1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
|
r'''Python-wrap C code with broadcasting awareness
* SYNOPSIS
Let's implement a broadcastable and type-checked inner product that is
- Written in C (i.e. it is fast)
- Callable from python using numpy arrays (i.e. it is convenient)
We write a bit of python to generate the wrapping code. "genpywrap.py":
import numpy as np
import numpysane as nps
import numpysane_pywrap as npsp
m = npsp.module( name = "innerlib",
docstring = "An inner product module in C")
m.function( "inner",
"Inner product pywrapped with npsp",
args_input = ('a', 'b'),
prototype_input = (('n',), ('n',)),
prototype_output = (),
Ccode_slice_eval = \
{np.float64:
r"""
double* out = (double*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
return true;""" })
m.write()
We run this, and save the output to "inner_pywrap.c":
python3 genpywrap.py > inner_pywrap.c
We build this into a python module:
COMPILE=(`python3 -c "
import sysconfig
conf = sysconfig.get_config_vars()
print('{} {} {} -I{}'.format(*[conf[x] for x in ('CC',
'CFLAGS',
'CCSHARED',
'INCLUDEPY')]))"`)
LINK=(`python3 -c "
import sysconfig
conf = sysconfig.get_config_vars()
print('{} {} {}'.format(*[conf[x] for x in ('BLDSHARED',
'BLDLIBRARY',
'LDFLAGS')]))"`)
EXT_SUFFIX=`python3 -c "
import sysconfig
print(sysconfig.get_config_vars('EXT_SUFFIX')[0])"`
${COMPILE[@]} -c -o inner_pywrap.o inner_pywrap.c
${LINK[@]} -o innerlib$EXT_SUFFIX inner_pywrap.o
Here we used the build commands directly. This could be done with
setuptools/distutils instead; it's a normal extension module. And now we can
compute broadcasted inner products from a python script "tst.py":
import numpy as np
import innerlib
print(innerlib.inner( np.arange(4, dtype=float),
np.arange(8, dtype=float).reshape( 2,4)))
Running it to compute inner([0,1,2,3],[0,1,2,3]) and inner([0,1,2,3],[4,5,6,7]):
$ python3 tst.py
[14. 38.]
* DESCRIPTION
This module provides routines to python-wrap existing C code by generating C
sources that define the wrapper python extension module.
To create the wrappers we
1. Instantiate a new numpysane_pywrap.module class
2. Call module.function() for each wrapper function we want to add to this
module
3. Call module.write() to write the C sources defining this module to standard
output
The sources can then be built and executed normally, as any other python
extension module. The resulting functions are called as one would expect:
output = f_one_output (input0, input1, ...)
(output0, output1, ...) = f_multiple_outputs(input0, input1, ...)
depending on whether we declared a single output, or multiple outputs (see
below). It is also possible to pre-allocate the output array(s), and call the
functions like this (see below):
output = np.zeros(...)
f_one_output (input0, input1, ..., out = output)
output0 = np.zeros(...)
output1 = np.zeros(...)
f_multiple_outputs(input0, input1, ..., out = (output0, output1))
Each wrapped function is broadcasting-aware. The normal numpy broadcasting rules
(as described in 'broadcast_define' and on the numpy website:
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) apply. In
summary:
- Dimensions are aligned at the end of the shape list, and must match the
prototype
- Extra dimensions left over at the front must be consistent for all the
input arguments, meaning:
- All dimensions of length != 1 must match
- Dimensions of length 1 match corresponding dimensions of any length in
other arrays
- Missing leading dimensions are implicitly set to length 1
- The output(s) have a shape where
- The trailing dimensions match the prototype
- The leading dimensions come from the extra dimensions in the inputs
When we create a wrapper function, we only define how to compute a single
broadcasted slice. If the generated function is called with higher-dimensional
inputs, this slice code will be called multiple times. This broadcast loop is
produced by the numpysane_pywrap generator automatically. The generated code
also
- parses the python arguments
- generates python return values
- validates the inputs (and any pre-allocated outputs) to make sure the given
shapes and types all match the declared shapes and types. For instance,
computing an inner product of a 5-vector and a 3-vector is illegal
- creates the output arrays as necessary
This code-generator module does NOT produce any code to implicitly make copies
of the input. If the inputs fail validation (unknown types given, contiguity
checks failed, etc) then an exception is raised. Copying the input is
potentially slow, so we require the user to do that, if necessary.
** Explicated example
In the synopsis we declared the wrapper module like this:
m = npsp.module( name = "innerlib",
docstring = "An inner product module in C")
This produces a module named "innerlib". Note that the python importer will look
for this module in a file called "innerlib$EXT_SUFFIX" where EXT_SUFFIX comes
from the python configuration. This is normal behavior for python extension
modules.
A module can contain many wrapper functions. Each one is added by calling
'm.function()'. We did this:
m.function( "inner",
"Inner product pywrapped with numpysane_pywrap",
args_input = ('a', 'b'),
prototype_input = (('n',), ('n',)),
prototype_output = (),
Ccode_slice_eval = \
{np.float64:
r"""
double* out = (double*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
return true;""" })
We declared:
- A function "inner" with the given docstring
- two inputs to this function: named 'a' and 'b'. Each is a 1-dimensional array
of length 'n', same 'n' for both arrays
- one output: a scalar
- how to compute a single inner product where all inputs and outputs are 64-bit
floating-point values: this snippet of C is included in the generated sources
verbatim
It is possible to support multiple sets of types by passing more key/value
combinations in 'Ccode_slice_eval'. Each set of types requires a different C
snippet. If the input doesn't match any known type set, an exception will be
thrown. More on the type matching below.
The length of the inner product is defined by the length of the input, in this
case 'dims_slice__a[0]'. I could have looked at 'dims_slice__b[0]' instead, but
I know it's identical: the 'prototype_input' says that both 'a' and 'b' have
length 'n', and if we're running the slice code snippet, we know that the inputs
have already been checked, and have compatible dimensionality. More on this
below.
I did not assume the data is contiguous, so I use 'strides_slice__a' and
'strides_slice__b' to index the input arrays. We could add a validation function
that accepts only contiguous input; if we did that, the slice code snippet could
assume contiguous data and ignore the strides. More on that below.
