1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
# coding: utf-8
from __future__ import annotations
import logging
import os
import numpy
from tomoscan.esrf.scan.nxtomoscan import NXtomoScan
from tomoscan.esrf.scan.utils import cwd_context
from tomoscan.framereducer.method import ReduceMethod
from silx.io.utils import open as open_hdf5
from nxtomo.application.nxtomo import NXtomo
from nxtomo.nxobject.nxdetector import ImageKey
from ..utils.utils import strip_extension
logging.basicConfig(level=logging.INFO)
_logger = logging.getLogger(__name__)
__all__ = ["flat_reducer", "extract_darks_flats"]
def extract_darks_flats(
dataset_file_name: str,
entry_name: str,
save_intermediated: bool = False,
target_filename: str | None = None,
target_entry_name: str | None = None,
method: str = "median",
reuse_intermediated: bool = False,
use_projections_for_flats: bool = False,
dark_default_value=None,
):
dataset_file_name = os.path.abspath(dataset_file_name)
target_entry_name = target_entry_name if target_entry_name else entry_name
dirname = os.path.dirname(dataset_file_name)
basename = os.path.basename(dataset_file_name)
if not dirname:
dirname = "./"
if target_filename is not None:
target_filename = os.path.abspath(target_filename)
with cwd_context(dirname):
if reuse_intermediated:
scan = NXtomoScan(target_filename, target_entry_name)
reduced_flats, metadata_flats = scan.load_reduced_flats(return_info=True)
reduced_darks, metadata_darks = scan.load_reduced_darks(return_info=True)
else:
nxt = NXtomo()
nxt.load(basename, data_path=entry_name)
if use_projections_for_flats:
where_proj = [k.value == 0 for k in nxt.instrument.detector.image_key]
where_flat = [k.value == 1 for k in nxt.instrument.detector.image_key]
nxt.instrument.detector.image_key_control[where_proj] = (
ImageKey.FLAT_FIELD
)
nxt.instrument.detector.image_key_control[where_flat] = ImageKey.INVALID
file_path = f"{basename}_edited_keys_scan.nx"
if os.path.isfile(file_path):
os.remove(file_path)
nxt.save(file_path, entry_name)
scan = NXtomoScan(file_path, entry_name)
reduced_flats, metadata_flats = scan.compute_reduced_flats(
method, return_info=True
)
reduced_darks, metadata_darks = scan.compute_reduced_darks(
return_info=True
)
if len(reduced_darks) == 0:
assert len(reduced_flats), " We expect to find at least some flats"
dim_2, dim_1 = reduced_flats[list(reduced_flats.keys())[0]].shape
_logger.warning(
f" patching with a default dark of size {dim_1} for horizontal , {dim_2} for vertical and default value {dark_default_value}"
)
assert (
dark_default_value is not None
) > 0, f"No raw darks found in the dataset {scan} and 'dark_default_value' not provided. Unable to get any reduced darks."
reduced_darks[0] = numpy.full(
(dim_2, dim_1), dark_default_value, dtype="f"
)
metadata_darks = metadata_flats
else:
scan = NXtomoScan(basename, entry_name)
reduced_flats, metadata_flats = scan.compute_reduced_flats(
method, return_info=True
)
reduced_darks, metadata_darks = scan.compute_reduced_darks(
return_info=True
)
reduced_flats, metadata_flats = scan.compute_reduced_flats(
method, return_info=True
)
if save_intermediated:
scan = NXtomoScan(target_filename, target_entry_name)
scan.save_reduced_flats(
reduced_flats, flats_infos=metadata_flats, overwrite=True
)
scan.save_reduced_darks(
reduced_darks, darks_infos=metadata_darks, overwrite=True
)
return_dict = {
"flat": {"images": reduced_flats, "meta": metadata_flats},
"dark": {"images": reduced_darks, "meta": metadata_darks},
}
return __RefsDarks(return_dict, entry_name), return_dict
class __RefsDarks:
def __init__(self, dict_or_file_name, entry_name):
self.dict_or_file_name = dict_or_file_name
self.entry_name = entry_name
self.flat_image, self.flat_current = self._take_image_and_meta("flat")
self.dark_image, self.dark_current = self._take_image_and_meta("dark")
def _take_image_and_meta(self, what) -> tuple:
"""
:return: a tuple as (image, current:float|None)
"""
if isinstance(self.dict_or_file_name, dict):
group = self.dict_or_file_name[what] # [self.entry_name]
image = None
for key in group["images"]:
if isinstance(key, int) or key.isnumeric():
if image is None:
image = group["images"][key]
else:
_logger.warning(" more than one image found ")
if len(group["meta"].machine_electric_current) > 0:
current = group["meta"].machine_electric_current[0]
else:
current = None
else:
file_name_tmp = f"{strip_extension(self.dict_or_file_name)}_{what}.h5"
with open_hdf5(file_name_tmp) as f:
group = f[self.entry_name]
group = f[what]
image = None
current = group["machine_electric_current"][()][0]
for key in group:
if key.isnumeric():
if image is None:
image = group[key][()]
else:
raise ValueError(
f" more than one image found in {file_name_tmp}"
)
return image, current
def flat_reducer(
scan_filename: str,
ref_start_filename: str,
ref_end_filename: str,
mixing_factor: float,
entry_name: str = "entry0000",
median_or_mean: str = ReduceMethod.MEAN.value,
save_intermediated: bool = False,
reuse_intermediated: bool = False,
overwrite: bool = True,
dark_default_value=300,
):
"""
this method extracts first a flatfield and dark from two reference scans. After flats and darks extraction, an interpolation is done
according to the mixing_factor parameter. The obtained flats and dark are then saved associating them for a given target scan_filename
:param scan_filename: The target scan. A nexus filename for which we want to create reduced scan from the scans
given by ref_start and ref_end parameters ( a scan at the beginning, another at the end)
:param ref_start_filename: The scan with projections to be used as reference for the beginning of the measures.
