3 tst.py
[[14. 20.]
[38. 60.]]
#+END_EXAMPLE
If we have a function "f" that produces two outputs, we'd do this:
#+BEGIN_EXAMPLE
output0 = np.zeros(...)
output1 = np.zeros(...)
f( ..., out = (output0, output1) )
#+END_EXAMPLE
** Type checking
Since C code is involved, we must be very explicit about the types of our
arrays. These types are specified in the keys of the 'Ccode_slice_eval'
argument to 'function()'. For each type specification in a key, the
corresponding value is a C code snippet to use for that type spec. The type
specs can be either
- A type known by python and acceptable to numpy as a valid dtype. In this usage
ALL inputs and ALL outputs must have this type
- A tuple of types. The elements of this tuple correspond to each input, in
order, followed by each output, in order. This allows different arguments to
have different types
It is up to the user to make sure that the C snippet they provide matches the
types that they declared.
Example. Let's extend the inner product to know about 32-bit floats and also
about producing a rounded integer inner product from 64-bit floats:
#+BEGIN_EXAMPLE
m = npsp.module( name = "innerlib",
docstring = "An inner product module in C",
header = "#include <stdint.h>")
m.function( "inner",
"Inner product pywrapped with numpysane_pywrap",
args_input = ('a', 'b'),
prototype_input = (('n',), ('n',)),
prototype_output = (),
Ccode_slice_eval = \
{np.float64:
r"""
double* out = (double*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
return true;""",
np.float32:
r"""
float* out = (float*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const float*)(data_slice__a +
i*strides_slice__a[0]) *
*(const float*)(data_slice__b +
i*strides_slice__b[0]);
return true;""",
(np.float64, np.float64, np.int32):
r"""
double out = 0.0;
const int N = dims_slice__a[0];
for(int i=0; i<N; i++)
out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
*(int32_t*)data_slice__output = (int32_t)round(out);
return true;""" })
#+END_EXAMPLE
** Argument validation
After the wrapping code confirms that all the shapes and types match the
prototype, it calls a user-provided validation routine once to flag any extra
conditions that are required. A common use case: we're wrapping some C code that
assumes the input data is stored contiguously in memory, so the validation
routine checks that this is true.
This code snippet is provided in the 'Ccode_validate' argument to 'function()'.
The result is returned as a boolean: if the checks pass, we return true. If the
checks fail, we return false, which will result in an exception being thrown. If
you want to throw your own, more informative exception, you can do that as usual
(by calling something like PyErr_Format()) before returning false.
If the 'Ccode_validate' argument is omitted, no additional checks are performed,
and we accept all calls that satisfied the broadcasting and type requirements.
** Contiguity checking
Since checking for memory contiguity is a very common use case for argument
validation, there are convenience macros provided:
#+BEGIN_EXAMPLE
CHECK_CONTIGUOUS__NAME()
CHECK_CONTIGUOUS_AND_SETERROR__NAME()
CHECK_CONTIGUOUS_ALL()
CHECK_CONTIGUOUS_AND_SETERROR_ALL()
#+END_EXAMPLE
The strictest, and most common usage will accept only those calls where ALL
inputs and ALL outputs are stored in contiguous memory. This can be accomplished
by defining the function like
#+BEGIN_EXAMPLE
m.function( ...,
Ccode_validate = 'return CHECK_CONTIGUOUS_AND_SETERROR_ALL();' )
#+END_EXAMPLE
As before, "NAME" refers to each individual input or output, and "ALL" checks
all of them. These all evaluate to true if the argument in question IS
contiguous. The ..._AND_SETERROR_... flavor does that, but ALSO raises an
informative exception.
Generally you want to do this in the validation routine only, since it runs only
once. But there's nothing stopping you from checking this in the computation
function too.
Note that each broadcasted slice is processed separately, so the C code being
wrapped usually only cares about each SLICE being contiguous. If the dimensions
above each slice (those being broadcasted) are not contiguous, this doesn't
break the underlying assumptions. Thus the CHECK_CONTIGUOUS_... macros only
check and report the in-slice contiguity. If for some reason you need more than
this, you should write the check yourself, using the strides_full__... and
dims_full__... arrays.
** Slice computation
The code to evaluate each broadcasted slice is provided in the required
'Ccode_slice_eval' argument to 'function()'. This argument is a dict, specifying
different flavors of the available computation, with each code snippet present
in the values of this dict. Each code snippet is wrapped into a function which
returns a boolean: true on success, false on failure. If false is ever returned,
all subsequent slices are abandoned, and an exception is thrown. As with the
validation code, you can just return false, and a generic Exception will be
thrown. Or you can throw a more informative exception yourself prior to
returning false.
