File: bliss.py

package info (click to toggle)
python-nxtomomill 1.1.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,564 kB
  • sloc: python: 15,970; makefile: 13; sh: 3
file content (682 lines) | stat: -rw-r--r-- 25,197 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
# coding: utf-8

from __future__ import annotations

import datetime
import os

import numpy
import h5py
from tomoscan.io import HDF5File


class MockBlissAcquisition:
    """

    :param n_sequence: number of sequence to create
    :param n_scan_per_sequence: number of scans (projection series) per sequence
    :param n_projections_per_scan: number of projection frame in a scan
    :param n_darks: number of dark frame in the series. Only one series at the
                    beginning
    :param n_flats: number of flats to create. In this case will only
                        create one series of n flats after dark if any
    :param output_dir: will contain the proposal file and one folder per
                           sequence.
    :param str acqui_type: acquisition type. Can be "basic", "zseries-v1", "zseries-v3
    :param Iterable z_values: if acqui_type is zseries then users should
                              provide the serie of values for z (one per stage)
    :param nb_loop: number of pcotomo loop for v1 of bliss pcotomo
    :param nb_tomo: number of tomo per loop for v1 of bliss pcotomo
    :param nb_turns: number of turns for v2 of bliss pcotomo ( <=> nb NXtomo to generate)
    :param file_name_prefix: bliss file prefix name
    :param file_name_z_fill: optional z fill for the file name index. If None then file index will not be 'z filled'
    :param create_tomo_config: if True create the 'tomo_config' group under instrument which contains
                                    metadata describing the acquisition (which dataset to read for rotation, translation ...)
    """

    def __init__(
        self,
        n_sample,
        n_sequence,
        n_scan_per_sequence,
        n_darks,
        n_flats,
        output_dir,
        with_nx_detector_attr=True,
        detector_name="pcolinux",
        acqui_type="basic",
        z_values=None,
        nb_loop=None,
        nb_tomo=None,
        nb_turns=None,
        with_rotation_motor_info=True,
        frame_data_type=numpy.uint16,
        file_name_prefix="sample",
        file_name_z_fill=None,
        create_tomo_config: bool = True,
        ebs_tomo_version: str | None = None,
        z_series_v_3_options=None,
    ):
        self._n_darks = n_darks
        self._n_flats = n_flats
        self._n_scan_per_sequence = n_scan_per_sequence
        self.__folder = output_dir
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        self.__proposal_file = os.path.join(self.__folder, "ihproposal_file.h5")
        if acqui_type not in ("pcotomo"):
            if nb_loop is not None or nb_tomo is not None:
                raise ValueError(
                    "nb_loop and nb_tomo are only handled by acqui_type: `pcotomo`"
                )
        else:
            if not (
                nb_turns is not None or (nb_loop is not None and nb_tomo is not None)
            ):
                raise ValueError(
                    "nb_turns should be provided or nb_loop and nb_tomo must be provided"
                )

