1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
"""
Application to concatenate several scans; each corresponding to a z-stage, into one nexus scan for nabu-helical
"""
import argparse
import os
import re
import json
import numpy as np
from silx.io.url import DataUrl
from tomoscan.esrf.scan.nxtomoscan import NXtomoScan
from tomoscan.scanbase import ReducedFramesInfos
from tomoscan.io import HDF5File, get_swmr_mode
from nxtomo.application.nxtomo import NXtomo
from nxtomo.nxobject.utils import concatenate as nx_concatenate
from nxtomo.nxobject.nxdetector import ImageKey
from nxtomomill.utils.hdf5 import DatasetReader
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
def get_arguments(argv):
parser = argparse.ArgumentParser(description="")
parser.add_argument(
"--filename_template",
required=True,
help="""The filename template. It must contain a segment equal to "X"*ndigits which will be replaced by the stage number """,
)
parser.add_argument(
"--target_file",
required=True,
help="The new nexus filename that we are going to create ",
)
parser.add_argument(
"--entry_name",
required=False,
help="Optional.Output data path aka entry_name. Its default is entry0000",
default="entry0000",
)
parser.add_argument(
"--total_nstages", type=int, required=True, help="The total number of stages"
)
parser.add_argument(
"--first_stage",
type=int,
default=0,
required=False,
help="Optional. Defaults to zero. The number of the first considered stage. Use this to do a smaller sequence",
)
parser.add_argument(
"--last_stage",
type=int,
default=-1,
required=False,
help="Optional. Defaults to total_nstages-1. The number of the last considered stage. Use this to do a smaller sequence",
)
parser.add_argument(
"--cors_file",
required=False,
type=str,
help="Optional. If given, it is a txt file with a column of centers of rotation. We expect one COR per stage. They are use to set the x_translation.\n"
"This file can be either a one column text file, or a json file. In this case the key rotation_axis_position_list must be present and give a list",
)
parser.add_argument(
"--pixel_size_m",
required=False,
default=None,
help="Optional. The pixel size in meters. If given it will overwrite the nexus one, in the final nexus file",
)
parser.add_argument(
"--neutral_flat",
type=str2bool,
required=False,
default=False,
help="Optional. Its default is False. If true then it will set flats to arrays filled with ones and darks with zeroes",
)
parser.add_argument(
"--flats_from_reduced",
type=str2bool,
required=False,
default=False,
help="Optional. Its default is False. If true then the flats will be set from the reduced flats of the original scans",
)
parser.add_argument(
"--flats_from_before_after",
type=str2bool,
required=False,
default=False,
help="""Optional. Its default is False. If true set flats from the reduced flats of "before and after" scans.\n"
"If given then you have to provide also the names these two scans, using parameters '--scan_before' and '--scan_after'""",
)
parser.add_argument(
"--scan_before",
required=False,
type=str,
help="""Optional. To be used with "flats_from_before_after selected". The name of the scan before all the scans. From this the flat/dark has been extracted""",
)
parser.add_argument(
"--scan_after",
required=False,
type=str,
help="""Optional. To be used with "flats_from_before_after selected". The name of the scan after all the scans. From this the flat/dark has been extracted""",
)
args = parser.parse_args(argv)
sum_bool = (
args.neutral_flat + args.flats_from_reduced + args.flats_from_before_after
)
if (sum_bool) not in [0, 1]:
message = f""" Only one or none of neutral_flat, flats_from_reduced, flats_from_before_after
options can be selected. You selected {sum_bool} of them
"""
raise ValueError(message)
if args.last_stage == -1:
args.last_stage = args.total_nstages - 1
args.nstages = args.last_stage + 1 - args.first_stage
if args.cors_file is None:
args.cors = np.zeros([args.nstages], "f")
else:
try: # check if it is json
with open(args.cors_file, "r") as fj:
json_dict = json.load(fj)
except ValueError:
args.cors = np.loadtxt(args.cors_file)
else:
args.cors = json_dict["rotation_axis_position_list"]
pattern = re.compile("[X]+")
