File: test-c-broadcasting.py

package info (click to toggle)
python-numpysane 0.42-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 536 kB
  • sloc: python: 4,953; ansic: 655; makefile: 61
file content (686 lines) | stat: -rwxr-xr-x 37,438 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
#!/usr/bin/python3

r'''Test the broadcasting in C

Uses the "testlib" guinea pig C library
'''

import sys
import os

dir_path = os.path.dirname(os.path.realpath(__file__))
sys.path[:0] = dir_path + '/..',

import numpy as np
import numpysane as nps

# Local test harness. The python standard ones all suck
from testutils import *

# The extension module we're testing
import testlib


def check(matching_functions, A, B):
    r'''Compare results of pairs of matching functions

    matching_functions is a list of pairs of functions that are supposed to
    produce identical results (testlib and numpysane implementations of
    inner and outer products). A and B are lists of arguments that we try out.
    These support broadcasting, so either one is allowed to be a single array,
    which is then used for all the checks. I check both dynamically-created and
    inlined "out" arrays

    '''
    N = 1
    if type(A) is tuple and len(A) > N:
        N = len(A)
    if type(B) is tuple and len(B) > N:
        N = len(B)

    if type(A) is not tuple: A = (A,) * N
    if type(B) is not tuple: B = (B,) * N

    for what,f0,f1 in matching_functions:
        for i in range(N):
            out0 = f0(A[i], B[i])
            out1 = f1(A[i], B[i])

            confirm_equal( out0, out1,
                           msg = what + ' matches. Dynamically-allocated output' )

            outshape = out1.shape
            out0 = np.zeros(outshape, dtype=np.array(A[i]).dtype)
            out1 = np.ones (outshape, dtype=np.array(A[i]).dtype)
            f0(A[i], B[i], out=out0)
            f1(A[i], B[i], out=out1)
            confirm_equal( out0, out1,
                           msg = what + ' matches. Pre-allocated output' )

from functools import reduce
def arr(*shape, **kwargs):

    dtype = kwargs.get('dtype',float)

    r'''Return an arange() array of the given shape.'''
    if len(shape) == 0:
        return np.array(3, dtype=dtype)
    product = reduce( lambda x,y: x*y, shape)
    return np.arange(product, dtype=dtype).reshape(*shape)


# Check dimensionality logic. A sanity check:
assertValueShape( np.array((6,6,6),),
                  (3,),
                  testlib.sum_Nrows_Ncols,
                  arr(3,2,4))
# An extra implicity dimension should be added, so the array of shape (4,)
# should be treated as an array of shape (1,4), and we should get 5 out
assertValueShape( np.array(5),
                  (),
                  testlib.sum_Nrows_Ncols,
                  arr(4,))




# pairs of functions that should produce identical results
matching_functions = ( ("inner", testlib.inner, nps.inner),
                       ("outer", testlib.outer, nps.outer) )

# Basic 1D arrays
a0 = np.arange(5, dtype=float)
b  = a0+3

# a needs to broadcast; contiguous and strided
a1 = np.arange(10, dtype=float).reshape(2,5)
a2 = nps.transpose(np.arange(10, dtype=float).reshape(5,2))

# Try it!
check(matching_functions, (a0,a1,a2), b)

# Try it again, but use the floating-point version
check( (("inner", nps.inner, testlib.inner),),
      tuple([a.astype(int) for a in (a0,a1,a2)]),
      b.astype(int))

confirm_raises( lambda: check( (("inner", nps.inner, testlib.inner),),
                               (a0,a1,a2),
                               b.astype(int)),
                msg = "types must match" )

# Too few input dimensions (passing a scalar where a vector is expected). This
# should be ok. It can be viewed as a length-1 vector
check( (("inner", nps.inner, testlib.inner),),

       6.,

       (5.,
        np.array(5, dtype=float),
        np.array((5,), dtype=float),
        ),)

# Broadcasting. Should be ok. No barf.
confirm_does_not_raise(lambda: testlib.inner(np.arange(10, dtype=float).reshape(  2,5),
                                                np.arange(15, dtype=float).reshape(3,1,5)),
                       msg='Aligned dimensions')

confirm_raises( lambda: testlib.inner(np.arange(10, dtype=float).reshape(2,5),
                                         np.arange(15, dtype=float).reshape(3,5)) )
confirm_raises( lambda: testlib.inner(np.arange(5), np.arange(6)) )