:param ref_end_filename: The scan with projections to be used as reference at the end of the measures.
:param mixing_factor: The mixing factor giving the averaged flats as
(ref_start-darkB+darkS)*(1-mixing_factor)+(ref_end-darkE+darkS)*mixing_factor
:param entry_name: The entry name, it defaults to entry0000
:param median_or_mean: Either "mean" or "median". Default is "mean"
:param save_intermediated: Save intermediated flats and darks corresponding to extremal
reference scans (ref_start_filename, refa_filename) for later usage. Defaults to False
:param use_intermediated: Save intermediated flats and darks and if already presente reuse them for mixing
:param overwrite: enforce overwriting of the reduced flats/darks
"""
if reuse_intermediated:
required_files = [
f"{strip_extension(ref_start_filename, _logger)}_darks.hdf5",
f"{strip_extension(ref_start_filename, _logger)}_flats.hdf5",
f"{strip_extension(ref_end_filename, _logger)}_darks.hdf5",
f"{strip_extension(ref_end_filename, _logger)}_flats.hdf5",
]
intermediated_are_reusable = True
for fn in required_files:
if not os.path.exists(fn):
intermediated_are_reusable = False
else:
intermediated_are_reusable = False
# saving the intermediae if enforced if there is a plan to use them
# and they are not available yet
save_intermediated = save_intermediated or (
reuse_intermediated and not intermediated_are_reusable
)
if median_or_mean not in [ReduceMethod.MEAN.value, ReduceMethod.MEDIAN.value]:
message = f""" the "median_or_mean" parameter must be one of {[ReduceMethod.MEAN.value, ReduceMethod.MEDIAN.value]}.
It was {median_or_mean}
"""
raise ValueError(message)
fd_start, fd_start_as_dict = extract_darks_flats(
ref_start_filename,
entry_name,
target_filename=ref_start_filename,
save_intermediated=save_intermediated,
method=median_or_mean,
reuse_intermediated=intermediated_are_reusable,
use_projections_for_flats=True,
dark_default_value=dark_default_value,
)
fd_end, _ = extract_darks_flats(
ref_end_filename,
entry_name,
target_filename=ref_end_filename,
save_intermediated=save_intermediated,
method=median_or_mean,
reuse_intermediated=intermediated_are_reusable,
use_projections_for_flats=True,
dark_default_value=dark_default_value,
)
fd_sample, fd_as_dict = extract_darks_flats(
scan_filename,
entry_name,
method=median_or_mean,
use_projections_for_flats=False,
)
reduced_infos = fd_as_dict["flat"]["meta"]
scan = NXtomoScan(scan_filename, entry_name)
current = fd_sample.flat_current
if current is None:
# handle the case the fd_sample does not contains any flat frames. In this case get the first
# current we find from the NXtomo
currents = scan.electric_current
if currents is not None and len(currents) > 0:
current = currents[0] # pylint: disable=E1136
if current is None:
raise ValueError(
f"Unable to find any machine electric current from {scan_filename}. Unable to compute reduced darks and flats"
)
# compute reduced flats and dark
flat0 = (
fd_start.flat_image - fd_start.dark_image
) * current / fd_start.flat_current + fd_start.dark_image
flat1 = (
fd_end.flat_image - fd_start.dark_image
) * current / fd_end.flat_current + fd_start.dark_image
flat = (1 - mixing_factor) * flat0 + mixing_factor * flat1
reduced_flats = {0: flat}
# save reduced flats and dark
reduced_infos.machine_electric_current = numpy.array([current])
reduced_infos.count_time = reduced_infos.count_time[:1]
if current != reduced_infos.machine_electric_current[0]:
raise RuntimeError(
" Coherence check failed. Total non sense: the code is broken."
)
scan.save_reduced_flats(
reduced_flats, flats_infos=reduced_infos, overwrite=overwrite
)
reduced_darks = fd_start_as_dict["dark"]["images"]
reduced_infos = fd_start_as_dict["dark"]["meta"]
scan.save_reduced_darks(
reduced_darks, darks_infos=reduced_infos, overwrite=overwrite
)
|