        # create sample
        self.__samples = []
        for sample_i in range(n_sample):
            if file_name_z_fill is None:
                dir_name = f"{file_name_prefix}_{sample_i}"
            else:
                dir_name = f"{file_name_prefix}_{str(sample_i).zfill(file_name_z_fill)}"
            sample_dir = os.path.join(self.path, dir_name)
            os.mkdir(sample_dir)
            sample_file = os.path.join(sample_dir, dir_name + ".h5")
            if acqui_type == "basic":
                acqui_tomo = _BlissBasicTomo(
                    sample_dir=sample_dir,
                    sample_file=sample_file,
                    n_sequence=n_sequence,
                    n_scan_per_sequence=n_scan_per_sequence,
                    n_darks=n_darks,
                    n_flats=n_flats,
                    with_nx_detector_attr=with_nx_detector_attr,
                    detector_name=detector_name,
                    with_rotation_motor_info=with_rotation_motor_info,
                    frame_data_type=frame_data_type,
                    create_tomo_config=create_tomo_config,
                    ebs_tomo_version=ebs_tomo_version,
                )
            elif acqui_type == "pcotomo":
                acqui_tomo = _BlissPCOTomo(
                    sample_dir=sample_dir,
                    sample_file=sample_file,
                    n_sequence=n_sequence,
                    n_scan_per_sequence=n_scan_per_sequence,
                    n_darks=n_darks,
                    n_flats=n_flats,
                    with_nx_detector_attr=with_nx_detector_attr,
                    detector_name=detector_name,
                    with_rotation_motor_info=with_rotation_motor_info,
                    nb_loop=nb_loop,
                    nb_tomo=nb_tomo,
                    nb_turns=nb_turns,
                    frame_data_type=frame_data_type,
                    create_tomo_config=create_tomo_config,
                    ebs_tomo_version=ebs_tomo_version,
                )
            elif acqui_type in ("z-series-v1", "z-series-v3"):
                if z_values is None:
                    raise ValueError("for z-series z_values should be provided")
                acqui_tomo = _BlissZseriesTomo(
                    sample_dir=sample_dir,
                    sample_file=sample_file,
                    n_sequence=n_sequence,
                    n_scan_per_sequence=n_scan_per_sequence,
                    n_darks=n_darks,
                    n_flats=n_flats,
                    with_nx_detector_attr=with_nx_detector_attr,
                    detector_name=detector_name,
                    z_values=z_values,
                    with_rotation_motor_info=with_rotation_motor_info,
                    frame_data_type=frame_data_type,
                    create_tomo_config=create_tomo_config,
                    ebs_tomo_version=ebs_tomo_version,
                    z_series_version=acqui_type.split("-")[-1],
                    z_series_v_3_options=z_series_v_3_options,
                )
            else:
                raise NotImplementedError("")
            self.__samples.append(acqui_tomo)

    @property
    def samples(self):
        return self.__samples

    @property
    def proposal_file(self):
        # for now a simple file
        return self.__proposal_file

    @property
    def path(self):
        return self.__folder


class _BlissSample:
    """
    Simple mock of a bliss sample. For now we only create the hierarchy of
    files.
    """

    def __init__(
        self,
        sample_dir,
        sample_file,
        n_sequence,
        n_scan_per_sequence,
        n_darks,
        n_flats,
        detector_name,
        with_nx_detector_attr=True,
        with_rotation_motor_info=True,
        frame_data_type=numpy.uint16,
        create_tomo_config: bool = True,
        ebs_tomo_version: str | None = None,
    ):
        self._with_nx_detector_attr = with_nx_detector_attr
        self._sample_dir = sample_dir
        self._sample_file = sample_file
        self._n_sequence = n_sequence
        self._n_scan_per_seq = n_scan_per_sequence
        self._n_darks = n_darks
        self._n_flats = n_flats
        self._scan_folders = []
        self._index = 1
        self._detector_name = detector_name
        self._det_width = 64
        self._det_height = 64
        self._tomo_n = 10
        self._energy = 19.0
        self._sample_detector_distance = 100.0  # in mm
        self._source_sample_distance = 52000.0  # in mm
        self._pixel_size = (0.0065, 0.0066)
        self._with_rotation_motor_info = with_rotation_motor_info
        self._frame_data_type = frame_data_type
        self._create_tomo_config = create_tomo_config
        self._ebs_tomo_version = ebs_tomo_version
        for _ in range(n_sequence):
            self.add_sequence()

    @property
    def frame_data_type(self):
        return self._frame_data_type

    def get_next_free_index(self):
        idx = self._index
        self._index += 1
        return idx

    @property
    def current_scan_index(self) -> int:
        return self._index - 1

    def get_main_entry_title(self):
        raise NotImplementedError("Base class")

