1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
|
# coding: utf-8
import os
import sys
import tempfile
import h5py
import numpy
from tomoscan.esrf.scan.utils import cwd_context
from pyunitsystem.metricsystem import MetricSystem
from nxtomomill import converter
from nxtomomill.converter.hdf5.acquisition.utils import (
get_nx_detectors,
guess_nx_detector,
)
from nxtomomill.io.config import TomoHDF5Config
from nxtomomill.tests.utils.bliss import _BlissSample
from nxtomomill.utils.hdf5 import DatasetReader, EntryReader
from nxtomomill.converter.hdf5.utils import (
PROCESSED_DATA_DIR_NAME,
RAW_DATA_DIR_NAME,
get_default_output_file,
)
from tomoscan.io import HDF5File, get_swmr_mode
try:
from tomoscan.esrf.scan.hdf5scan import NXtomoScan
except ImportError:
from tomoscan.esrf.hdf5scan import NXtomoScan
import subprocess
from glob import glob
import pytest
from silx.io.url import DataUrl
from silx.io.utils import get_data
from tomoscan.validator import is_valid_for_reconstruction
from nxtomo.application.nxtomo import NXtomo
from nxtomo.nxobject.nxdetector import ImageKey
from nxtomomill.io.framegroup import FrameGroup
from nxtomomill.tests.utils.bliss import MockBlissAcquisition
def url_has_been_copied(file_path: str, url: DataUrl):
"""util function to parse the `duplicate_data` folder and
insure the copy of the dataset has been done"""
duplicate_data_url = DataUrl(
file_path=file_path, data_path="/duplicate_data", scheme="silx"
)
url_path = url.path()
with EntryReader(duplicate_data_url) as duplicate_data_node:
for _, dataset in duplicate_data_node.items():
if "original_url" in dataset.attrs:
original_url = dataset.attrs["original_url"]
# the full dataset is registered in the attributes.
# Here we only check the scan entry name
if original_url.startswith(url_path):
return True
return False
def test_simple_converter_with_nx_detector_attr(tmp_path):
"""
Test a simple conversion when NX_class is defined
"""
folder = tmp_path / "output_test_simple_converter_with_nx_detector_attr"
folder.mkdir()
config = TomoHDF5Config()
bliss_mock = MockBlissAcquisition(
n_sample=2,
n_sequence=1,
n_scan_per_sequence=10,
n_darks=5,
n_flats=5,
with_nx_detector_attr=True,
output_dir=folder,
detector_name="pcolinux",
create_tomo_config=False,
)
for sample in bliss_mock.samples:
assert os.path.exists(sample.sample_file)
config.output_file = sample.sample_file.replace(".h5", ".nx")
config.input_file = sample.sample_file
config.raises_error = True
config.sample_x_keys = ("sx",)
config.sample_y_keys = ("sy",)
assert len(converter.get_bliss_tomo_entries(sample.sample_file, config)) == 1
converter.from_h5_to_nx(
configuration=config,
)
# insure only one file is generated
assert os.path.exists(config.output_file)
# insure data is here
with HDF5File(config.output_file, mode="r", swmr=get_swmr_mode()) as h5s:
for _, entry_node in h5s.items():
assert "instrument/detector/data" in entry_node
dataset = entry_node["instrument/detector/data"]
# check virtual dataset are relative and valid
assert dataset.is_virtual
for vs in dataset.virtual_sources():
assert not os.path.isabs(vs.file_name)
# insure connection is valid. There is no
# 'VirtualSource.is_valid' like function
assert not (dataset[()].min() == 0 and dataset[()].max() == 0)
instrument_grp = entry_node.require_group("instrument")
assert "beam" in instrument_grp
def test_invalid_tomo_n(tmp_path):
"""Test translation fails if no detector can be found"""
folder = tmp_path / "output_test_test_invalid_tomo_n"
folder.mkdir()
config = TomoHDF5Config()
bliss_mock = MockBlissAcquisition(
n_sample=1,
n_sequence=1,
n_scan_per_sequence=10,
n_darks=5,
n_flats=5,
with_nx_detector_attr=True,
output_dir=folder,
create_tomo_config=False,
)
assert len(bliss_mock.samples) == 1
sample = bliss_mock.samples[0]