confirm_does_not_raise( lambda: testlib.outer(a0,b, out=np.zeros((5,5), dtype=float)),
                        msg = "Basic in-place broadcasting")
confirm_raises(lambda: testlib.outer(a0,b, out=np.zeros((5,5), dtype=int)),
               msg = "Output type must match")
confirm_raises(lambda: testlib.outer(a0.astype(int),b.astype(int), out=np.zeros((5,5), dtype=float)),
               msg = "Output type must match")
confirm_does_not_raise( lambda: testlib.outer(a0.astype(float),b.astype(float), out=np.zeros((5,5), dtype=float)),
                        msg = "Output type must match")
confirm_does_not_raise( lambda: testlib.inner(a0.astype(int),b.astype(int), out=np.zeros((), dtype=int)),
                        msg = "Output type must match")
confirm_raises( lambda: testlib.outer(a0,b, out=np.zeros((3,3), dtype=float)),
                msg = "Wrong dimensions on out" )
confirm_raises( lambda: testlib.outer(a0,b, out=np.zeros((4,5), dtype=float)),
                msg = "Wrong dimensions on out" )
confirm_raises( lambda: testlib.outer(a0,b, out=np.zeros((5,), dtype=float)),
                msg = "Wrong dimensions on out" )
confirm_raises( lambda: testlib.outer(a0,b, out=np.zeros((), dtype=float)),
                msg = "Wrong dimensions on out" )
o555 = np.ones((5,5,5), dtype=float)
confirm_does_not_raise( lambda: testlib.outer(a0,b, out=o555),
                        msg = "Bigger dimensions on out" )
confirm_equal(o555 - nps.outer(a0,b),
              0*o555,
              eps = 1e-12,
              msg = 'out can contain repeated slices')



def test_identity3():
    r'''Testing identity3()'''

    ref = np.array(((1,0,0),
                    (0,1,0),
                    (0,0,1)),dtype=float)
    ref_int = np.array(((1,0,0),
                        (0,1,0),
                        (0,0,1)),dtype=int)

    out     = ref*0
    out_int = ref_int*0

    assertResult_inoutplace( ref,
                             testlib.identity3 )
    confirm_does_not_raise( lambda: testlib.identity3(out = out))
    confirm_raises(         lambda: testlib.identity3(out = out_int))

    out_discontiguous = np.zeros((4,5,6), dtype=float)[:3,:3,0]
    confirm(not out_discontiguous.flags['C_CONTIGUOUS'])
    testlib.identity3(out = out_discontiguous)
    confirm_equal(ref, out_discontiguous)


def test_identity():
    r'''Testing identity()

    This tests much of the named-dimensions-in-output-only logic

    '''

    # This i
    ref     = np.eye(2, dtype=float)
    ref_int = np.eye(2, dtype=int)

    out     = np.zeros((2,2), dtype=float)
    out_int = np.zeros((2,2), dtype=int)

    out32   = np.zeros((3,2), dtype=float)
    out23   = np.zeros((3,2), dtype=float)

    confirm_raises(lambda: testlib.identity(),
                   msg='output-only named dimensions MUST be given in the in-place array')
    confirm_raises(lambda: testlib.identity(out=out_int),
                   msg='types must match')
    confirm_equal(ref, testlib.identity(out=out),
                  msg='basic output-only named dimensions work')
    confirm_raises(lambda: testlib.identity(out=out23),
                   msg='output-only named dimensions must still be self-consistent')
    confirm_raises(lambda: testlib.identity(out=out32),
                   msg='output-only named dimensions must still be self-consistent')

    out_discontiguous = np.zeros((4,5,6), dtype=float)[:3,:3,0]
    confirm(not out_discontiguous.flags['C_CONTIGUOUS'])
    testlib.identity(out = out_discontiguous)
    confirm_equal(np.eye(3, dtype=float),
                  out_discontiguous)


def test_inner():
    r'''Testing the broadcasted inner product'''

    ref = np.array([[[  30,  255,  730],
                     [ 180,  780, 1630]],
                    [[ 180,  780, 1630],
                     [1455, 2430, 3655]],
                    [[ 330, 1305, 2530],
                     [2730, 4080, 5680]],
                    [[ 480, 1830, 3430],
                     [4005, 5730, 7705.0]]])
    assertResult_inoutplace(  ref,
                              testlib.inner, arr(2,3,5), arr(4,1,3,5) )

    output = np.empty((4,2,3), dtype=int)
    confirm_raises( lambda: testlib.inner( arr(  2,3,5, dtype=float),
                                              arr(4,1,3,5, dtype=float),
                                              out=output ),
                    "inner(out=out, dtype=dtype) have out=dtype==dtype" )

    # make sure non-contiguous output works properly
    output = np.empty((4,2,3), dtype=float)
    confirm(output.flags['C_CONTIGUOUS'])
    output = nps.reorder( np.empty((2,3,4), dtype=float),
                          2,0,1 )
    confirm(not output.flags['C_CONTIGUOUS'])
    confirm_equal( testlib.inner( arr(  2,3,5, dtype=float),
                                     arr(4,1,3,5, dtype=float),
                                     out=output ),
                   ref,
                   msg = 'Noncontiguous output' )
    confirm(not output.flags['C_CONTIGUOUS'])
    confirm_equal( output,
                   ref,
                   msg = 'Noncontiguous output' )


def test_outer():
    r'''Testing the broadcasted outer product'''