    @staticmethod
    def get_title(scan_type):
        if scan_type == "dark":
            return "dark images"
        elif scan_type == "flat":
            return "reference images 1"
        elif scan_type == "projection":
            return "projections 1 - 2000"
        else:
            raise ValueError("Not implemented")

    def create_entry_and_technique(self, seq_ini_index):
        # add sequence init information
        with HDF5File(self.sample_file, mode="a") as h5f:
            seq_node = h5f.require_group(str(seq_ini_index) + ".1")
            seq_node.attrs["NX_class"] = "NXentry"
            seq_node["title"] = self.get_main_entry_title()
            seq_node.require_group("instrument/positioners")
            # write energy
            seq_node["technique/scan/energy"] = self._energy
            seq_node["technique/scan/tomo_n"] = self._tomo_n * self._n_scan_per_seq
            seq_node["technique/scan/sample_detector_distance"] = (
                self._sample_detector_distance
            )
            seq_node["technique/scan/sample_detector_distance"].attrs["units"] = "mm"
            seq_node["technique/scan/source_sample_distance"] = (
                self._source_sample_distance
            )
            seq_node["technique/scan/source_sample_distance"].attrs["units"] = "mm"
            seq_node["technique/detector/pixel_size"] = numpy.asarray(self._pixel_size)
            seq_node["start_time"] = str(datetime.datetime.now())
            seq_node["end_time"] = str(
                datetime.datetime.now() + datetime.timedelta(minutes=10)
            )
            if self._create_tomo_config:
                self._add_tomo_config(seq_node)

    @staticmethod
    def get_next_group_name(seq_ini_index, scan_idx):
        return str(scan_idx) + ".1"

    def add_scan(
        self,
        scan_type,
        seq_ini_index,
        z_value,
        skip_title=False,
        nb_loop=None,
        nb_tomo=None,
        nb_turns=1,
    ):
        """
        :param nb_loop: number of loop in pcotomo use case. Else must be 1
        :param nb_tomo: number of tomography done in pcotomo 'per iteration' use case. Else must be 1
        """
        scan_idx = self.get_next_free_index()
        scan_name = str(scan_idx).zfill(4)
        scan_path = os.path.join(self.path, scan_name)
        self._scan_folders.append(_BlissScan(folder=scan_path, scan_type=scan_type))
        if nb_turns is not None:
            nb_nxtomo = nb_turns
            if nb_tomo is not None or nb_loop is not None:
                raise ValueError(
                    "nb_tomo and nb_loop should be provided or nb_turns. Not both"
                )
        elif nb_loop is not None and nb_tomo is not None:
            nb_nxtomo = nb_loop * nb_tomo
            if nb_turns is not None:
                raise ValueError(
                    "nb_tomo and nb_loop should be provided or nb_turns. Not both"
                )
        else:
            raise ValueError(
                "nb_tomo and nb_loop should be provided or nb_turns. None provided"
            )
        # register the scan information
        with HDF5File(self.sample_file, mode="a") as h5f:
            seq_node = h5f.require_group(str(scan_idx) + ".1")
            if "start_time" not in seq_node:
                seq_node["start_time"] = str(datetime.datetime.now())
            # write title
            title = self.get_title(scan_type=scan_type)
            if not skip_title:
                seq_node["title"] = title
            # write data
            data = (
                numpy.random.random(
                    self._det_height * self._det_width * self._tomo_n * nb_nxtomo
                )
                * 256
            )
            n_frames = self._tomo_n * nb_nxtomo
            data = data.reshape(n_frames, self._det_height, self._det_width)
            data = data.astype(self.frame_data_type)
            det_path_1 = "/".join(("instrument", self._detector_name))
            det_grp = seq_node.require_group(det_path_1)
            det_grp["data"] = data
            if self._with_nx_detector_attr:
                det_grp.attrs["NX_class"] = "NXdetector"
            acq_grp = det_grp.require_group("acq_parameters")
            acq_grp["acq_expo_time"] = 4
            det_path_2 = "/".join(("technique", "scan", self._detector_name))
            seq_node[det_path_2] = data
            seq_node.attrs["NX_class"] = "NXentry"

