File: nexus.py

package info (click to toggle)
python-nxtomomill 1.1.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,564 kB
  • sloc: python: 15,970; makefile: 13; sh: 3
file content (128 lines) | stat: -rw-r--r-- 4,263 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from typing import Iterable

import h5py
import numpy
from silx.io.utils import h5py_read_dataset
from silx.io.utils import open as open_hdf5
from tomoscan.io import HDF5File

from nxtomo.nxobject.nxobject import NXobject

__all__ = [
    "cast_and_check_array_1D",
    "create_nx_data_group",
    "link_nxbeam_to_root",
    "get_data_and_unit",
    "get_data",
    "concatenate",
]


def cast_and_check_array_1D(array, array_name):
    if not isinstance(array, (type(None), numpy.ndarray, Iterable)):
        raise TypeError(
            f"{array_name} is expected to be None, or an Iterable. Not {type(array)}"
        )
    if array is not None and not isinstance(array, numpy.ndarray):
        array = numpy.asarray(array)
    if array is not None and array.ndim > 1:
        raise ValueError(f"{array_name} is expected to be 0 or 1d not {array.ndim}")
    return array


def create_nx_data_group(file_path: str, entry_path: str, axis_scale: list):
    """
    Create the 'Nxdata' group at entry level with soft links on the NXDetector
    and NXsample.

    :param file_path:
    :param entry_path:
    :param axis_scale:
    :return:
    """
    if not isinstance(file_path, str):
        raise TypeError("file_path is expected to be a file")
    if not isinstance(entry_path, str):
        raise TypeError("entry_path is expected to be a file")
    if not isinstance(axis_scale, Iterable):
        raise TypeError("axis_scale is expected to be an Iterable")

    with HDF5File(file_path, mode="a") as h5f:
        entry_group = h5f[entry_path]

        nx_data_grp = entry_group.require_group("data")
        # link detector datasets:
        if not entry_path.startswith("/"):
            entry_path = "/" + entry_path
        for dataset in ("data", "image_key", "image_key_control"):
            dataset_path = "/".join((entry_path, "instrument", "detector", dataset))
            nx_data_grp[dataset] = h5py.SoftLink(dataset_path)
        # link rotation angle
        nx_data_grp["rotation_angle"] = h5py.SoftLink(
            "/".join((entry_path, "sample", "rotation_angle"))
        )

        # write NX attributes
        nx_data_grp.attrs["NX_class"] = "NXdata"
        nx_data_grp.attrs["signal"] = "data"
        nx_data_grp.attrs["SILX_style/axis_scale_types"] = axis_scale
        nx_data_grp["data"].attrs["interpretation"] = "image"


def link_nxbeam_to_root(file_path, entry_path):
    """
    Create the 'Nxdata' group at entry level with soft links on the NXDetector
    and NXsample.

    :param file_path:
    :param entry_path:
    :return:
    """
    if not isinstance(file_path, str):
        raise TypeError("file_path is expected to be a file")
    if not isinstance(entry_path, str):
        raise TypeError("entry_path is expected to be a file")

    if not entry_path.startswith("/"):
        entry_path = "/" + entry_path
    with HDF5File(file_path, mode="a") as h5f:
        entry_group = h5f[entry_path]
        entry_group["beam"] = h5py.SoftLink(
            "/".join((entry_path, "instrument", "beam"))
        )


def get_data_and_unit(file_path, data_path, default_unit):
    with open_hdf5(file_path) as h5f:
        if data_path in h5f and isinstance(h5f[data_path], h5py.Dataset):
            dataset = h5f[data_path]
            unit = None
            if "unit" in dataset.attrs:
                unit = dataset.attrs["unit"]
            elif "units" in dataset.attrs:
                unit = dataset.attrs["units"]
            else:
                unit = default_unit
            if hasattr(unit, "decode"):
                # handle Diamond dataset
                unit = unit.decode()
            return h5py_read_dataset(dataset), unit
        else:
            return None, default_unit


def get_data(file_path, data_path):
    with open_hdf5(file_path) as h5f:
        if data_path in h5f:
            return h5py_read_dataset(h5f[data_path])
        else:
            return None


def concatenate(nx_objects: Iterable, **kwargs):
    if len(nx_objects) == 0:
        return None
    else:
        if not isinstance(nx_objects[0], NXobject):
            raise TypeError("nx_objects are expected to be instances of NXobject")
        return type(nx_objects[0]).concatenate(nx_objects=nx_objects, **kwargs)