    # comes from PDL. numpy has a reversed axis ordering convention from
    # PDL, so I transpose the array before comparing
    ref = nps.transpose(
        np.array([[[[[0,0,0,0,0],[0,1,2,3,4],[0,2,4,6,8],[0,3,6,9,12],[0,4,8,12,16]],
                    [[25,30,35,40,45],[30,36,42,48,54],[35,42,49,56,63],[40,48,56,64,72],[45,54,63,72,81]],
                    [[100,110,120,130,140],[110,121,132,143,154],[120,132,144,156,168],[130,143,156,169,182],[140,154,168,182,196]]],
                   [[[0,0,0,0,0],[15,16,17,18,19],[30,32,34,36,38],[45,48,51,54,57],[60,64,68,72,76]],
                    [[100,105,110,115,120],[120,126,132,138,144],[140,147,154,161,168],[160,168,176,184,192],[180,189,198,207,216]],
                    [[250,260,270,280,290],[275,286,297,308,319],[300,312,324,336,348],[325,338,351,364,377],[350,364,378,392,406]]]],
                  [[[[0,15,30,45,60],[0,16,32,48,64],[0,17,34,51,68],[0,18,36,54,72],[0,19,38,57,76]],
                    [[100,120,140,160,180],[105,126,147,168,189],[110,132,154,176,198],[115,138,161,184,207],[120,144,168,192,216]],
                    [[250,275,300,325,350],[260,286,312,338,364],[270,297,324,351,378],[280,308,336,364,392],[290,319,348,377,406]]],
                   [[[225,240,255,270,285],[240,256,272,288,304],[255,272,289,306,323],[270,288,306,324,342],[285,304,323,342,361]],
                    [[400,420,440,460,480],[420,441,462,483,504],[440,462,484,506,528],[460,483,506,529,552],[480,504,528,552,576]],
                    [[625,650,675,700,725],[650,676,702,728,754],[675,702,729,756,783],[700,728,756,784,812],[725,754,783,812,841]]]],
                  [[[[0,30,60,90,120],[0,31,62,93,124],[0,32,64,96,128],[0,33,66,99,132],[0,34,68,102,136]],
                    [[175,210,245,280,315],[180,216,252,288,324],[185,222,259,296,333],[190,228,266,304,342],[195,234,273,312,351]],
                    [[400,440,480,520,560],[410,451,492,533,574],[420,462,504,546,588],[430,473,516,559,602],[440,484,528,572,616]]],
                   [[[450,480,510,540,570],[465,496,527,558,589],[480,512,544,576,608],[495,528,561,594,627],[510,544,578,612,646]],
                    [[700,735,770,805,840],[720,756,792,828,864],[740,777,814,851,888],[760,798,836,874,912],[780,819,858,897,936]],
                    [[1000,1040,1080,1120,1160],[1025,1066,1107,1148,1189],[1050,1092,1134,1176,1218],[1075,1118,1161,1204,1247],[1100,1144,1188,1232,1276]]]],
                  [[[[0,45,90,135,180],[0,46,92,138,184],[0,47,94,141,188],[0,48,96,144,192],[0,49,98,147,196]],
                    [[250,300,350,400,450],[255,306,357,408,459],[260,312,364,416,468],[265,318,371,424,477],[270,324,378,432,486]],
                    [[550,605,660,715,770],[560,616,672,728,784],[570,627,684,741,798],[580,638,696,754,812],[590,649,708,767,826]]],
                   [[[675,720,765,810,855],[690,736,782,828,874],[705,752,799,846,893],[720,768,816,864,912],[735,784,833,882,931]],
                    [[1000,1050,1100,1150,1200],[1020,1071,1122,1173,1224],[1040,1092,1144,1196,1248],[1060,1113,1166,1219,1272],[1080,1134,1188,1242,1296]],
                    [[1375,1430,1485,1540,1595],[1400,1456,1512,1568,1624],[1425,1482,1539,1596,1653],[1450,1508,1566,1624,1682],[1475,1534,1593,1652,1711]]]]]))

    assertResult_inoutplace( ref,
                             testlib.outer, arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=float) )

