1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
# coding: utf-8
"""An :class:`.Enum` class with additional features."""
from __future__ import annotations
import logging
import os
from datetime import datetime
import numpy
from silx.io.url import DataUrl
from silx.io.utils import get_data
from silx.io.utils import open as open_hdf5
from silx.utils.deprecation import deprecated
from silx.utils.enum import Enum as _Enum
from tomoscan.esrf.scan.utils import cwd_context
from tomoscan.io import HDF5File
from nxtomo.nxobject.nxdetector import ImageKey
from nxtomo.utils.frameappender import FrameAppender
from nxtomo.application.nxtomo import NXtomo
try:
import hdf5plugin # noqa F401
except ImportError:
pass
import uuid
from typing import Iterable
from silx.io.utils import h5py_read_dataset
__all__ = [
"embed_url",
"FileExtension",
"get_file_name",
"get_tuple_of_keys_from_cmd",
"is_nx_tomo_entry",
"add_dark_flat_nx_file",
"change_image_key_control",
"str_datetime_to_numpy_datetime64",
"strip_extension",
]
def embed_url(url: DataUrl, output_file: str) -> DataUrl:
"""
Create a dataset under duplicate_data and with a random name
to store it
:param DataUrl url: dataset to be copied
:param output_file: where to store the dataset
:param expected_type: some metadata to put in copied dataset attributes
:param data: data loaded from url is already loaded
"""
if not isinstance(url, DataUrl):
return url
elif url.file_path() == output_file:
return url
else:
embed_data_path = "/".join(("/duplicate_data", str(uuid.uuid1())))
with cwd_context(os.path.dirname(os.path.abspath(output_file))):
with HDF5File(output_file, "a") as h5s:
h5s[embed_data_path] = get_data(url)
h5s[embed_data_path].attrs["original_url"] = url.path()
return DataUrl(
file_path=output_file, data_path=embed_data_path, scheme="silx"
)
class FileExtension(_Enum):
H5 = ".h5"
HDF5 = ".hdf5"
NX = ".nx"
def get_file_name(file_name, extension, check=True):
"""
set the given extension
:param file_name: name of the file
:param extension: extension to give
:param check: if check, already check if the file as one of the
'_FileExtension'
"""
if isinstance(extension, str):
extension = FileExtension.from_value(extension.lower())
assert isinstance(extension, FileExtension)
if check:
for value in FileExtension.values():
if file_name.lower().endswith(value):
return file_name
return file_name + extension.value()
def get_tuple_of_keys_from_cmd(cmd_value: str) -> tuple:
"""Return a tuple"""
return tuple(cmd_value.split(","))
def is_nx_tomo_entry(file_path, entry):
"""
:param file_path: hdf5 file path
:param entry: entry to check
:return: True if the entry is an NXTomo entry
"""
if not os.path.exists(file_path):
return False
else:
with open_hdf5(file_path) as h5s:
if entry not in h5s:
return False
node = h5s[entry]
return NXtomo.node_is_nxtomo(node)
def add_dark_flat_nx_file(
file_path: str,
entry: str,
darks_start: numpy.ndarray | DataUrl | None = None,
flats_start: numpy.ndarray | DataUrl | None = None,
darks_end: numpy.ndarray | DataUrl | None = None,
flats_end: numpy.ndarray | DataUrl | None = None,
extras: dict | None = None,
logger: None | logging.Logger = None,
embed_data: bool = False,
):
"""
This will get all data from entry@input_file and patch them with provided
dark and / or flat(s).
We consider the sequence as: dark, start_flat, projections, end_flat.
Behavior regarding data type and target dataset:
* if dataset at `entry` already exists:
* if dataset at `entry` is a 'standard' dataset:
* data will be loaded if necessary and `enrty` will be updated
* if dataset at `entry` is a virtual dataset:
* if `data` is a numpy array then we raise an error: the data should
already be saved somewhere and you should provide a DataUrl
* if `data` is a DataUrl then the virtual dataset is updated and
a virtual source pointing to the
DataUrl.file_path()@DataUrl.data_path() is added to the layout
* if a new dataset `entry` need to be added:
* if `data` is a numpy array then we create a new 'standard' Dataset
* if `data` is a DataUrl then a new virtual dataset will be created
note: Datasets `image_key`, `image_key_control`, `rotation_angle` and
`count_time` will be copied each time.
:param file_path: NXTomo file containing data to be patched
:param entry: entry to be patched
:param darks_start: (3D) numpy array containing the first dark serie if any
:param flats_start: (3D) numpy array containing the first flat if any
:param darks_end: (3D) numpy array containing dark the second dark serie if
any
:param flats_end: (3D) numpy array containing the second flat if any
:param extras: dictionary to specify some parameters for flats and dark
like rotation angle.
valid keys: 'start_dark', 'end_dark', 'start_flag',
'end_flag'.