Once all the functions have been added, we write out the generated code to
standard output by invoking
m.write()
** Dimension specification
The shapes of the inputs and outputs are given in the 'prototype_input' and
'prototype_output' arguments respectively. This is similar to how this is done
in 'numpysane.broadcast_define()': each prototype is a tuple of shapes, one for
each argument. Each shape is given as a tuple of sizes for each expected
dimension. Each size can be either
- a positive integer if we know the expected dimension size beforehand, and only
those sizes are accepted
- a string that names the dimension. Any size could be accepted for a named
dimension, but for any given named dimension, the sizes must match across all
inputs and outputs
Unlike 'numpysane.broadcast_define()', the shapes of both inputs and outputs
must be defined here: the output shape may not be omitted.
The common special case of a single output is supported: this one output is
specified in 'prototype_output' as a single shape, instead of a tuple of shapes.
This also affects whether the resulting python function returns the one output
or a tuple of outputs.
Examples:
A function taking in some 2D vectors and the same number of 3D vectors:
prototype_input = (('n',2), ('n',3))
A function producing a single 2D vector:
prototype_output = (2,)
A function producing 3 outputs: some number of 2D vectors, a single 3D vector
and a scalar:
prototype_output = (('n',2), (3,), ())
Note that when creating new output arrays, all the dimensions must be known from
the inputs. For instance, given this, we cannot create the output:
prototype_input = ((2,), ('n',))
prototype_output = (('m',), ('m', 'm'))
I have the inputs, so I know 'n', but I don't know 'm'. When calling a function
like this, it is required to pass in pre-allocated output arrays instead of
asking the wrapper code to create new ones. See below.
** In-place outputs
As with 'numpysane.broadcast_define()', the caller of the generated python
function may pre-allocate the output and pass it in the 'out' kwarg to be
filled-in. Sometimes this is required if we want to avoid extra copying of data.
This is also required if the output prototypes have any named dimensions not
present in the input prototypes: in this case we dont know how large the output
arrays should be, so we can't create them.
If a wrapped function is called this way, we check that the dimensions and types
in the outputs match the prototype. Otherwise, we create a new output array with
the correct type and shape.
If we have multiple outputs, the in-place arrays are given as a tuple of arrays
in the 'out' kwarg. If any outputs are pre-allocated, all of them must be.
Example. Let's use the inner-product we defined earlier. We compute two sets of
inner products. We make two calls to inner(), each one broadcasted to produce
two inner products into a non-contiguous slice of an output array:
import numpy as np
import innerlib
out=np.zeros((2,2), dtype=float)
innerlib.inner( np.arange(4, dtype=float),
np.arange(8, dtype=float).reshape( 2,4),
out=out[:,0] )
innerlib.inner( 1+np.arange(4, dtype=float),
np.arange(8, dtype=float).reshape( 2,4),
out=out[:,1] )
print(out)
The first two inner products end up in the first column of the output, and the
next two inner products in the second column:
$ python3 tst.py
[[14. 20.]
[38. 60.]]
If we have a function "f" that produces two outputs, we'd do this:
output0 = np.zeros(...)
output1 = np.zeros(...)
f( ..., out = (output0, output1) )
** Type checking
Since C code is involved, we must be very explicit about the types of our
arrays. These types are specified in the keys of the 'Ccode_slice_eval'
argument to 'function()'. For each type specification in a key, the
corresponding value is a C code snippet to use for that type spec. The type
specs can be either
- A type known by python and acceptable to numpy as a valid dtype. In this usage
ALL inputs and ALL outputs must have this type
- A tuple of types. The elements of this tuple correspond to each input, in
order, followed by each output, in order. This allows different arguments to
have different types
It is up to the user to make sure that the C snippet they provide matches the
types that they declared.
Example. Let's extend the inner product to know about 32-bit floats and also
about producing a rounded integer inner product from 64-bit floats:
m = npsp.module( name = "innerlib",
docstring = "An inner product module in C",
header = "#include <stdint.h>")
m.function( "inner",
"Inner product pywrapped with numpysane_pywrap",
args_input = ('a', 'b'),
prototype_input = (('n',), ('n',)),
prototype_output = (),
Ccode_slice_eval = \
{np.float64:
r"""
double* out = (double*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
return true;""",
np.float32:
r"""
float* out = (float*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const float*)(data_slice__a +
i*strides_slice__a[0]) *
*(const float*)(data_slice__b +
i*strides_slice__b[0]);
return true;""",
(np.float64, np.float64, np.int32):
r"""
double out = 0.0;
const int N = dims_slice__a[0];
for(int i=0; i<N; i++)
out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
*(int32_t*)data_slice__output = (int32_t)round(out);
return true;""" })
** Argument validation
After the wrapping code confirms that all the shapes and types match the
prototype, it calls a user-provided validation routine once to flag any extra
conditions that are required. A common use case: we're wrapping some C code that
assumes the input data is stored contiguously in memory, so the validation
routine checks that this is true.
This code snippet is provided in the 'Ccode_validate' argument to 'function()'.
The result is returned as a boolean: if the checks pass, we return true. If the
checks fail, we return false, which will result in an exception being thrown. If
you want to throw your own, more informative exception, you can do that as usual
(by calling something like PyErr_Format()) before returning false.
If the 'Ccode_validate' argument is omitted, no additional checks are performed,
and we accept all calls that satisfied the broadcasting and type requirements.
** Contiguity checking
Since checking for memory contiguity is a very common use case for argument
validation, there are convenience macros provided:
CHECK_CONTIGUOUS__NAME()
CHECK_CONTIGUOUS_AND_SETERROR__NAME()
CHECK_CONTIGUOUS_ALL()
CHECK_CONTIGUOUS_AND_SETERROR_ALL()
The strictest, and most common usage will accept only those calls where ALL
inputs and ALL outputs are stored in contiguous memory. This can be accomplished
by defining the function like
m.function( ...,
Ccode_validate = 'return CHECK_CONTIGUOUS_AND_SETERROR_ALL();' )
As before, "NAME" refers to each individual input or output, and "ALL" checks
all of them. These all evaluate to true if the argument in question IS
contiguous. The ..._AND_SETERROR_... flavor does that, but ALSO raises an
informative exception.
Generally you want to do this in the validation routine only, since it runs only
once. But there's nothing stopping you from checking this in the computation
function too.
Note that each broadcasted slice is processed separately, so the C code being
wrapped usually only cares about each SLICE being contiguous. If the dimensions
above each slice (those being broadcasted) are not contiguous, this doesn't
break the underlying assumptions. Thus the CHECK_CONTIGUOUS_... macros only
check and report the in-slice contiguity. If for some reason you need more than
this, you should write the check yourself, using the strides_full__... and
dims_full__... arrays.