    # make sure non-contiguous output (in both the broadcasting AND within each
    # slice) works properly
    output = np.empty((4,2,3,5,5), dtype=float)
    confirm(output.flags['C_CONTIGUOUS'])
    output = nps.reorder( np.empty((2,3,4,5,5), dtype=float),
                          2,0,1, 4,3)
    confirm(not output.flags['C_CONTIGUOUS'])
    confirm_equal( testlib.outer( arr(  2,3,5, dtype=float),
                                     arr(4,1,3,5, dtype=float),
                                     out=output ),
                   ref,
                   msg = 'Noncontiguous output (broadcasting and within each slice)' )
    confirm(not output.flags['C_CONTIGUOUS'])
    confirm_equal( output,
                   ref,
                   msg = 'Noncontiguous output (broadcasting and within each slice)' )


def test_innerouter():
    r'''Testing the broadcasted inner product'''

    # shape (4, 2, 3)
    ref_inner = np.array([[[  30,  255,  730],
                           [ 180,  780, 1630]],
                          [[ 180,  780, 1630],
                           [1455, 2430, 3655]],
                          [[ 330, 1305, 2530],
                           [2730, 4080, 5680]],
                          [[ 480, 1830, 3430],
                           [4005, 5730, 7705.0]]])

    # comes from PDL. numpy has a reversed axis ordering convention from
    # PDL, so I transpose the array before comparing
    # shape (4, 2, 3, 5, 5)
    ref_outer = nps.transpose(
        np.array([[[[[0,0,0,0,0],[0,1,2,3,4],[0,2,4,6,8],[0,3,6,9,12],[0,4,8,12,16]],
                    [[25,30,35,40,45],[30,36,42,48,54],[35,42,49,56,63],[40,48,56,64,72],[45,54,63,72,81]],
                    [[100,110,120,130,140],[110,121,132,143,154],[120,132,144,156,168],[130,143,156,169,182],[140,154,168,182,196]]],
                   [[[0,0,0,0,0],[15,16,17,18,19],[30,32,34,36,38],[45,48,51,54,57],[60,64,68,72,76]],
                    [[100,105,110,115,120],[120,126,132,138,144],[140,147,154,161,168],[160,168,176,184,192],[180,189,198,207,216]],
                    [[250,260,270,280,290],[275,286,297,308,319],[300,312,324,336,348],[325,338,351,364,377],[350,364,378,392,406]]]],
                  [[[[0,15,30,45,60],[0,16,32,48,64],[0,17,34,51,68],[0,18,36,54,72],[0,19,38,57,76]],
                    [[100,120,140,160,180],[105,126,147,168,189],[110,132,154,176,198],[115,138,161,184,207],[120,144,168,192,216]],
                    [[250,275,300,325,350],[260,286,312,338,364],[270,297,324,351,378],[280,308,336,364,392],[290,319,348,377,406]]],
                   [[[225,240,255,270,285],[240,256,272,288,304],[255,272,289,306,323],[270,288,306,324,342],[285,304,323,342,361]],
                    [[400,420,440,460,480],[420,441,462,483,504],[440,462,484,506,528],[460,483,506,529,552],[480,504,528,552,576]],
                    [[625,650,675,700,725],[650,676,702,728,754],[675,702,729,756,783],[700,728,756,784,812],[725,754,783,812,841]]]],
                  [[[[0,30,60,90,120],[0,31,62,93,124],[0,32,64,96,128],[0,33,66,99,132],[0,34,68,102,136]],
                    [[175,210,245,280,315],[180,216,252,288,324],[185,222,259,296,333],[190,228,266,304,342],[195,234,273,312,351]],
                    [[400,440,480,520,560],[410,451,492,533,574],[420,462,504,546,588],[430,473,516,559,602],[440,484,528,572,616]]],
                   [[[450,480,510,540,570],[465,496,527,558,589],[480,512,544,576,608],[495,528,561,594,627],[510,544,578,612,646]],
                    [[700,735,770,805,840],[720,756,792,828,864],[740,777,814,851,888],[760,798,836,874,912],[780,819,858,897,936]],
                    [[1000,1040,1080,1120,1160],[1025,1066,1107,1148,1189],[1050,1092,1134,1176,1218],[1075,1118,1161,1204,1247],[1100,1144,1188,1232,1276]]]],
                  [[[[0,45,90,135,180],[0,46,92,138,184],[0,47,94,141,188],[0,48,96,144,192],[0,49,98,147,196]],
                    [[250,300,350,400,450],[255,306,357,408,459],[260,312,364,416,468],[265,318,371,424,477],[270,324,378,432,486]],
                    [[550,605,660,715,770],[560,616,672,728,784],[570,627,684,741,798],[580,638,696,754,812],[590,649,708,767,826]]],
                   [[[675,720,765,810,855],[690,736,782,828,874],[705,752,799,846,893],[720,768,816,864,912],[735,784,833,882,931]],
                    [[1000,1050,1100,1150,1200],[1020,1071,1122,1173,1224],[1040,1092,1144,1196,1248],[1060,1113,1166,1219,1272],[1080,1134,1188,1242,1296]],
                    [[1375,1430,1485,1540,1595],[1400,1456,1512,1568,1624],[1425,1482,1539,1596,1653],[1450,1508,1566,1624,1682],[1475,1534,1593,1652,1711]]]]]))