Values should be a dictionary of 'NXTomo' keys with
values to be set instead of 'default values'.
Possible values are:
* `count_time`
* `rotation_angle`
:param logger: object for logs
:param embed_data: if True then each external data will be copy
under a 'duplicate_data' folder
"""
if extras is None:
extras = {}
else:
for key in extras:
valid_extra_keys = ("darks_start", "darks_end", "flats_start", "flats_end")
if key not in valid_extra_keys:
raise ValueError(
f"{key} is not recognized. Valid values are {valid_extra_keys}"
)
if embed_data is True:
darks_start = embed_url(darks_start, output_file=file_path)
darks_end = embed_url(darks_end, output_file=file_path)
flats_start = embed_url(flats_start, output_file=file_path)
flats_end = embed_url(flats_end, output_file=file_path)
else:
for url in (darks_start, darks_end, flats_start, flats_end):
if url is not None and isinstance(url, DataUrl):
if isinstance(url.data_slice(), slice):
if url.data_slice().step not in (None, 1):
raise ValueError(
"When data is not embed slice `step`"
"must be None or 1. Other values are"
f"not handled. Failing url is {url}"
)
# !!! warning: order of dark / flat treatments import
data_names = "flats_start", "darks_end", "flats_end", "darks_start"
datas = flats_start, darks_end, flats_end, darks_start
keys_value = (
ImageKey.FLAT_FIELD.value,
ImageKey.DARK_FIELD.value,
ImageKey.FLAT_FIELD.value,
ImageKey.DARK_FIELD.value,
)
wheres = "start", "end", "end", "start" # warning: order import
for d_n, data, key, where in zip(data_names, datas, keys_value, wheres):
if data is None:
continue
n_frames_to_insert = 1
if isinstance(data, str):
data = DataUrl(path=data)
if isinstance(data, numpy.ndarray) and data.ndim == 3:
n_frames_to_insert = data.shape[0]
elif isinstance(data, DataUrl):
with open_hdf5(data.file_path()) as h5s:
if data.data_path() not in h5s:
raise KeyError(
f"Path given ({data.data_path()}) is not in {data.file_path}"
)
data_node = get_data(data)
if data_node.ndim == 3:
n_frames_to_insert = data_node.shape[0]
else:
raise TypeError(f"{type(data)} as input is not managed")
if logger is not None:
logger.info(f"insert {type(data)} frame of type {key} at the {where}")
# update 'data' dataset
data_path = os.path.join(entry, "instrument", "detector", "data")
FrameAppender(
data, file_path, data_path=data_path, where=where, logger=logger
).process()
# update image-key and image_key_control (we are not managing the
# 'alignment projection here so values are identical')
ik_path = os.path.join(entry, "instrument", "detector", "image_key")
ikc_path = os.path.join(entry, "instrument", "detector", "image_key_control")
for path in (ik_path, ikc_path):
FrameAppender(
[key] * n_frames_to_insert,
file_path,
data_path=path,
where=where,
logger=logger,
).process()
# add 'other' necessaries key:
count_time_path = os.path.join(
entry,
"instrument",
"detector",
"count_time",
)
rotation_angle_path = os.path.join(entry, "sample", "rotation_angle")
x_translation_path = os.path.join(entry, "sample", "x_translation")
translation_y_path = os.path.join(entry, "sample", "translation_y")
translation_z_path = os.path.join(entry, "sample", "translation_z")
control_data_path = os.path.join(entry, "control", "data")
data_key_paths = (
count_time_path,
rotation_angle_path,
x_translation_path,
translation_y_path,
translation_z_path,
control_data_path,
)
mandatory_keys = (
"count_time",
"rotation_angle",
)
optional_keys = (
"x_translation",
"translation_y",
"translation_z",
"control/data",
)
data_keys = tuple(list(mandatory_keys) + list(optional_keys))
for data_key, data_key_path in zip(data_keys, data_key_paths):
data_to_insert = None
if d_n in extras and data_key in extras[d_n]:
provided_value = extras[d_n][data_key]
if isinstance(provided_value, Iterable):
if len(provided_value) != n_frames_to_insert:
raise ValueError(
"Given value to store from extras has"
f" incoherent length({len(provided_value)}) compare to "
f"the number of frame to save ({n_frames_to_insert})"
)
else:
data_to_insert = provided_value
else:
try:
data_to_insert = [provided_value] * n_frames_to_insert
except Exception as e:
logger.error(f"Fail to create data to insert. Error is {e}")
return
else:
# get default values
def get_default_value(location, where_):
with open_hdf5(file_path) as h5s:
if location not in h5s:
return None
existing_data = h5s[location]
if where_ == "start":
return existing_data[0]
else:
return existing_data[-1]
try:
default_value = get_default_value(data_key_path, where)
except Exception:
default_value = None
if default_value is None:
msg = f"Unable to define a default value for {data_key_path}. Location empty in {file_path}"
if data_key in mandatory_keys:
raise ValueError(msg)
elif logger:
logger.warning(msg)
continue
elif logger:
logger.debug(
f"No value(s) provided for {data_key_path}. Extract some default value ({default_value})."