** Slice computation
The code to evaluate each broadcasted slice is provided in the required
'Ccode_slice_eval' argument to 'function()'. This argument is a dict, specifying
different flavors of the available computation, with each code snippet present
in the values of this dict. Each code snippet is wrapped into a function which
returns a boolean: true on success, false on failure. If false is ever returned,
all subsequent slices are abandoned, and an exception is thrown. As with the
validation code, you can just return false, and a generic Exception will be
thrown. Or you can throw a more informative exception yourself prior to
returning false.
** Values available to the code snippets
Each of the user-supplied code blocks is placed into a separate function in the
generated code, with identical arguments in both cases. These arguments describe
the inputs and outputs, and are meant to be used by the user code. We have
dimensionality information:
const int Ndims_full__NAME
const npy_intp* dims_full__NAME
const int Ndims_slice__NAME
const npy_intp* dims_slice__NAME
where "NAME" is the name of the input or output. The input names are given in
the 'args_input' argument to 'function()'. If we have a single output, the
output name is "output". If we have multiple outputs, their names are "output0",
"output1", ... The ...full... arguments describe the full array, that describes
ALL the broadcasted slices. The ...slice... arguments describe each broadcasted
slice separately. Under most usages, you want the ...slice... information
because the C code we're wrapping only sees one slice at a time. Ndims...
describes how many dimensions we have in the corresponding dims... arrays.
npy_intp is a long integer used internally by numpy for dimension information.
We have memory layout information:
const npy_intp* strides_full__NAME
const npy_intp* strides_slice__NAME
npy_intp sizeof_element__NAME
NAME and full/slice and npy_intp have the same meanings as before. The
strides... arrays each have length described by the corresponding dims... The
strides contain the step size in bytes, of each dimension. sizeof_element...
describes the size in bytes, of a single data element.
Finally, I have a pointer to the data itself. The validation code gets a pointer
to the start of the whole data array:
void* data__NAME
but the computation code gets a pointer to the start of the slice we're
currently looking at:
void* data_slice__NAME
If the data in the arrays is representable as a basic C type (most integers,
floats and complex numbers), then convenience macros are available to index
elements in the sliced arrays and to conveniently access the C type of the data.
These macros take into account the data type and the strides.
#define ctype__NAME ...
#define item__NAME(...) ...
For instance, if we have a 2D array 'x' containing 64-bit floats, we'll have
this:
#define ctype__x npy_float64 /* "double" on most platforms */
#define item__x(i,j) (*(ctype__x*)(data_slice__x + ...))
For more complex types (objects, vectors, strings) you'll need to deal with the
strides and the pointers yourself.
Example: I'm computing a broadcasted slice. An input array 'x' is a
2-dimensional slice of dimension (3,4) of 64-bit floating-point values. I thus
have Ndims_slice__x == 2 and dims_slice__x[] = {3,4} and sizeof_element__x == 8.
An element of this array at i,j can be accessed with either
*((double*)(data_slice__a + i*strides_slice__a[0] + j*strides_slice__a[1]))
item__a(i,j)
Both are identical. If I defined a validation function that makes sure that 'a'
is stored in contiguous memory, the computation code doesn't need to look at the
strides at all, and element at i,j can be found more simply:
((double*)data_slice__a)[ i*dims_slice__a[1] + j ]
item__a(i,j)
As you can see, the item__...() macros are much simpler, less error-prone and
are thus the preferred form.
** Specifying extra, non-broadcasted arguments
Sometimes it is desired to pass extra arguments to the C code; ones that aren't
broadcasted in any way, but are just passed verbatim by the wrapping code down
to the inner C code. We can do that with the 'extra_args' argument to
'function()'. This argument is an tuple of tuples, where each inner tuple
represents an extra argument:
(c_type, arg_name, default_value, parse_arg)
Each element is a string.
- the "c_type" is the C type of the argument; something like "int" or "double",
or "const char*"
- the "arg_name" is the name of the argument, used in both the Python and the C
levels
- the "default_value" is the value the C wrapping code will use if this argument
is omitted in the Python call. Note that this is a string used in generating
the C code, so if we have an integer with a default value of 0, we use a
string "0" and not the integer 0
- the "parse_arg" is the code used in the PyArg_ParseTupleAndKeywords() call.
See the documentation for that function.
These extra arguments are expected to be read-only, and are passed as a const*
to the validation routines and the slice computation routines. If the C type is
already a pointer (most notably if it is a string), then we do NOT dereference
it a second time.
The generated code for parsing of Python arguments sets all of these extra
arguments as being optional, using the default_value if an argument is omitted.
If one of these arguments is actually required, the corresponding logic goes
into the validation function.
When calling the resulting Python function, the extra arguments MUST be
passed-in as kwargs. These will NOT work as positional arguments.
This is most clearly explained with an example. Let's update our inner product
example to accept a "scale" numerical argument and a "scale_string" string
argument, where the scale_string is required:
m.function( "inner",
"Inner product pywrapped with numpysane_pywrap",
args_input = ('a', 'b'),
prototype_input = (('n',), ('n',)),
prototype_output = (),
extra_args = (("double", "scale", "1", "d"),
("const char*", "scale_string", "NULL", "s")),
Ccode_validate = r"""
if(scale_string == NULL)
{
PyErr_Format(PyExc_RuntimeError,
"The 'scale_string' argument is required" );
return false;
}
return true; """,
Ccode_slice_eval = \
{np.float64:
r"""
double* out = (double*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
*out *= *scale * atof(scale_string);
return true;""" }
)
Now I can optionally scale the result:
>>> print(innerlib.inner( np.arange(4, dtype=float),
np.arange(8, dtype=float).reshape( 2,4)),
scale_string = "1.0")
[14. 38.]
>>> print(innerlib.inner( np.arange(4, dtype=float),
np.arange(8, dtype=float).reshape( 2,4),
scale = 2.0,
scale_string = "10.0"))
[280. 760.]