            # write rotation angle value and translations
            instrument_group = seq_node.require_group("instrument")
            positioners_grp = instrument_group.require_group("positioners")
            positioners_grp["hrsrot"] = numpy.linspace(
                start=0.0, stop=360, num=n_frames
            )
            positioners_grp["sx"] = numpy.array(numpy.random.random(size=n_frames))
            positioners_grp["sy"] = numpy.random.random(size=n_frames)
            positioners_grp["sz"] = numpy.asarray([z_value] * n_frames)
            positioners_grp["yrot"] = numpy.random.random(size=n_frames)
            if self._with_rotation_motor_info:
                scan_node = seq_node.require_group("technique/scan")
                scan_node["motor"] = ("rotation", "hrsrot", "srot")

            if self._ebs_tomo_version is not None:
                technique_group = seq_node.require_group("technique")
                technique_group.attrs["tomo_version"] = self._ebs_tomo_version

    def _add_tomo_config(self, group: h5py.Group):
        technique_group = group.require_group("technique")
        tomo_config_group = technique_group.require_group("tomoconfig")
        tomo_config_group["rotation"] = ["hrsrot"]
        tomo_config_group["detector"] = [
            self._detector_name,
        ]
        tomo_config_group["sample_x"] = ["sx"]
        tomo_config_group["sample_y"] = ["sy"]
        tomo_config_group["translation_z"] = ["sz"]
        tomo_config_group["translation_y"] = ["yrot"]

    def add_sequence(self):
        """Add a sequence to the bliss file"""
        raise NotImplementedError("Base class")

    @property
    def path(self):
        return self._sample_dir

    @property
    def sample_directory(self):
        return self._sample_dir

    @property
    def sample_file(self):
        return self._sample_file

    def scans_folders(self):
        return self._scan_folders

    @property
    def n_darks(self):
        return self._n_darks

    @property
    def with_rotation_motor_info(self):
        return self._with_rotation_motor_info


class _BlissScan:
    """
    mock of a bliss scan
    """

    def __init__(self, folder, scan_type: str):
        assert scan_type in ("dark", "flat", "projection")
        self.__path = folder

    def path(self):
        return self.__path


class _BlissBasicTomo(_BlissSample):
    def get_main_entry_title(self):
        return "tomo:fullturn"

    def add_sequence(self):
        # reserve the index for the 'initialization' sequence. No scan folder
        # will be created for this one.
        seq_ini_index = self.get_next_free_index()

        self.create_entry_and_technique(seq_ini_index=seq_ini_index)

        if self.n_darks > 0:
            self.add_scan(scan_type="dark", seq_ini_index=seq_ini_index, z_value=1)

        if self._n_flats > 0:
            self.add_scan(scan_type="flat", seq_ini_index=seq_ini_index, z_value=1)

        for _ in range(self._n_scan_per_seq):
            self.add_scan(
                scan_type="projection", seq_ini_index=seq_ini_index, z_value=1
            )


class _BlissPCOTomo(_BlissSample):
    def __init__(
        self,
        sample_dir,
        sample_file,
        n_sequence,
        n_scan_per_sequence,
        n_darks,
        n_flats,
        detector_name,
        with_nx_detector_attr=True,
        with_rotation_motor_info=True,
        nb_loop=None,
        nb_tomo=None,
        nb_turns=1,
        frame_data_type=numpy.uint16,
        create_tomo_config: bool = True,
        ebs_tomo_version=None,
    ):
        self.nb_loop = nb_loop
        self.nb_tomo = nb_tomo
        self.nb_turns = nb_turns
        super().__init__(
            sample_dir,
            sample_file,
            n_sequence,
            n_scan_per_sequence,
            n_darks,
            n_flats,
            detector_name,
            with_nx_detector_attr,
            with_rotation_motor_info=with_rotation_motor_info,
            frame_data_type=frame_data_type,
            create_tomo_config=create_tomo_config,
            ebs_tomo_version=ebs_tomo_version,
        )
        if nb_loop is not None and nb_tomo is not None:
            if nb_turns is not None:
                raise ValueError(
                    "All of nb_loop, nb_tomo and nb_turns provided. Unable to deduce the pcotomo version"
                )
            pcotomo_version = 1
        elif nb_turns is not None:
            pcotomo_version = 2
        else:
            pcotomo_version = None
        if pcotomo_version is not None:
            # write Bliss version in attrs
            with HDF5File(self.sample_file, mode="a") as h5f:
                if "creator_version" not in h5f.attrs:
                    if pcotomo_version == 1:
                        h5f.attrs["creator_version"] = "1.2.3"
                    if pcotomo_version == 2:
                        h5f.attrs["creator_version"] = "1.10.0"