)
data_to_insert = [default_value] * n_frames_to_insert
if data_to_insert is not None:
FrameAppender(
data_to_insert,
file_path,
data_path=data_key_path,
where=where,
logger=logger,
).process()
@deprecated(replacement="_FrameAppender", since_version="0.5.0")
def _insert_frame_data(data, file_path, data_path, where, logger=None):
"""
This function is used to insert some frame(s) (numpy 2D or 3D to an
existing dataset. Before the existing array or After.
:param data:
:param file_path:
:param data_path: If the path point to a virtual dataset them this one
will be updated but data should be a DataUrl. Of the
same shape. Else we will update the data_path by
extending the dataset.
:param where:
:raises TypeError: In the case the data type and existing data_path are
incompatible.
"""
fa = FrameAppender(
data=data, file_path=file_path, data_path=data_path, where=where, logger=logger
)
return fa.process()
def change_image_key_control(
file_path: str,
entry: str,
frames_indexes: slice | Iterable,
image_key_control_value: int | ImageKey,
logger=None,
):
"""
Will modify image_key and image_key_control values for the requested
frames.
:param file_path: path the nexus file
:param entry: name of the entry to modify
:param frames_indexes: index of the frame for which we want to modify
the image key
:param image_key_control_value:
:param logging.Logger logger: logger
"""
if not isinstance(frames_indexes, (Iterable, slice)):
raise TypeError("`frame_indexes` should be an instance of Iterable slice")
if logger:
logger.info(
"Update frames {frames_indexes} to"
"{image_key_control_value} of {entry}@{file_path}"
"".format(
frames_indexes=frames_indexes,
image_key_control_value=image_key_control_value,
entry=entry,
file_path=file_path,
)
)
image_key_control_value = ImageKey.from_value(image_key_control_value)
with HDF5File(file_path, mode="a") as h5s:
node = h5s[entry]
image_keys_path = "/".join(("instrument", "detector", "image_key"))
image_keys = h5py_read_dataset(node[image_keys_path])
image_keys_control_path = "/".join(
("instrument", "detector", "image_key_control")
)
image_keys_control = h5py_read_dataset(node[image_keys_control_path])
# filter frame indexes
if isinstance(frames_indexes, slice):
step = frames_indexes.step
if step is None:
step = 1
stop = frames_indexes.stop
if stop in (None, -1):
stop = len(image_keys)
frames_indexes = list(range(frames_indexes.start, stop, step))
frames_indexes = list(
filter(lambda x: 0 <= x <= len(image_keys_control), frames_indexes)
)
# manage image_key_control
image_keys_control[frames_indexes] = image_key_control_value.value
node[image_keys_control_path][:] = image_keys_control
# manage image_key. In this case we should get rid of Alignment values
# and replace it by Projection values
image_key_value = image_key_control_value
if image_key_value is ImageKey.ALIGNMENT:
image_key_value = ImageKey.PROJECTION
image_keys[frames_indexes] = image_key_value.value
node[image_keys_path][:] = image_keys
def str_datetime_to_numpy_datetime64(my_datetime: str | datetime) -> numpy.datetime64:
# numpy deprecates time zone awarness conversion to numpy.datetime64.
# so we remove the time zone info.
if isinstance(my_datetime, str):
datetime_as_datetime = datetime.fromisoformat(my_datetime)
elif isinstance(my_datetime, datetime):
datetime_as_datetime = my_datetime
else:
raise TypeError(
f"my_datetime is expected to be a str or an instance of datetime. Not {type(my_datetime)}"
)
datetime_as_utc_datetime = datetime_as_datetime.astimezone(None)
tz_free_datetime_as_datetime = datetime_as_utc_datetime.replace(tzinfo=None)
return numpy.datetime64(tz_free_datetime_as_datetime).astype("<M8[ms]")
def strip_extension(filename, logger=None):
if filename.endswith((".nx", ".h5")):
return filename[:-3]
elif filename.endswith(".hdf5"):
return filename[:-5]
else:
if logger is not None:
logger.warning(f"Unusual file name {filename} has no known postfix")
return filename
|