** Precomputing a cookie outside the slice computation
Sometimes it is useful to generate some resource once, before any of the
broadcasted slices were evaluated. The slice evaluation code could then make use
of this resource. Example: allocating memory, opening files. This is supported
using a 'cookie'. We define a structure that contains data that will be
available to all the generated functions. This structure is initialized at the
beginning, used by the slice computation functions, and then cleaned up at the
end. This is most easily described with an example. The scaled inner product
demonstrated immediately above has an inefficiency: we compute
'atof(scale_string)' once for every slice, even though the string does not
change. We should compute the atof() ONCE, and use the resulting value each
time. And we can:
m.function( "inner",
"Inner product pywrapped with numpysane_pywrap",
args_input = ('a', 'b'),
prototype_input = (('n',), ('n',)),
prototype_output = (),
extra_args = (("double", "scale", "1", "d"),
("const char*", "scale_string", "NULL", "s")),
Ccode_cookie_struct = r"""
double scale; /* from BOTH scale arguments: "scale", "scale_string" */
""",
Ccode_validate = r"""
if(scale_string == NULL)
{
PyErr_Format(PyExc_RuntimeError,
"The 'scale_string' argument is required" );
return false;
}
cookie->scale = *scale * (scale_string ? atof(scale_string) : 1.0);
return true; """,
Ccode_slice_eval = \
{np.float64:
r"""
double* out = (double*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
*out *= cookie->scale;
return true;""" },
// Cleanup, such as free() or close() goes here
Ccode_cookie_cleanup = ''
)
We defined a cookie structure that contains one element: 'double scale'. We
compute the scale factor (from BOTH of the extra arguments) before any of the
slices are evaluated: in the validation function. Then we apply the
already-computed scale with each slice. Both the validation and slice
computation functions have the whole cookie structure available in '*cookie'. It
is expected that the validation function will write something to the cookie, and
the slice functions will read it, but this is not enforced: this structure is
not const, and both functions can do whatever they like.
If the cookie initialization did something that must be cleaned up (like a
malloc() for instance), the cleanup code can be specified in the
'Ccode_cookie_cleanup' argument to function(). Note: this cleanup code is ALWAYS
executed, even if there were errors that raise an exception, EVEN if we haven't
initialized the cookie yet. When the cookie object is first initialized, it is
filled with 0, so the cleanup code can detect whether the cookie has been
initialized or not:
m.function( ...
Ccode_cookie_struct = r"""
...
bool initialized;
""",
Ccode_validate = r"""
...
cookie->initialized = true;
return true;
""",
Ccode_cookie_cleanup = r"""
if(cookie->initialized) cleanup();
""" )
** Examples
For some sample usage, see the wrapper-generator used in the test suite:
https://github.com/dkogan/numpysane/blob/master/test/genpywrap.py
** Planned functionality
Currently, each broadcasted slice is computed sequentially. But since the slices
are inherently independent, this is a natural place to add parallelism. And
implemention this with something like OpenMP should be straightforward. I'll get
around to doing this eventually, but in the meantime, patches are welcome.
'''
import sys
import time
import numpy as np
from numpysane import NumpysaneError
import os
import re
# Technically I'm supposed to use some "resource extractor" something to unbreak
# setuptools. But I'm instead assuming that this was installed via Debian or by
# using the eager_resources tag in setup(). This allows files to remain files,
# and to appear in a "normal" directory, where this script can grab them and use
# them
#
# And I try two different directories, in case I'm running in-place
#
# And pip does something yet different, which I support in a hacky way. This is
# a mess
_pywrap_path = [ # in-place: running from the source tree
os.path.dirname( __file__ ) + '/pywrap-templates',
# distro: /usr/share/...
sys.prefix + '/share/python-numpysane/pywrap-templates' ]
# pip: /home/whoever/.local/share/...
_m = re.match(r"(/home/[^/]+/\.local)/lib/", __file__)
if _m is not None:
_local_prefix = _m.group(1)
_pywrap_path.append( _local_prefix + '/share/python-numpysane/pywrap-templates')
for p in _pywrap_path:
_module_header_filename = p + '/pywrap_module_header.c'
_module_footer_filename = p + '/pywrap_module_footer_generic.c'
_function_filename = p + '/pywrap_function_generic.c'
if os.path.exists(_module_header_filename):
break
else:
raise NumpysaneError("Couldn't find pywrap templates! Looked in {}".format(_pywrap_path))
def _quote(s, convert_newlines=False):
r'''Quote string for inclusion in C code
There should be a library for this. Hopefuly this is correct.
'''
s = s.replace('\\', '\\\\') # Pass all \ through verbatim
if convert_newlines:
s = s.replace('\n', '\\n') # All newlines -> \n
s = s.replace('"', '\\"') # Quote all "
return s
def _substitute(s, **kwargs):
r'''format() with specific semantics
- {xxx} substitutions found in kwargs are made
- {xxx} expressions not found in kwargs are left as is
- {{ }} escaping is not respected: any '{xxx}' is replaced
Otherwise they're left alone (useful for C code)
'''
for k in kwargs.keys():
s = s.replace('{' + k + '}', kwargs[k])
return s
class module:
def __init__(self, name, docstring, header=''):
r'''Initialize the python-wrapper-generator
SYNOPSIS
import numpysane_pywrap as npsp
m = npsp.module( name = "wrapped_library",
docstring = r"""wrapped by numpysane_pywrap
Does this thing and does that thing""",
header = '#include "library.h"')
ARGUMENTS
- name
The name of the python module we're creating
- docstring
The docstring for this module
- header
Optional, defaults to ''. C code to include verbatim. Any #includes or
utility functions can go here
'''
with open( _module_header_filename, 'r') as f:
self.module_header = f.read() + "\n" + header + "\n"
with open( _module_footer_filename, 'r') as f:
self.module_footer = _substitute(f.read(),
MODULE_NAME = name,
MODULE_DOCSTRING = _quote(docstring, convert_newlines=True))
self.functions = []
self.module_name = name
def function(self,
name,
docstring,
args_input,
prototype_input,
prototype_output,
Ccode_slice_eval,
Ccode_validate = None,
Ccode_cookie_struct = '',
Ccode_cookie_cleanup = '',
extra_args = ()):
r'''Add a wrapper function to the module we're creating
SYNOPSIS
We can wrap a C function inner() like this:
m.function( "inner",
"Inner product pywrapped with npsp",
args_input = ('a', 'b'),
prototype_input = (('n',), ('n',)),
prototype_output = (),
Ccode_slice_eval = \
{np.float64:
r"""
double* out = (double*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
return true;""" })
DESCRIPTION
'function()' is the main workhorse of numpysane_pywrap python wrapping.