    def get_main_entry_title(self):
        return "tomo:pcotomo"

    def add_sequence(self):
        # reserve the index for the 'initialization' sequence. No scan folder
        # will be created for this one.
        seq_ini_index = self.get_next_free_index()

        self.create_entry_and_technique(seq_ini_index=seq_ini_index)

        # start dark
        if self.n_darks > 0:
            self.add_scan(scan_type="dark", seq_ini_index=seq_ini_index, z_value=1)

        # start flat
        if self._n_flats > 0:
            self.add_scan(scan_type="flat", seq_ini_index=seq_ini_index, z_value=1)

        for _ in range(self._n_scan_per_seq):
            self.add_scan(
                scan_type="projection",
                seq_ini_index=seq_ini_index,
                z_value=1,
                nb_loop=self.nb_loop,
                nb_tomo=self.nb_tomo,
                nb_turns=self.nb_turns,
            )

        # end flat
        if self._n_flats > 0:
            self.add_scan(scan_type="flat", seq_ini_index=seq_ini_index, z_value=1)

    def add_scan(
        self,
        scan_type,
        seq_ini_index,
        z_value,
        skip_title=False,
        nb_loop=None,
        nb_tomo=None,
        nb_turns=1,
    ):
        super().add_scan(
            scan_type, seq_ini_index, z_value, skip_title, nb_loop, nb_tomo, nb_turns
        )
        if scan_type == "projection":
            # register pcotomo specific informations (only for projections)
            with HDF5File(self.sample_file, mode="a") as h5f:
                seq_node = h5f.require_group(str(self._index - 1) + ".1")

                scan_grp = seq_node.require_group("technique/proj")
                if nb_loop is not None and "nb_loop" not in scan_grp:
                    scan_grp["nb_loop"] = nb_loop
                if nb_tomo is not None and "nb_tomo" not in scan_grp:
                    scan_grp["nb_tomo"] = nb_tomo
                if nb_turns is not None and "nb_turns" not in scan_grp:
                    scan_grp["nb_turns"] = nb_turns
                if "tomo_n" not in scan_grp:
                    scan_grp["tomo_n"] = self._tomo_n


class _BlissZseriesTomo(_BlissSample):
    def __init__(
        self,
        sample_dir,
        sample_file,
        n_sequence,
        n_scan_per_sequence,
        n_darks,
        n_flats,
        detector_name,
        z_values,
        z_series_version: str,
        with_nx_detector_attr=True,
        with_rotation_motor_info=True,
        frame_data_type=numpy.uint16,
        create_tomo_config: bool = True,
        ebs_tomo_version: str = None,
        z_series_v_3_options=None,
    ):
        assert z_series_version in ("v1", "v3")
        self.z_series_version = z_series_version
        self._z_values = z_values
        self._z_series_v_3_options = z_series_v_3_options
        super().__init__(
            sample_dir=sample_dir,
            sample_file=sample_file,
            n_sequence=n_sequence,
            n_scan_per_sequence=n_scan_per_sequence,
            n_darks=n_darks,
            n_flats=n_flats,
            detector_name=detector_name,
            with_nx_detector_attr=with_nx_detector_attr,
            with_rotation_motor_info=with_rotation_motor_info,
            frame_data_type=frame_data_type,
            create_tomo_config=create_tomo_config,
            ebs_tomo_version=ebs_tomo_version,
        )