    # not in-place
    try:
        i,o = testlib.innerouter(arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=float))
    except:
        confirm(False, msg="broadcasted innerouter succeeded")
    else:
        confirm_equal(i.shape, ref_inner.shape, msg="broadcasted innerouter produced correct inner.shape")
        confirm_equal(i,       ref_inner,       msg="broadcasted innerouter produced correct inner")
        confirm_equal(o.shape, ref_outer.shape, msg="broadcasted innerouter produced correct outer.shape")
        confirm_equal(o,       ref_outer,       msg="broadcasted innerouter produced correct outer")

    # in-place
    try:
        i = np.empty(ref_inner.shape, dtype=float)
        o = np.empty(ref_outer.shape, dtype=float)
        testlib.innerouter(arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=float), out=(i,o))
    except:
        confirm(False, msg="broadcasted in-place innerouter succeeded")
    else:
        confirm(True, msg="broadcasted in-place innerouter succeeded")
        confirm_equal(i.shape, ref_inner.shape, msg="broadcasted in-place innerouter produced correct inner.shape")
        confirm_equal(i,       ref_inner,       msg="broadcasted in-place innerouter produced correct inner")
        confirm_equal(o.shape, ref_outer.shape, msg="broadcasted in-place innerouter produced correct outer.shape")
        confirm_equal(o,       ref_outer,       msg="broadcasted in-place innerouter produced correct outer")

    # in-place with float scaling
    try:
        i = np.empty(ref_inner.shape, dtype=float)
        o = np.empty(ref_outer.shape, dtype=float)
        testlib.innerouter(arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=float), out=(i,o), scale=3.5)
    except:
        confirm(False, msg="broadcasted in-place innerouter succeeded")
    else:
        confirm(True, msg="broadcasted in-place innerouter succeeded")
        confirm_equal(i.shape, ref_inner.shape, msg="broadcasted in-place innerouter with scaling produced correct inner.shape")
        confirm_equal(i,       ref_inner * 3.5, msg="broadcasted in-place innerouter with scaling produced correct inner")
        confirm_equal(o.shape, ref_outer.shape, msg="broadcasted in-place innerouter with scaling produced correct outer.shape")
        confirm_equal(o,       ref_outer * 3.5, msg="broadcasted in-place innerouter with scaling produced correct outer")

    # in-place with float scaling and string scaling
    try:
        i = np.empty(ref_inner.shape, dtype=float)
        o = np.empty(ref_outer.shape, dtype=float)
        testlib.innerouter(arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=float), out=(i,o), scale=3.5, scale_string="10.0")
    except:
        confirm(False, msg="broadcasted in-place innerouter succeeded")
    else:
        confirm(True, msg="broadcasted in-place innerouter succeeded")
        confirm_equal(i.shape, ref_inner.shape, msg="broadcasted in-place innerouter with float and string scaling produced correct inner.shape")
        confirm_equal(i,       ref_inner * 35., msg="broadcasted in-place innerouter with float and string scaling produced correct inner")
        confirm_equal(o.shape, ref_outer.shape, msg="broadcasted in-place innerouter with float and string scaling produced correct outer.shape")
        confirm_equal(o,       ref_outer * 35., msg="broadcasted in-place innerouter with float and string scaling produced correct outer")

    # in-place, with some extra dummy dimensions in the output. Should be allowed
    i = np.empty((1,) + ref_inner.shape, dtype=float)
    o = np.empty(ref_outer.shape, dtype=float)
    confirm_does_not_raise( lambda: testlib.innerouter(arr(  2,3,5, dtype=float),
                                                       arr(4,1,3,5, dtype=float),
                                                       out=(i,o)),
                            msg="Extra broadcasted dimensions in the output is allowed")

    # in-place, with some extra dummy dimensions in the output. Should be allowed
    i = np.empty(ref_inner.shape, dtype=float)
    o = np.empty((1,) + ref_outer.shape, dtype=float)
    confirm_does_not_raise( lambda: testlib.innerouter(arr(  2,3,5, dtype=float),
                                                       arr(4,1,3,5, dtype=float),
                                                       out=(i,o)),
                            msg="Extra broadcasted dimensions in the output is allowed")