assert os.path.exists(sample.sample_file)
output_file = sample.sample_file.replace(".h5", ".nx")
# rewrite tomo_n
with HDF5File(sample.sample_file, mode="a") as h5s:
for _, entry_node in h5s.items():
if "technique/scan/tomo_n" in entry_node:
del entry_node["technique/scan/tomo_n"]
entry_node["technique/scan/tomo_n"] = 9999
with pytest.raises(ValueError):
config.input_file = sample.sample_file
config.output_file = output_file
config.single_file = True
config.no_input = True
config.raises_error = True
converter.from_h5_to_nx(configuration=config)
def test_simple_converter_without_nx_detector_attr(tmp_path):
"""
Test a simple conversion when no NX_class is defined
"""
folder = tmp_path / "output_test_simple_converter_without_nx_detector_attr"
folder.mkdir()
config = TomoHDF5Config()
bliss_mock = MockBlissAcquisition(
n_sample=1,
n_sequence=3,
n_scan_per_sequence=10,
n_darks=5,
n_flats=5,
with_nx_detector_attr=True,
output_dir=folder,
detector_name="tata_detector",
create_tomo_config=False,
)
assert len(bliss_mock.samples) == 1
sample = bliss_mock.samples[0]
assert os.path.exists(sample.sample_file)
output_file = sample.sample_file.replace(".h5", ".nx")
config.input_file = sample.sample_file
config.output_file = output_file
config.single_file = True
config.no_input = True
converter.from_h5_to_nx(configuration=config)
# insure only one file is generated
assert os.path.exists(output_file)
# insure data is here
with HDF5File(output_file, mode="r", swmr=get_swmr_mode()) as h5s:
for _, entry_node in h5s.items():
assert "instrument/detector/data" in entry_node
dataset = entry_node["instrument/detector/data"]
# check virtual dataset are relative and valid
assert dataset.is_virtual
for vs in dataset.virtual_sources():
assert not os.path.isabs(vs.file_name)
# insure connection is valid. There is no
# 'VirtualSource.is_valid' like function
assert not (dataset[()].min() == 0 and dataset[()].max() == 0)
# check NXdata group
assert "data/data" in entry_node
assert not (
entry_node["data/data"][()].min() == 0
and entry_node["data/data"][()].max() == 0
)
assert "data/rotation_angle" in entry_node
assert "data/image_key" in entry_node
def test_providing_existing_camera_name(tmp_path):
"""Test that detector can be provided to the h5_to_nx function and
using linux wildcard"""
folder = tmp_path / "output_test_providing_existing_camera_name"
folder.mkdir()
config = TomoHDF5Config()
bliss_mock = MockBlissAcquisition(
n_sample=1,
n_sequence=3,
n_scan_per_sequence=10,
n_darks=5,
n_flats=5,
with_nx_detector_attr=True,
output_dir=folder,
detector_name="my_detector",
create_tomo_config=False,
)
assert len(bliss_mock.samples) == 1
sample = bliss_mock.samples[0]
assert os.path.exists(sample.sample_file)
config.output_file = sample.sample_file.replace(".h5", ".nx")
config.valid_camera_names = ("my_detec*",)
config.input_file = sample.sample_file
config.single_file = True
config.request_input = False
config.raises_error = True
config.rotation_angle_keys = ("hrsrot",)
config.sample_x_keys = ("sx",)
config.sample_y_keys = ("sy",)
converter.from_h5_to_nx(configuration=config)
# insure only one file is generated
assert os.path.exists(config.output_file)
# insure data is here
with HDF5File(config.output_file, mode="r", swmr=get_swmr_mode()) as h5s:
for _, entry_node in h5s.items():
assert "instrument/detector/data" in entry_node
dataset = entry_node["instrument/detector/data"]
# check virtual dataset are relative and valid
assert dataset.is_virtual
for vs in dataset.virtual_sources():
assert not os.path.isabs(vs.file_name)
# insure connection is valid. There is no
# 'VirtualSource.is_valid' like function
assert not (dataset[()].min() == 0 and dataset[()].max() == 0)
def test_providing_non_existing_camera_name_no_tomo_config(tmp_path):
"""Test translation fails if no detector can be found"""