    def get_main_entry_title(self):
        return "tomo:zseries"

    def create_dark_at_start(self) -> bool:
        if self.z_series_version == "v1":
            return True
        else:
            return self._z_series_v_3_options["dark_at_start"]

    def create_flat_at_start(self) -> bool:
        if self.z_series_version == "v1":
            return True
        else:
            return self._z_series_v_3_options["flat_at_start"]

    def create_dark_at_end(self) -> bool:
        if self.z_series_version == "v1":
            return True
        else:
            return self._z_series_v_3_options["dark_at_end"]

    def create_flat_at_end(self) -> bool:
        if self.z_series_version == "v1":
            return True
        else:
            return self._z_series_v_3_options["flat_at_end"]

    def create_intermediary_flat(self) -> bool:
        return self.z_series_version == "v1"

    def create_intermediary_dark(self) -> bool:
        return self.z_series_version == "v1"

    def add_sequence(self):
        # reserve the index for the 'initialization' sequence. No scan folder
        # will be created for this one.

        if self.z_series_version == "v1":
            seq_ini_index = self.get_next_free_index()
            self.create_entry_and_technique(seq_ini_index=seq_ini_index)

        for z_value in self._z_values:
            if self.z_series_version == "v3":
                seq_ini_index = self.get_next_free_index()
                self.create_entry_and_technique(seq_ini_index=seq_ini_index)

            if z_value == self._z_values[0]:
                create_dark = self.create_dark_at_start()
                create_flat = self.create_flat_at_start()
            elif z_value == self._z_values[-1]:
                create_dark = self.create_dark_at_end()
                create_flat = self.create_flat_at_end()
            else:
                create_dark = self.create_intermediary_dark()
                create_flat = self.create_intermediary_flat()

            if create_dark and self.n_darks > 0:
                self.add_scan(
                    scan_type="dark", seq_ini_index=seq_ini_index, z_value=z_value
                )

            if create_flat and self._n_flats > 0:
                self.add_scan(
                    scan_type="flat", seq_ini_index=seq_ini_index, z_value=z_value
                )

            for _ in range(self._n_scan_per_seq):
                self.add_scan(
                    scan_type="projection", seq_ini_index=seq_ini_index, z_value=z_value
                )

    def create_entry_and_technique(self, seq_ini_index):
        super().create_entry_and_technique(seq_ini_index=seq_ini_index)
        # add sequence init information
        if self.z_series_version == "v3":
            with HDF5File(self.sample_file, mode="a") as h5f:
                seq_node = h5f.require_group(str(seq_ini_index) + ".1")
                seq_node.attrs["NX_class"] = "NXentry"
                # write scab flags
                seq_node["technique/scan_flags/dark_images_at_start"] = (
                    self._z_series_v_3_options["dark_at_start"]
                )
                seq_node["technique/scan_flags/dark_images_at_end"] = (
                    self._z_series_v_3_options["dark_at_end"]
                )
                seq_node["technique/scan_flags/ref_images_at_start"] = (
                    self._z_series_v_3_options["flat_at_start"]
                )
                seq_node["technique/scan_flags/ref_images_at_end"] = (
                    self._z_series_v_3_options["flat_at_end"]
                )

    def add_scan(
        self,
        scan_type,
        seq_ini_index,
        z_value,
        skip_title=False,
        nb_loop=None,
        nb_tomo=None,
        nb_turns=1,
    ):
        super().add_scan(
            scan_type, seq_ini_index, z_value, skip_title, nb_loop, nb_tomo, nb_turns
        )
        with HDF5File(self.sample_file, mode="a") as h5f:
            seq_node = h5f.require_group(str(self.current_scan_index) + ".1")
            seq_node["sample/name"] = "mysample_0000"