    # now some bogus shapes and types that should fail
    i = np.empty(ref_inner.shape, dtype=float)
    o = np.empty(ref_outer.shape, dtype=float)
    confirm_does_not_raise( lambda: testlib.innerouter(arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=float), out=(i,o)),
                            msg = "basic broadcasted innerouter works")
    confirm_raises(lambda: testlib.innerouter(arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=float), out=(i,i)),
                   msg = "in-place broadcasting output dimensions match")
    confirm_raises(lambda: testlib.innerouter(arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=float), out=(o,o)),
                   msg = "in-place broadcasting output dimensions match")
    confirm_raises(lambda: testlib.innerouter(arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=float), out=(o,i)),
                   msg = "in-place broadcasting output dimensions match")
    confirm_raises(lambda: testlib.innerouter(arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=float), out=(i,o,i)),
                   msg = "in-place broadcasting output dimensions match")
    confirm_raises(lambda: testlib.innerouter(arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=float), out=(i,i,o)),
                   msg = "in-place broadcasting output dimensions match")
    confirm_raises(lambda: testlib.innerouter(arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=int), out=(i,o)),
                   msg = "in-place broadcasting output dimensions match")
    confirm_raises(lambda: testlib.innerouter(arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=float), out=o),
                   msg = "in-place broadcasting output dimensions match")
    confirm_raises(lambda: testlib.innerouter(arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=float), out=i),
                   msg = "in-place broadcasting output dimensions match")
    confirm_raises(lambda: testlib.innerouter(arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=float), out=(i,None)),
                   msg = "in-place broadcasting output dimensions match")
    confirm_raises(lambda: testlib.innerouter(arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=float), out=(None,i)),
                   msg = "in-place broadcasting output dimensions match")
    iint  = np.empty(ref_inner.shape, dtype=int)
    i1    = np.empty((1,) + ref_inner.shape, dtype=float)
    i2    = np.empty((2,) + ref_inner.shape, dtype=float)
    confirm_raises(lambda: testlib.innerouter(arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=float), out=(iint,o)),
                   msg = "in-place broadcasting output types match")
    confirm_does_not_raise(lambda: testlib.innerouter(arr(  2,3,5, dtype=float),
                                                      arr(4,1,3,5, dtype=float),
                                                      out=(i1,o)),
                           msg = "broadcasted innerouter: extra output dims are allowed")
    confirm_does_not_raise(lambda: testlib.innerouter(arr(  2,3,5, dtype=float),
                                                      arr(4,1,3,5, dtype=float),
                                                      out=(i2,o)),
                           msg = "broadcasted innerouter: extra output dims are allowed")

    confirm_does_not_raise(lambda: testlib.innerouter(arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=float), scale=3.5),
                           msg = 'Validation looks at the cookie')
    confirm_raises(lambda: testlib.innerouter(arr(2,3,5, dtype=float), arr(4,1,3,5, dtype=float), scale=-3.5),
                   msg = 'Validation looks at the cookie')


def test_sorted_indices():
    x64  = np.array((1., 5., 3, 2.5, 3.5, 2.9), dtype=float)
    x32  = np.array((1., 5., 3, 2.5, 3.5, 2.9), dtype=np.float32)
    iref = np.array((0, 3, 5, 2, 4, 1), dtype=np.int64)

    confirm_raises(lambda: testlib.sorted_indices(np.arange(5, dtype=np.int64)))
    confirm_does_not_raise(lambda: testlib.sorted_indices(np.arange(5, dtype=np.float32)))
    confirm_does_not_raise(lambda: testlib.sorted_indices(np.arange(5, dtype=np.float32),
                                                             out=np.arange(5, dtype=np.int32)))
    confirm_raises(lambda: testlib.sorted_indices(np.arange(5, dtype=np.float32),
                                                     out=np.arange(5, dtype=np.int64)))
    confirm_raises(lambda: testlib.sorted_indices(np.arange(5, dtype=np.float32),
                                                     out=np.arange(5, dtype=float)))
    assertResult_inoutplace( iref,
                             testlib.sorted_indices, x64, out_inplace_dtype=np.int32)
    assertResult_inoutplace( iref,
                             testlib.sorted_indices, x32, out_inplace_dtype=np.int32)


def test_broadcasting():

    assertValueShape( np.array(5),                (),     testlib.inner, arr(3),     arr(3))
    assertValueShape( np.array((5,14)),           (2,),   testlib.inner, arr(2,3),   arr(3))
    assertValueShape( np.array((5,14)),           (2,),   testlib.inner, arr(3),     arr(2,3))
    assertValueShape( np.array(((5,14),)),        (1,2,), testlib.inner, arr(1,2,3), arr(3))
    assertValueShape( np.array(((5,),(14,))),     (2,1,), testlib.inner, arr(2,1,3), arr(3))
    assertValueShape( np.array((5,14)),           (2,),   testlib.inner, arr(2,3),   arr(1,3))
    assertValueShape( np.array((5,14)),           (2,),   testlib.inner, arr(1,3),   arr(2,3))
    assertValueShape( np.array(((5,14),)),        (1,2,), testlib.inner, arr(1,2,3), arr(1,3))
    assertValueShape( np.array(((5,),(14,))),     (2,1,), testlib.inner, arr(2,1,3), arr(1,3))
    assertValueShape( np.array(((5,14),(14,50))), (2,2,), testlib.inner, arr(2,1,3), arr(2,3))
    assertValueShape( np.array(((5,14),(14,50))), (2,2,), testlib.inner, arr(2,1,3), arr(1,2,3))