For each C function we want to wrap, 'function()' should be called to
generate the wrapper code. In the call to 'function()' the user
specifies how the wrapper should compute a single broadcasted slice, and
numpysane_pywrap generates the code to do everything else. See the
numpysane_pywrap module docstring for lots of detail.
ARGUMENTS
A summary description of the arguments follows. See the numpysane_pywrap
module docstring for detail.
- name
The name of the function we're wrapping. A python function of this
name will be generated in this module
- docstring
The docstring for this function
- args_input
The names of the arguments. This is an tuple of strings. Must have
the same number of elements as prototype_input
- prototype_input
An tuple of tuples that defines the shapes of the inputs. Must have
the same number of elements as args_input. Each element of the outer
tuple describes the shape of the corresponding input. Each shape is
given as an tuple describing the length of each dimension. Each length
is either
- a positive integer if we know the expected dimension size
beforehand, and only those sizes are accepted
- a string that names the dimension. Any size could be accepted for a
named dimension, but for any given named dimension, the sizes must
match across all inputs and outputs
- prototype_output
Similar to prototype_input: describes the dimensions of each output.
In the special case that we have only one output, this can be given as
a shape tuple instead of a tuple of shape tuples.
- extra_args
Defines extra arguments to accept in the validation and slice
computation functions. These extra arguments are not broadcast or
interpreted in any way; they're simply passed down from the python
caller to these functions. Please see the numpysane_pywrap module
docstring for more detail.
- Ccode_cookie_struct
A string of C code inserted into the generated sources verbatim. This
defines contents of a structure that can be precomputed once before
any broadcasted slice is evaluated. The slice computation can then use
the results in this structure. The cookie is evaluated in the
validation function (once per call), used by the slice-computation
function (many times), and cleaned up at the end of the call. This
argument is optional. If omitted, the cookie structure will be empty,
and unused. Please see the numpysane_pywrap module docstring for more
detail.
- Ccode_cookie_cleanup
If we're precomputing a cookie defined in the Ccode_cookie_struct, any
necessary cleanup can be handled by code specified in this argument.
Example: if we allocated some memory and opened files when
constructing the cookie, the memory should be freed and the files
should be closed by placing that code into this argument. Please see
the numpysane_pywrap module docstring for more detail.
- Ccode_validate
A string of C code inserted into the generated sources verbatim. This
is used to validate the input/output arguments prior to actually
performing the computation. This runs after we made the broadcasting
shape checks and type checks. If those checks are all we need, this
argument may be omitted, and no more checks are made. The most common
use case is rejecting inputs that are not stored contiguously in
memory. Please see the numpysane_pywrap module docstring for more
detail.
- Ccode_slice_eval
This argument contains the snippet of C code used to execute the
operation being wrapped. This argument is a dict mapping a type
specification to code snippets: different data types require different
C code to work with them. The type specification is either
- a numpy type (np.float64, np.int32, etc). We'll use the given code
if ALL the inputs and ALL the outputs are of this type
- a tuple of numpy types. These correspond to the inputs and outputs,
in order. This allows us to use different data types for the various
inputs and outputs
The corresponding code snippet is a string of C code that's inserted
into the generated sources verbatim. Please see the numpysane_pywrap
module docstring for more detail.
'''
if type(args_input) not in (list, tuple) or not all( type(arg) is str for arg in args_input):
raise NumpysaneError("args_input MUST be a list or tuple of strings")
Ninputs = len(args_input)
if len(prototype_input) != Ninputs:
raise NumpysaneError("Input prototype says we have {} arguments, but names for {} were given. These must match". \
format(len(prototype_input), Ninputs))
# I enumerate each named dimension, starting from -1, and counting DOWN
named_dims = {}
if not isinstance(prototype_input, tuple):
raise NumpysaneError("Input prototype must be given as a tuple")
for i_arg in range(len(prototype_input)):
dims_input = prototype_input[i_arg]
if not isinstance(dims_input, tuple):
raise NumpysaneError("Input prototype dims must be given as a tuple")
for i_dim in range(len(dims_input)):
dim = dims_input[i_dim]
if isinstance(dim,int):
if dim < 0:
raise NumpysaneError("Dimension {} in argument '{}' must be a string (named dimension) or an integer>=0. Got '{}'". \
format(i_dim, args_input[i_arg], dim))
elif isinstance(dim, str):
if dim not in named_dims:
named_dims[dim] = -1-len(named_dims)
else:
raise NumpysaneError("Dimension {} in argument '{}' must be a string (named dimension) or an integer>=0. Got '{}' (type '{}')". \
format(i_dim, args_input[i_arg], dim, type(dim)))
# The output is allowed to have named dimensions, but ONLY those that
# appear in the input. The output may be a single tuple (describing the
# one output) or it can be a tuple of tuples (describing multiple
# outputs)
if not isinstance(prototype_output, tuple):
raise NumpysaneError("Output prototype dims must be given as a tuple")
# If a single prototype_output is given, wrap it in a tuple to indicate
# that we only have one output
# If None, the single output is returned. If an integer, then a tuple is
# returned. If Noutputs==1 then we return a TUPLE of length 1
Noutputs = None
if all( type(o) is int or type(o) is str for o in prototype_output ):
prototype_outputs = (prototype_output, )
else:
prototype_outputs = prototype_output
if not all( isinstance(p,tuple) for p in prototype_outputs ):
raise NumpysaneError("Output dimensions must be integers > 0 or strings. Each output must be a tuple. Some given output aren't tuples: {}". \
format(prototype_outputs))
Noutputs = len(prototype_outputs)
for i_output in range(len(prototype_outputs)):
dims_output = prototype_outputs[i_output]
for i_dim in range(len(dims_output)):
dim = dims_output[i_dim]
if isinstance(dim,int):
if dim < 0:
raise NumpysaneError("Output {} dimension {} must be a string (named dimension) or an integer>=0. Got '{}'". \
format(i_output, i_dim, dim))
elif isinstance(dim, str):
if dim not in named_dims:
# This output is a new named dimension. Output matrices must be passed in to define it
named_dims[dim] = -1-len(named_dims)
else:
raise NumpysaneError("Dimension {} in output {} must be a string (named dimension) or an integer>=0. Got '{}' (type '{}')". \
format(i_dim, i_output, dim, type(dim)))
def expand_prototype(shape):
r'''Produces a shape string for each argument
This is the dimensions passed-into this function except, named
dimensions are consolidated, and set to -1,-2,..., and the whole
thing is stringified and joined
'''
shape = [ dim if isinstance(dim,int) else named_dims[dim] for dim in shape ]
return ','.join(str(dim) for dim in shape)
PROTOTYPE_DIM_DEFS = ''
for i_arg_input in range(Ninputs):
PROTOTYPE_DIM_DEFS += " const npy_intp PROTOTYPE_{}[{}] = {{{}}};\n". \
format(args_input[i_arg_input],
len(prototype_input[i_arg_input]),
expand_prototype(prototype_input[i_arg_input]));
if Noutputs is None:
PROTOTYPE_DIM_DEFS += " const npy_intp PROTOTYPE_{}[{}] = {{{}}};\n". \
format("output",
len(prototype_output),
expand_prototype(prototype_output));
else:
for i_output in range(Noutputs):
PROTOTYPE_DIM_DEFS += " const npy_intp PROTOTYPE_{}{}[{}] = {{{}}};\n". \
format("output",
i_output,
len(prototype_outputs[i_output]),
expand_prototype(prototype_outputs[i_output]));
PROTOTYPE_DIM_DEFS += " int Ndims_named = {};\n". \
format(len(named_dims))