** Values available to the code snippets
Each of the user-supplied code blocks is placed into a separate function in the
generated code, with identical arguments in both cases. These arguments describe
the inputs and outputs, and are meant to be used by the user code. We have
dimensionality information:
#+BEGIN_EXAMPLE
const int Ndims_full__NAME
const npy_intp* dims_full__NAME
const int Ndims_slice__NAME
const npy_intp* dims_slice__NAME
#+END_EXAMPLE
where "NAME" is the name of the input or output. The input names are given in
the 'args_input' argument to 'function()'. If we have a single output, the
output name is "output". If we have multiple outputs, their names are "output0",
"output1", ... The ...full... arguments describe the full array, that describes
ALL the broadcasted slices. The ...slice... arguments describe each broadcasted
slice separately. Under most usages, you want the ...slice... information
because the C code we're wrapping only sees one slice at a time. Ndims...
describes how many dimensions we have in the corresponding dims... arrays.
npy_intp is a long integer used internally by numpy for dimension information.
We have memory layout information:
#+BEGIN_EXAMPLE
const npy_intp* strides_full__NAME
const npy_intp* strides_slice__NAME
npy_intp sizeof_element__NAME
#+END_EXAMPLE
NAME and full/slice and npy_intp have the same meanings as before. The
strides... arrays each have length described by the corresponding dims... The
strides contain the step size in bytes, of each dimension. sizeof_element...
describes the size in bytes, of a single data element.
Finally, I have a pointer to the data itself. The validation code gets a pointer
to the start of the whole data array:
#+BEGIN_EXAMPLE
void* data__NAME
#+END_EXAMPLE
but the computation code gets a pointer to the start of the slice we're
currently looking at:
#+BEGIN_EXAMPLE
void* data_slice__NAME
#+END_EXAMPLE
If the data in the arrays is representable as a basic C type (most integers,
floats and complex numbers), then convenience macros are available to index
elements in the sliced arrays and to conveniently access the C type of the data.
These macros take into account the data type and the strides.
#+BEGIN_EXAMPLE
#define ctype__NAME ...
#define item__NAME(...) ...
#+END_EXAMPLE
For instance, if we have a 2D array 'x' containing 64-bit floats, we'll have
this:
#+BEGIN_EXAMPLE
#define ctype__x npy_float64 /* "double" on most platforms */
#define item__x(i,j) (*(ctype__x*)(data_slice__x + ...))
#+END_EXAMPLE
For more complex types (objects, vectors, strings) you'll need to deal with the
strides and the pointers yourself.
Example: I'm computing a broadcasted slice. An input array 'x' is a
2-dimensional slice of dimension (3,4) of 64-bit floating-point values. I thus
have Ndims_slice__x == 2 and dims_slice__x[] = {3,4} and sizeof_element__x == 8.
An element of this array at i,j can be accessed with either
#+BEGIN_EXAMPLE
*((double*)(data_slice__a + i*strides_slice__a[0] + j*strides_slice__a[1]))
item__a(i,j)
#+END_EXAMPLE
Both are identical. If I defined a validation function that makes sure that 'a'
is stored in contiguous memory, the computation code doesn't need to look at the
strides at all, and element at i,j can be found more simply:
#+BEGIN_EXAMPLE
((double*)data_slice__a)[ i*dims_slice__a[1] + j ]
item__a(i,j)
#+END_EXAMPLE
As you can see, the item__...() macros are much simpler, less error-prone and
are thus the preferred form.
** Specifying extra, non-broadcasted arguments
Sometimes it is desired to pass extra arguments to the C code; ones that aren't
broadcasted in any way, but are just passed verbatim by the wrapping code down
to the inner C code. We can do that with the 'extra_args' argument to
'function()'. This argument is an tuple of tuples, where each inner tuple
represents an extra argument:
#+BEGIN_EXAMPLE
(c_type, arg_name, default_value, parse_arg)
#+END_EXAMPLE
Each element is a string.
- the "c_type" is the C type of the argument; something like "int" or "double",
or "const char*"
- the "arg_name" is the name of the argument, used in both the Python and the C
levels
- the "default_value" is the value the C wrapping code will use if this argument
is omitted in the Python call. Note that this is a string used in generating
the C code, so if we have an integer with a default value of 0, we use a
string "0" and not the integer 0
- the "parse_arg" is the code used in the PyArg_ParseTupleAndKeywords() call.
See the documentation for that function.
These extra arguments are expected to be read-only, and are passed as a const*
to the validation routines and the slice computation routines. If the C type is
already a pointer (most notably if it is a string), then we do NOT dereference
it a second time.
The generated code for parsing of Python arguments sets all of these extra
arguments as being optional, using the default_value if an argument is omitted.
If one of these arguments is actually required, the corresponding logic goes
into the validation function.
When calling the resulting Python function, the extra arguments MUST be
passed-in as kwargs. These will NOT work as positional arguments.