# X represent the variable part of the 'template'
# for example if we want to treat scans HA_2000_sample_0000.nx, ..., HA_2000_sample_9999.nx then
# we expect the template to be HA_2000_sample_XXXX.nx
# warning: If the dataset base names contains several X substrings the longest ones will be taken.
ps = pattern.findall(args.filename_template)
ls = list(map(len, ps))
if len(ls) < 1:
args.name_template = args.filename_template
if args.first_stage != args.last_stage:
message = f" The argument for filename_template , which was '{args.filename_template}' does not seem to contain a pattern with multiple X for the numerical part"
raise ValueError(message)
else:
idx = np.argmax(ls)
if len(ps[idx]) < 2:
message = f""" The argument filename_template should contain a substring formed by at least two 'X'
The filename_template was {args.filename_template}
"""
raise ValueError(message)
args.name_template = args.filename_template.replace(
ps[idx], "{i_stage:" + "0" + str(ls[idx]) + "d}"
)
args.file_list = []
for i_stage in range(args.first_stage, args.last_stage + 1):
args.file_list.append(args.name_template.format(i_stage=i_stage))
args.used_current = None
if args.pixel_size_m is not None:
args.overwrite_pixel_size = True
args.pixel_size_m = float(args.pixel_size_m)
else:
args.overwrite_pixel_size = False
with HDF5File(args.file_list[0], "r", swmr=get_swmr_mode()) as h5f:
args.pixel_size_m = h5f[
os.path.join(args.entry_name, "instrument", "detector", "x_pixel_size")
][()]
return args
def main(argv):
args = get_arguments(argv[1:])
output_file = args.target_file
dummy_frame = None
"""the dummy frame is a frame fill with ones. It will be insert between two stages to ensure series from the twos stages will be
perceived as 'uncontiguous'. Separates flats at the end of a stage and at the beginning.
"""
nxt_z_list = []
npoints_list = []
for i_stage in range(args.first_stage, args.last_stage + 1):
filename = args.file_list[i_stage - args.first_stage]
# step 1: load the stage
nxt = NXtomo()
nxt.load(filename, data_path=args.entry_name, detector_data_as="as_data_url")
nxt_z_list.append(nxt)
scan = NXtomoScan(filename, args.entry_name)
npoints_list.append(len(scan.image_key_control))
if dummy_frame is None:
if len(nxt.instrument.detector.data) > 0:
# create empty frame to give it to the 'invalid_nxt' NXtomo later
with DatasetReader(nxt.instrument.detector.data[0]) as raw_data:
data_type = raw_data.dtype
# FIXME: avoid keeping some file open. not clear why this is needed
raw_data = None
args.img_shape = (scan.dim_2, scan.dim_1)
with HDF5File(output_file, mode="w") as h5s:
h5s["empty_frame"] = np.ones(
(1, scan.dim_2, scan.dim_1), dtype=data_type
)
dummy_frame = DataUrl(
file_path=output_file, data_path="empty_frame"
)
else:
message = """The first nx file must have some data"""
raise ValueError(message)
# step 2: insert single 'empty' frame between the two stages (aka dummy frame)
invalid_nxt = NXtomo(args.entry_name)
invalid_nxt.instrument.detector.image_key_control = [ImageKey.INVALID]
invalid_nxt.energy = nxt.energy.value
invalid_nxt.control.data = np.ones(1, "f")
invalid_nxt.sample.rotation_angle = [0.0]
invalid_nxt.instrument.detector.field_of_view = (
nxt.instrument.detector.field_of_view.value
)
invalid_nxt.instrument.detector.x_pixel_size = (
nxt.instrument.detector.x_pixel_size.value
)
invalid_nxt.instrument.detector.y_pixel_size = (
nxt.instrument.detector.y_pixel_size.value
)
invalid_nxt.instrument.detector.distance = (
nxt.instrument.detector.distance.value
)
invalid_nxt.sample.x_translation = np.zeros([1], "f")
invalid_nxt.sample.y_translation = np.zeros([1], "f")
invalid_nxt.sample.z_translation = np.zeros([1], "f")
invalid_nxt.instrument.detector.data = (dummy_frame,)
nxt_z_list.append(invalid_nxt)
nx_concatenated = nx_concatenate(nxt_z_list)
nx_concatenated.save(
file_path=output_file, data_path=args.entry_name, overwrite=True
)
with HDF5File(output_file, "r+") as output_target:
N_total = output_target[
os.path.join(args.entry_name, "sample", "x_translation")
].shape[0]
if args.neutral_flat:
# will set flats to arrays filled with ones and darks with zeroes
original_currents = output_target[
os.path.join(args.entry_name, "control", "data")
][()]
original_currents[:] = 1
del output_target[os.path.join(args.entry_name, "control", "data")]
output_target[os.path.join(args.entry_name, "control", "data")] = (
original_currents
)
do_flat = (
args.flats_from_reduced or args.flats_from_before_after or args.neutral_flat
)
if do_flat or (args.cors_file is not None):
one_for_invalid = 1
actual_pos = 0
old_pos = actual_pos