# Output handling. We unpack each output array into a separate variable.
# And if we have multiple outputs, we make sure that each one is
# passed as a pre-allocated array
#
# At the start __py__output__arg has no reference
if Noutputs is None:
# Just one output. The argument IS the output array
UNPACK_OUTPUTS = r'''
int populate_output_tuple__i = -1;
if(__py__output__arg == Py_None) __py__output__arg = NULL;
if(__py__output__arg == NULL)
{
// One output, not given. Leave everything at NULL (it already is).
// Will be allocated later
}
else
{
// Argument given. Treat it as an array
Py_INCREF(__py__output__arg);
if(!PyArray_Check(__py__output__arg))
{
PyErr_SetString(PyExc_RuntimeError,
"Could not interpret given argument as a numpy array");
goto done;
}
__py__output = (PyArrayObject*)__py__output__arg;
Py_INCREF(__py__output);
}
'''
else:
# Multiple outputs. Unpack, make sure we have pre-made arrays
UNPACK_OUTPUTS = r'''
int populate_output_tuple__i = -1;
if(__py__output__arg == Py_None) __py__output__arg = NULL;
if(__py__output__arg == NULL)
{
__py__output__arg = PyTuple_New({Noutputs});
if(__py__output__arg == NULL)
{
PyErr_Format(PyExc_RuntimeError,
"Could not allocate output tuple of length %d", {Noutputs});
goto done;
}
// I made a tuple, but I don't yet have arrays to populate it with. I'll make
// those later, and I'll fill the tuple later
populate_output_tuple__i = 0;
}
else
{
Py_INCREF(__py__output__arg);
if( !PySequence_Check(__py__output__arg) )
{
PyErr_Format(PyExc_RuntimeError,
"Have multiple outputs. The given 'out' argument is expected to be a sequence of length %d, but a non-sequence was given",
{Noutputs});
goto done;
}
if( PySequence_Size(__py__output__arg) != {Noutputs} )
{
PyErr_Format(PyExc_RuntimeError,
"Have multiple outputs. The given 'out' argument is expected to be a sequence of length %d, but a sequence of length %d was given",
{Noutputs}, PySequence_Size(__py__output__arg));
goto done;
}
#define PULL_OUT_OUTPUT_ARRAYS(name) \
__py__ ## name = (PyArrayObject*)PySequence_GetItem(__py__output__arg, i++); \
if(__py__ ## name == NULL || !PyArray_Check(__py__ ## name)) \
{ \
PyErr_SetString(PyExc_RuntimeError, \
"Have multiple outputs. The given 'out' array MUST contain pre-allocated arrays, but " #name " is not an array"); \
goto done; \
}
int i=0;
OUTPUTS(PULL_OUT_OUTPUT_ARRAYS)
#undef PULL_OUT_OUTPUT_ARRAYS
}
'''.replace('{Noutputs}', str(Noutputs))
# The keys of Ccode_slice_eval are either:
# - a type: all inputs, outputs MUST have this type
# - a list of types: the types in this list correspond to the inputs and
# outputs of the call, in that order.
#
# I convert the known-type list to the one-type-per-element form for
# consistent processing
known_types = list(Ccode_slice_eval.keys())
Ninputs_and_outputs = Ninputs + (1 if Noutputs is None else Noutputs)
for i in range(len(known_types)):
if isinstance(known_types[i], type):
known_types[i] = (known_types[i],) * Ninputs_and_outputs
elif hasattr(known_types[i], '__iter__') and \
len(known_types[i]) == Ninputs_and_outputs and \
all(isinstance(t,type) for t in known_types[i]):
# already a list of types. we're good
pass
else:
raise NumpysaneError("Each of Ccode_slice_eval.keys() MUST be either a type, or a list of types (one for each input followed by one for each output in order; {} + {} = {} total)".format(Ninputs, Ninputs_and_outputs-Ninputs, Ninputs_and_outputs))
# {TYPESETS} is _(11, 15, 17, 0) _(13, 15, 17, 1)
# {TYPESET_MATCHES_ARGLIST} is t0,t1,t2
# {TYPESETS_NAMES} is
# " (float32,int32)\n"
# " (float64,int32)\n"
TYPESETS = ' '.join( ("_(" + ','.join(tuple(str(np.dtype(t).num) for t in known_types[i]) + (str(i),)) + ')') \
for i in range(len(known_types)))
TYPESET_MATCHES_ARGLIST = ','.join(('t' + str(i)) for i in range(Ninputs_and_outputs))
def parened_type_list(l, Ninputs):
r'''Converts list of types to string
Like "(inputs: float32,int32 outputs: float32, float32)"
'''
si = 'inputs: ' + ','.join( np.dtype(t).name for t in l[:Ninputs])
so = 'outputs: ' + ','.join( np.dtype(t).name for t in l[Ninputs:])
return '(' + si + ' ' + so + ')'
TYPESETS_NAMES = ' '.join(('" ' + parened_type_list(s,Ninputs) +'\\n"') \
for s in known_types)
ARGUMENTS_LIST = ['#define ARGUMENTS(_)']
for i_arg_input in range(Ninputs):
ARGUMENTS_LIST.append( '_({})'.format(args_input[i_arg_input]) )
OUTPUTS_LIST = ['#define OUTPUTS(_)']
if Noutputs is None:
OUTPUTS_LIST.append( '_({})'.format("output") )
else:
for i_output in range(Noutputs):
OUTPUTS_LIST.append( '_({}{})'.format("output", i_output) )
if not hasattr(self, 'function_body'):
with open(_function_filename, 'r') as f:
self.function_body = f.read()
function_template = r'''
static
bool {FUNCTION_NAME}({ARGUMENTS})
{
{FUNCTION_BODY}
}
'''
if Noutputs is None:
slice_args = ("output",) + args_input
else:
slice_args = tuple("output{}".format(i) for i in range(Noutputs))+args_input
slice_args_ndims = \
[ len(prototype) for prototype in prototype_outputs ] + \
[ len(prototype) for prototype in prototype_input ]
EXTRA_ARGUMENTS_ARG_DEFINE = ''
EXTRA_ARGUMENTS_NAMELIST = ''
EXTRA_ARGUMENTS_PARSECODES = ''
EXTRA_ARGUMENTS_ARGLIST_PARSE_PYARG = []
EXTRA_ARGUMENTS_ARGLIST_CALL_C = []
EXTRA_ARGUMENTS_ARGLIST_DEFINE = []
for c_type, arg_name, default_value, parse_arg in extra_args:
# I strip from the c_type and leading "const " and any trailing "*".
# The intent is that I can take "const char*" strings, and pass them
# onto the inner functions using the same pointer, without
# dereferencing it a second time
m = re.match(r"\s*const\s+(.*?)$", c_type)
if m is not None:
c_type_no_leading_const = m.group(1)
else:
c_type_no_leading_const = c_type
m = re.search(r"(.*)\*\s*$", c_type_no_leading_const)
if m is not None:
c_type_did_strip_pointer = True
c_type_no_leading_const_no_pointer = m.group(1)
else:
c_type_did_strip_pointer = False
c_type_no_leading_const_no_pointer = c_type_no_leading_const
EXTRA_ARGUMENTS_ARGLIST_DEFINE.append('const {}* {} __attribute__((unused))'. \
format(c_type_no_leading_const_no_pointer,
arg_name))
EXTRA_ARGUMENTS_ARG_DEFINE += "{} {} = {};\n".format(c_type, arg_name, default_value)
EXTRA_ARGUMENTS_NAMELIST += '"{}",'.format(arg_name)
EXTRA_ARGUMENTS_PARSECODES += '"{}"'.format(parse_arg)
EXTRA_ARGUMENTS_ARGLIST_PARSE_PYARG.append('&' + arg_name)
if c_type_did_strip_pointer:
EXTRA_ARGUMENTS_ARGLIST_CALL_C.append(arg_name)
else:
EXTRA_ARGUMENTS_ARGLIST_CALL_C.append('&' + arg_name)
EXTRA_ARGUMENTS_ARGLIST_DEFINE.append('__{FUNCTION_NAME}__cookie_t* cookie __attribute__((unused))'.format(FUNCTION_NAME=name))
EXTRA_ARGUMENTS_ARGLIST_CALL_C.append('cookie')
EXTRA_ARGUMENTS_SLICE_ARG = ','.join(EXTRA_ARGUMENTS_ARGLIST_DEFINE)
EXTRA_ARGUMENTS_ARGLIST_PARSE_PYARG = ''.join([s+',' for s in EXTRA_ARGUMENTS_ARGLIST_PARSE_PYARG])
EXTRA_ARGUMENTS_ARGLIST_CALL_C = ','.join(EXTRA_ARGUMENTS_ARGLIST_CALL_C)
def ctype_from_dtype(t):
f'''Get the corresponding C type from a numpy dtype
If one does not exist, return None'''
t = np.dtype(t)
if not t.isnative or not (t.isbuiltin==1): return None
nbits = str(t.itemsize * 8)
if t.kind == 'f': return "npy_float" + nbits
if t.kind == 'c': return "npy_complex" + nbits
if t.kind == 'i': return "npy_int" + nbits
if t.kind == 'u': return "npy_uint" + nbits
return None
text = ''
contiguous_macro_template = r'''
#define _CHECK_CONTIGUOUS__{name}(seterror) \
({ \
bool result = true; \
bool have_dim_0 = false; \
/* If I have no data, just call the thing contiguous. This is useful */ \
/* because np.ascontiguousarray doesn't set contiguous alignment */ \
/* for empty arrays */ \
for(int i=0; i<Ndims_full__{name}; i++) \
if(dims_full__{name}[i] == 0) \
{ \
result = true; \
have_dim_0 = true; \
break; \
} \
\
if(!have_dim_0) \
{ \
int Nelems_slice = 1; \
for(int i=-1; i>=-Ndims_slice__{name}; i--) \
{ \
if(strides_slice__{name}[i+Ndims_slice__{name}] != sizeof_element__{name}*Nelems_slice) \
{ \
result = false; \
if(seterror) \
PyErr_Format(PyExc_RuntimeError, \
"Variable '{name}' must be contiguous in memory, and it isn't in (at least) dimension %d", i); \
break; \
} \
Nelems_slice *= dims_slice__{name}[i+Ndims_slice__{name}]; \
} \
} \
result; \
})
#define CHECK_CONTIGUOUS__{name}() _CHECK_CONTIGUOUS__{name}(false)
#define CHECK_CONTIGUOUS_AND_SETERROR__{name}() _CHECK_CONTIGUOUS__{name}(true)
'''
for n in slice_args:
text += contiguous_macro_template.replace("{name}", n)
text += \
'\n' + \
'#define CHECK_CONTIGUOUS_ALL() ' + \
' && '.join( "CHECK_CONTIGUOUS__"+n+"()" for n in slice_args) + \
'\n' + \
'#define CHECK_CONTIGUOUS_AND_SETERROR_ALL() ' + \
' && '.join( "CHECK_CONTIGUOUS_AND_SETERROR__"+n+"()" for n in slice_args) + \
'\n'
text += _substitute('''
typedef struct { {COOKIE_STRUCT_CONTENTS} } __{FUNCTION_NAME}__cookie_t;
''',
FUNCTION_NAME = name,
COOKIE_STRUCT_CONTENTS = Ccode_cookie_struct)
# The user provides two sets of C code that we include verbatim in
# static functions:
#
# - The validation function. Evaluated once to check the input for
# validity. This is in addition to the broadcasting shape and type
# compatibility checks. Probably the user won't be looking at the data
# pointer
# - The slice function. Evaluated once per broadcasted slice to actually
# perform the computation. Probably the user will be looking at just
# the _slice data, not the _full data
#
# These functions have identical prototypes
arglist = [ arg for n in slice_args for arg in \
("const int Ndims_full__" + n + " __attribute__((unused))",
"const npy_intp* dims_full__" + n + " __attribute__((unused))",
"const npy_intp* strides_full__" + n + " __attribute__((unused))",
"const int Ndims_slice__" + n + " __attribute__((unused))",
"const npy_intp* dims_slice__" + n + " __attribute__((unused))",