This is most clearly explained with an example. Let's update our inner product
example to accept a "scale" numerical argument and a "scale_string" string
argument, where the scale_string is required:
#+BEGIN_EXAMPLE
m.function( "inner",
"Inner product pywrapped with numpysane_pywrap",
args_input = ('a', 'b'),
prototype_input = (('n',), ('n',)),
prototype_output = (),
extra_args = (("double", "scale", "1", "d"),
("const char*", "scale_string", "NULL", "s")),
Ccode_validate = r"""
if(scale_string == NULL)
{
PyErr_Format(PyExc_RuntimeError,
"The 'scale_string' argument is required" );
return false;
}
return true; """,
Ccode_slice_eval = \
{np.float64:
r"""
double* out = (double*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
*out *= *scale * atof(scale_string);
return true;""" }
)
#+END_EXAMPLE
Now I can optionally scale the result:
#+BEGIN_EXAMPLE
>>> print(innerlib.inner( np.arange(4, dtype=float),
np.arange(8, dtype=float).reshape( 2,4)),
scale_string = "1.0")
[14. 38.]
>>> print(innerlib.inner( np.arange(4, dtype=float),
np.arange(8, dtype=float).reshape( 2,4),
scale = 2.0,
scale_string = "10.0"))
[280. 760.]
#+END_EXAMPLE
** Precomputing a cookie outside the slice computation
Sometimes it is useful to generate some resource once, before any of the
broadcasted slices were evaluated. The slice evaluation code could then make use
of this resource. Example: allocating memory, opening files. This is supported
using a 'cookie'. We define a structure that contains data that will be
available to all the generated functions. This structure is initialized at the
beginning, used by the slice computation functions, and then cleaned up at the
end. This is most easily described with an example. The scaled inner product
demonstrated immediately above has an inefficiency: we compute
'atof(scale_string)' once for every slice, even though the string does not
change. We should compute the atof() ONCE, and use the resulting value each
time. And we can:
#+BEGIN_EXAMPLE
m.function( "inner",
"Inner product pywrapped with numpysane_pywrap",
args_input = ('a', 'b'),
prototype_input = (('n',), ('n',)),
prototype_output = (),
extra_args = (("double", "scale", "1", "d"),
("const char*", "scale_string", "NULL", "s")),
Ccode_cookie_struct = r"""
double scale; /* from BOTH scale arguments: "scale", "scale_string" */
""",
Ccode_validate = r"""
if(scale_string == NULL)
{
PyErr_Format(PyExc_RuntimeError,
"The 'scale_string' argument is required" );
return false;
}
cookie->scale = *scale * (scale_string ? atof(scale_string) : 1.0);
return true; """,
Ccode_slice_eval = \
{np.float64:
r"""
double* out = (double*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
*out *= cookie->scale;
return true;""" },
// Cleanup, such as free() or close() goes here
Ccode_cookie_cleanup = ''
)
#+END_EXAMPLE
We defined a cookie structure that contains one element: 'double scale'. We
compute the scale factor (from BOTH of the extra arguments) before any of the
slices are evaluated: in the validation function. Then we apply the
already-computed scale with each slice. Both the validation and slice
computation functions have the whole cookie structure available in '*cookie'. It
is expected that the validation function will write something to the cookie, and
the slice functions will read it, but this is not enforced: this structure is
not const, and both functions can do whatever they like.
If the cookie initialization did something that must be cleaned up (like a
malloc() for instance), the cleanup code can be specified in the
'Ccode_cookie_cleanup' argument to function(). Note: this cleanup code is ALWAYS
executed, even if there were errors that raise an exception, EVEN if we haven't
initialized the cookie yet. When the cookie object is first initialized, it is
filled with 0, so the cleanup code can detect whether the cookie has been
initialized or not:
#+BEGIN_EXAMPLE
m.function( ...
Ccode_cookie_struct = r"""
...
bool initialized;
""",
Ccode_validate = r"""
...
cookie->initialized = true;
return true;
""",
Ccode_cookie_cleanup = r"""
if(cookie->initialized) cleanup();
""" )
#+END_EXAMPLE
** Examples
For some sample usage, see the wrapper-generator used in the test suite:
https://github.com/dkogan/numpysane/blob/master/test/genpywrap.py
** Planned functionality
Currently, each broadcasted slice is computed sequentially. But since the slices
are inherently independent, this is a natural place to add parallelism. And
implemention this with something like OpenMP should be straightforward. I'll get
around to doing this eventually, but in the meantime, patches are welcome.
* COMPATIBILITY
Python 2 and Python 3 should both be supported. Please report a bug if either
one doesn't work.
* REPOSITORY
https://github.com/dkogan/numpysane
* AUTHOR
Dima Kogan <dima@secretsauce.net>
* LICENSE AND COPYRIGHT
Copyright 2016-2020 Dima Kogan.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (any version) as published by
the Free Software Foundation
See https://www.gnu.org/licenses/lgpl.html
|