i_stage = args.first_stage
if do_flat:
darks_dictionary = {}
flats_dictionary = {}
darks_infos_dictionary = {"count_time": []}
flats_infos_dictionary = {
"machine_electric_current": [],
"count_time": [],
}
add_dark_to_dict(
args, darks_dictionary, darks_infos_dictionary, i_stage, actual_pos
)
for i_stage in range(args.first_stage, args.last_stage + 1):
if do_flat:
add_flat_to_dict(
args,
flats_dictionary,
flats_infos_dictionary,
i_stage,
actual_pos,
)
actual_pos += npoints_list[i_stage - args.first_stage]
if do_flat:
add_flat_to_dict(
args,
flats_dictionary,
flats_infos_dictionary,
i_stage,
actual_pos,
position_in_list=1,
)
# if i_stage != args.last_stage:
actual_pos += one_for_invalid
if args.cors_file is not None:
output_target[
os.path.join(args.entry_name, "sample", "x_translation")
][old_pos:actual_pos] = (
-args.cors[i_stage - args.first_stage] + args.cors[0]
) * args.pixel_size_m
old_pos = actual_pos
assert actual_pos == N_total
if args.overwrite_pixel_size:
g = output_target[
os.path.join(args.entry_name, "instrument", "detector")
]
g["x_pixel_size"][()] = args.pixel_size_m
g["y_pixel_size"][()] = args.pixel_size_m
if do_flat:
# darks metadata
meta_darks = ReducedFramesInfos()
meta_darks.count_time.extend(darks_infos_dictionary["count_time"][:1])
# flats metadata
meta_flats = ReducedFramesInfos()
meta_flats.machine_electric_current.extend(
flats_infos_dictionary["machine_electric_current"]
)
meta_flats.count_time.extend(flats_infos_dictionary["count_time"])
# save metadata
scan = NXtomoScan(output_file, args.entry_name)
scan.save_reduced_flats(
flats_dictionary, flats_infos=meta_flats, overwrite=True
)
scan.save_reduced_darks(
darks_dictionary, darks_infos=meta_darks, overwrite=True
)
def add_flat_to_dict(
args,
flats_dictionary,
flats_infos_dictionary,
i_stage,
actual_pos,
position_in_list=0,
):
if args.flats_from_reduced:
filename = args.file_list[i_stage - args.first_stage]
scan = NXtomoScan(filename, args.entry_name)
reduced_flats, metadata_flats = scan.load_reduced_flats(return_info=True)
position_in_list = min(position_in_list, len(list(reduced_flats.keys())) - 1)
my_flat = reduced_flats[list(reduced_flats.keys())[position_in_list]]
my_current = metadata_flats.machine_electric_current[position_in_list]
my_count_time = metadata_flats.count_time[position_in_list]
elif args.neutral_flat:
my_flat = np.ones(args.img_shape, "f")
my_current = 1.0
my_count_time = 1.0
elif args.flats_from_before_after:
scan = NXtomoScan(args.scan_before, args.entry_name)
reduced_flats_b, metadata_flats_b = scan.load_reduced_flats(return_info=True)
reduced_darks_b, _ = scan.load_reduced_darks(return_info=True)
scan = NXtomoScan(args.scan_after, args.entry_name)
reduced_flats_e, metadata_flats_e = scan.load_reduced_flats(return_info=True)
reduced_darks_e, _ = scan.load_reduced_darks(return_info=True)
flat_b = reduced_flats_b[list(reduced_flats_b.keys())[0]]
flat_e = reduced_flats_e[list(reduced_flats_e.keys())[0]]
dark_b = reduced_darks_b[list(reduced_darks_b.keys())[0]]
dark_e = reduced_darks_b[list(reduced_darks_e.keys())[0]]
current_b = metadata_flats_b.machine_electric_current[0]
current_e = metadata_flats_e.machine_electric_current[0]
if args.used_current is None:
args.used_current = current_b
factor = (i_stage) / (args.total_nstages)
my_flat = args.used_dark + (
(flat_b - dark_b) * (args.used_current / current_b) * (1 - factor)
+ (flat_e - dark_e) * (args.used_current / current_e) * factor
)
my_current = args.used_current
my_count_time = args.used_count_time
else:
raise ValueError(
"one of the option must be activated in[neutral_flat, flats_from_reduced, flats_from_before_after]"
)
flats_dictionary[actual_pos] = my_flat
flats_infos_dictionary["machine_electric_current"].append(my_current)
flats_infos_dictionary["count_time"].append(my_count_time)
def add_dark_to_dict(
args, darks_dictionary, darks_infos_dictionary, i_stage, actual_pos
):
if args.flats_from_reduced:
filename = args.file_list[i_stage - args.first_stage]
elif args.flats_from_before_after:
filename = args.scan_before
else:
assert args.neutral_flat
filename = None
if filename is not None:
scan = NXtomoScan(filename, args.entry_name)
reduced_darks, metadata_darks = scan.load_reduced_darks(return_info=True)
my_dark = reduced_darks[list(reduced_darks.keys())[0]]
my_count_time = metadata_darks.count_time[0]
else:
my_dark = np.zeros(args.img_shape, "f")
my_count_time = 1.0
darks_dictionary[actual_pos] = my_dark
darks_infos_dictionary["count_time"].append(my_count_time)
args.used_count_time = my_count_time
args.used_dark = darks_dictionary[actual_pos]
|