    confirm_raises( lambda: testlib.inner(arr(3)), msg='right number of args' )

    confirm_raises( lambda: testlib.inner(arr(3),arr(5)),         msg='matching args')
    confirm_raises( lambda: testlib.inner(arr(2,3),arr(4,3)),     msg='matching args')
    confirm_raises( lambda: testlib.inner(arr(3,3,3),arr(2,1,3)), msg='matching args')
    confirm_raises( lambda: testlib.inner(arr(1,2,4),arr(2,1,3)), msg='matching args')

    # make sure the output COUNTS are checked (if I expect 2 outputs, but get
    # only 1, that's an error
    confirm( testlib.innerouter(arr(5), arr(  5)) is not None, msg='output count check' )
    confirm( testlib.innerouter(arr(5), arr(2,5)) is not None, msg='output count check' )

    confirm( testlib.innerouter(arr(5), arr(  5)) is not None,
             msg='output dimensionality check with given out' )


    # Basic out_kwarg tests. More thorough ones later, in
    # test_broadcasting_into_output())
    a5   = arr(   5,          dtype=float)
    a25  = arr(2, 5,          dtype=float)
    a125 = arr(1, 2, 5,       dtype=float)
    o    = np.zeros((),       dtype=float)
    o2   = np.zeros((2,),     dtype=float)
    o5   = np.zeros((5,),     dtype=float)
    o12  = np.zeros((1,2),    dtype=float)
    o22  = np.zeros((2,2),    dtype=float)
    o55  = np.zeros((5,5),    dtype=float)
    o25  = np.zeros((2,5),    dtype=float)
    o255 = np.zeros((2,5,5),  dtype=float)
    o1255= np.zeros((1,2,5,5),dtype=float)
    o2255= np.zeros((2,2,5,5),dtype=float)
    o2155= np.zeros((2,1,5,5),dtype=float)

    # no broadcasting
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a5, out=o), \
                    msg='output dimensionality check with given out' )
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a5, out=o2), \
                    msg='output dimensionality check with given out' )
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a5, out=(o,)), \
                    msg='output dimensionality check with given out' )
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a5, out=(o55,)), \
                    msg='output dimensionality check with given out' )
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a5, out=(o55,o)), \
                    msg='output dimensionality check with given out' )
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a5, out=(o,o2)), \
                    msg='output dimensionality check with given out' )
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a5, out=(o,o5)), \
                    msg='output dimensionality check with given out' )
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a5, out=(o,o55,o)), \
                    msg='output dimensionality check with given out' )
    confirm( testlib.innerouter(a5, a5, out=(o,o55)) is not None,
             msg='output dimensionality check with given out' )
    confirm_equal(o,   a5.dot(a5),      msg='in-place broadcasting computed the right value')
    confirm_equal(o55, np.outer(a5,a5), msg='in-place broadcasting computed the right value')

    confirm_does_not_raise( lambda: \
                            testlib.innerouter(a5, a5, out=(o2,o55)), \
                            msg='output dimensionality check with given out' )
    confirm_equal(o2[0], nps.inner(a5,a5), msg='in-place broadcasting computed the right value')
    confirm_equal(o2[1], nps.inner(a5,a5), msg='in-place broadcasting computed the right value')
    confirm_equal(o55,   nps.outer(a5,a5), msg='in-place broadcasting computed the right value')