"const npy_intp* strides_slice__" + n + " __attribute__((unused))",
"npy_intp sizeof_element__" + n + " __attribute__((unused))",
"void* {DATA_ARGNAME}__" + n + " __attribute__((unused))")] + \
EXTRA_ARGUMENTS_ARGLIST_DEFINE
arglist_string = '\n ' + ',\n '.join(arglist)
text += \
_substitute(function_template,
FUNCTION_NAME = "__{}__validate".format(name),
ARGUMENTS = _substitute(arglist_string, DATA_ARGNAME="data"),
FUNCTION_BODY = "return true;" if Ccode_validate is None else Ccode_validate)
# The evaluation function for one slice
known_typesets = list(Ccode_slice_eval.keys()) # known_types is the same, but tweaked
for i_typeset in range(len(known_typesets)):
slice_function = "__{}__{}__slice".format(name,i_typeset)
text += '\n'
text_undef = ''
for i_arg in range(len(slice_args)):
ctype = ctype_from_dtype(known_types[i_typeset][i_arg])
if ctype is None:
continue
arg_name = slice_args [i_arg]
ndims = slice_args_ndims[i_arg]
text_here = \
'#define ctype__{name} {ctype}\n' + \
'#define item__{name}(' + \
','.join([ "__ivar"+str(i) for i in range(ndims)]) + \
') (*(ctype__{name}*)(data_slice__{name} ' + \
''.join(['+ (__ivar' + str(i) + ')*strides_slice__{name}['+str(i)+']' \
for i in range(ndims)]) + \
'))\n'
text += _substitute(text_here,
name = arg_name,
ctype= ctype)
text_undef += '#undef item__{name}\n' .replace('{name}', arg_name)
text_undef += '#undef ctype__{name}\n'.replace('{name}', arg_name)
text += \
_substitute(function_template,
FUNCTION_NAME = slice_function,
ARGUMENTS = _substitute(arglist_string, DATA_ARGNAME="data_slice"),
FUNCTION_BODY = Ccode_slice_eval[known_typesets[i_typeset]])
text += text_undef
text += \
' \\\n '.join(ARGUMENTS_LIST) + \
'\n\n' + \
' \\\n '.join(OUTPUTS_LIST) + \
'\n\n' + \
_substitute(self.function_body,
MODULE_NAME = self.module_name,
FUNCTION_NAME = name,
PROTOTYPE_DIM_DEFS = PROTOTYPE_DIM_DEFS,
UNPACK_OUTPUTS = UNPACK_OUTPUTS,
EXTRA_ARGUMENTS_SLICE_ARG = EXTRA_ARGUMENTS_SLICE_ARG,
EXTRA_ARGUMENTS_ARG_DEFINE = EXTRA_ARGUMENTS_ARG_DEFINE,
EXTRA_ARGUMENTS_NAMELIST = EXTRA_ARGUMENTS_NAMELIST,
EXTRA_ARGUMENTS_PARSECODES = EXTRA_ARGUMENTS_PARSECODES,
EXTRA_ARGUMENTS_ARGLIST_PARSE_PYARG = EXTRA_ARGUMENTS_ARGLIST_PARSE_PYARG,
EXTRA_ARGUMENTS_ARGLIST_CALL_C = EXTRA_ARGUMENTS_ARGLIST_CALL_C,
TYPESETS = TYPESETS,
TYPESET_MATCHES_ARGLIST = TYPESET_MATCHES_ARGLIST,
TYPESETS_NAMES = TYPESETS_NAMES,
COOKIE_CLEANUP = Ccode_cookie_cleanup)
for n in slice_args:
text += '#undef _CHECK_CONTIGUOUS__{name}\n'.replace('{name}', n)
text += '#undef CHECK_CONTIGUOUS__{name}\n'.replace('{name}', n)
text += '#undef CHECK_CONTIGUOUS_AND_SETERROR__{name}\n'.replace('{name}', n)
text += '\n'
text += '#undef CHECK_CONTIGUOUS_ALL\n'
text += '#undef CHECK_CONTIGUOUS_AND_SETERROR_ALL\n'
self.functions.append( (name,
_quote(docstring, convert_newlines=True),
text) )
def write(self, file=sys.stdout):
r'''Write out the generated C code
DESCRIPTION
Once we defined all of the wrapper functions in this module by calling
'function()' for each one, we're ready to write out the generated C
source that defines this module. write() writes out the C source to
standard output by default.
ARGUMENTS
- file
The python file object to write the output to. Defaults to standard
output
'''
# Get shellquote from the right place in python2 and python3
try:
import pipes
shellquote = pipes.quote
except:
# python3 puts this into a different module
import shlex
shellquote = shlex.quote
print("// THIS IS A GENERATED FILE. DO NOT MODIFY WITH CHANGES YOU WANT TO KEEP",
file=file)
print("// Generated on {} with {}\n\n". \
format(time.strftime("%Y-%m-%d %H:%M:%S"),
' '.join(shellquote(s) for s in sys.argv)),
file=file)
print('#define FUNCTIONS(_) \\', file=file)
print(' \\\n'.join( ' _({}, "{}")'.format(f[0],f[1]) for f in self.functions),
file=file)
print("\n")
print('///////// {{{{{{{{{ ' + _module_header_filename, file=file)
print(self.module_header, file=file)
print('///////// }}}}}}}}} ' + _module_header_filename, file=file)
for f in self.functions:
print('///////// {{{{{{{{{ ' + _function_filename, file=file)
print('///////// for function ' + f[0], file=file)
print(f[2], file=file)
print('///////// }}}}}}}}} ' + _function_filename, file=file)
print('\n', file=file)
print('///////// {{{{{{{{{ ' + _module_footer_filename, file=file)
print(self.module_footer, file=file)
print('///////// }}}}}}}}} ' + _module_footer_filename, file=file)
|