    # two broadcasted slices
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a25, out=o),
                    msg='output dimensionality check with given out' )
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a25, out=o2),
                    msg='output dimensionality check with given out' )
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a25, out=(o,)),
                    msg='output dimensionality check with given out' )
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a25, out=(o55,)),
                    msg='output dimensionality check with given out' )
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a25, out=(o55,o)),
                    msg='output dimensionality check with given out' )
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a25, out=(o,o2)),
                    msg='output dimensionality check with given out' )
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a25, out=(o,o5)),
                    msg='output dimensionality check with given out' )
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a25, out=(o2,o55)),
                    msg='output dimensionality check with given out' )
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a25, out=(o,o55,o)),
                    msg='output dimensionality check with given out' )
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a25, out=(o,o55)),
                    msg='output dimensionality check with given out' )
    confirm_raises( lambda: \
                    testlib.innerouter(a5, a25, out=(o,o255)),
                    msg='output dimensionality check with given out' )
    confirm( testlib.innerouter(a5, a25, out=(o2,o255)) is not None,
             msg='output dimensionality check with given out' )
    confirm_equal(o2,   nps.inner(a5,a25), msg='in-place broadcasting computed the right value')
    confirm_equal(o255, nps.outer(a5,a25), msg='in-place broadcasting computed the right value')
    confirm( testlib.innerouter(a5, a25, out=(o22,o2255)) is not None,
             msg='output dimensionality check with given out' )
    confirm_equal(o22[0],   nps.inner(a5,a25), msg='in-place broadcasting computed the right value')
    confirm_equal(o22[1],   nps.inner(a5,a25), msg='in-place broadcasting computed the right value')
    confirm_equal(o2255[0], nps.outer(a5,a25), msg='in-place broadcasting computed the right value')
    confirm_equal(o2255[1], nps.outer(a5,a25), msg='in-place broadcasting computed the right value')

    # Non-contiguous data should work with inner and outer, but not innerouter
    # (that's what the underlying C library does/does not support)
    a2                = arr(2, dtype=float)
    a25_noncontiguous = arr(5, 2, dtype=float).T
    o255_noncontiguous = nps.transpose(np.zeros((2,5,5), dtype=float))
    o255_noncontiguous_in_broadcast = np.zeros((2,2,5,5), dtype=float)[:,0,:,:]
    confirm_does_not_raise(lambda: testlib.inner     (a25_noncontiguous, a5),
                           msg='Validation: noncontiguous in the function slice')
    confirm_does_not_raise(lambda: testlib.outer     (a25_noncontiguous, a5),
                           msg='Validation: noncontiguous in the function slice')
    confirm_does_not_raise(lambda: testlib.outer     (a25_noncontiguous, a5, out=o255_noncontiguous),
                           msg='Validation: noncontiguous in the function slice')
    confirm_raises        (lambda: testlib.innerouter(a25_noncontiguous, a5),
                           msg='Validation: noncontiguous in the function slice')
    confirm_does_not_raise(lambda: testlib.innerouter(a25, a5, out=(a2, o255)),
                           msg='Validation: noncontiguous in the function slice')
    confirm_raises        (lambda: testlib.innerouter(a25, a5, out=(a2, o255_noncontiguous)),
                           msg='Validation: noncontiguous in the function slice')

    confirm_does_not_raise(lambda: testlib.innerouter(a25, a5, out=(a2, o255_noncontiguous_in_broadcast)),
                           msg='Validation: noncontiguous array that are noncontiguous ONLY in the broadcasted dimensions (i.e. each slice IS contiguous)')

    # Extra slices in the output produce duplicates
    confirm_does_not_raise( lambda: \
                            testlib.innerouter(a5, a25, out=(o2,o255)),
                            msg='output dimensionality check with given out' )

    # slightly mismatched output dims: extra dummy dimensions in the inputs or
    # outputs
    try:
        o2[:]   = 0
        o255[:] = 0
        testlib.innerouter(a5, a125, out=(o2,o255))
        confirm_equal(o2,   nps.inner(a5,a125[0]), "inner value matches")
        confirm_equal(o255, nps.outer(a5,a125[0]), "outer value matches")
    except Exception as e:
        confirm(False, f"Broadcasted innerouter() failed: {e}")

    confirm_does_not_raise( lambda: \
                            testlib.innerouter(a5, a125, out=(o12,o1255)),
                            msg='output dimensionality check with given out' )
    try:
        o12[:]   = 0
        o2255[:] = 0
        testlib.innerouter(a5, a125, out=(o12,o2255))
        confirm_equal(o12[0],   nps.inner(a5,a125[0]), "inner value matches")
        confirm_equal(o2255[0], nps.outer(a5,a125[0]), "outer value matches")
        confirm_equal(o2255[1], nps.outer(a5,a125[0]), "outer value matches")
    except Exception as e:
        confirm(False, f"Broadcasted innerouter() failed: {e}")

    confirm_raises(lambda: \
                   testlib.innerouter(a5, a125, out=(o12,o2155)),
                   msg = 'Output should be big-enough to hold the results, even if it matches the broadcasting rules')


    confirm_does_not_raise(lambda: \
                           testlib.innerouter(a5, a25, out=(o22,o255)),
                           msg = 'Extra output dimensions should be ok. Output 1 has extras')
    confirm_does_not_raise(lambda: \
                           testlib.innerouter(a5, a25, out=(o2,o2255)),
                           msg = 'Extra output dimensions should be ok. Output 2 has extras')



test_identity3()
test_identity()
test_inner()
test_outer()
test_innerouter()
test_broadcasting()
test_sorted_indices()

finish()