folder = tmp_path / "output_test_providing_non_existing_camera_name_no_tomo_config"
folder.mkdir()
config = TomoHDF5Config()
bliss_mock = MockBlissAcquisition(
n_sample=1,
n_sequence=3,
n_scan_per_sequence=10,
n_darks=5,
n_flats=5,
with_nx_detector_attr=True,
output_dir=folder,
detector_name="toto_detector",
create_tomo_config=False,
z_series_v_3_options={
"dark_at_start": True,
"flat_at_start": True,
"dark_at_end": False,
"flat_at_end": False,
},
)
assert len(bliss_mock.samples) == 1
sample = bliss_mock.samples[0]
assert os.path.exists(sample.sample_file)
config.input_file = sample.sample_file
config.output_file = sample.sample_file.replace(".h5", ".nx")
config.valid_camera_names = ("my_detec",)
config.raises_error = True
with pytest.raises(ValueError):
converter.from_h5_to_nx(configuration=config)
@pytest.mark.parametrize("z_series_version", ("z-series-v1", "z-series-v3"))
def test_z_series_conversion_no_tomo_config(tmp_path, z_series_version: str):
"""Test conversion of a zseries bliss (mock) acquisition"""
folder = tmp_path / "output_test_z_series_conversion_no_tomo_config"
folder.mkdir()
config = TomoHDF5Config()
bliss_mock = MockBlissAcquisition(
n_sample=1,
n_sequence=1,
n_scan_per_sequence=10,
n_darks=5,
n_flats=5,
with_nx_detector_attr=True,
output_dir=folder,
detector_name="frelon1",
acqui_type=z_series_version,
z_values=(1, 2, 3),
create_tomo_config=False,
z_series_v_3_options={
"dark_at_start": True,
"flat_at_start": True,
"dark_at_end": False,
"flat_at_end": False,
},
)
assert len(bliss_mock.samples) == 1
sample = bliss_mock.samples[0]
assert os.path.exists(sample.sample_file)
config.input_file = sample.sample_file
config.output_file = sample.sample_file.replace(".h5", ".nx")
res = converter.from_h5_to_nx(configuration=config)
# insure the 4 files are generated: master file and one per z
files = glob(os.path.dirname(sample.sample_file) + "/*.nx")
assert len(files) == 4
# try to create NXtomoScan from those to insure this is valid
# and check z values for example
for res_tuple in res:
scan = NXtomoScan(scan=res_tuple[0], entry=res_tuple[1])
if hasattr(scan, "translation_z"):
assert scan.translation_z is not None
assert is_valid_for_reconstruction(scan)
@pytest.mark.parametrize("z_series_version", ("z-series-v1", "z-series-v3"))
def test_z_series_conversion(tmp_path, z_series_version):
"""Test conversion of a zseries bliss (mock) acquisition"""
folder = tmp_path / "output_test_z_series_conversion"
folder.mkdir()
config = TomoHDF5Config()
bliss_mock = MockBlissAcquisition(
n_sample=1,
n_sequence=1,
n_scan_per_sequence=10,
n_darks=5,
n_flats=5,
with_nx_detector_attr=True,
output_dir=folder,
detector_name="frelon1",
acqui_type=z_series_version,
z_values=(1, 2, 3),
create_tomo_config=True,
ebs_tomo_version="2.1.0",
z_series_v_3_options={
"dark_at_start": True,
"flat_at_start": True,
"dark_at_end": False,
"flat_at_end": False,
},
)
assert len(bliss_mock.samples) == 1
sample = bliss_mock.samples[0]
assert os.path.exists(sample.sample_file)
config.input_file = sample.sample_file
config.output_file = sample.sample_file.replace(".h5", ".nx")
res = converter.from_h5_to_nx(configuration=config)
# insure the 4 files are generated: master file and one per z
files = glob(os.path.dirname(sample.sample_file) + "/*.nx")
assert len(files) == 4
# try to create NXtomoScan from those to insure this is valid
# and check z values for example
for res_tuple in res:
scan = NXtomoScan(scan=res_tuple[0], entry=res_tuple[1])
if hasattr(scan, "translation_z"):
assert scan.translation_z is not None
assert is_valid_for_reconstruction(scan)
def test_ignore_sub_entries(tmp_path):
"""
Test we can ignore some sub entries
"""
folder = tmp_path / "output_test_ignore_sub_entries"
folder.mkdir()
config = TomoHDF5Config()
from nxtomomill.tests.utils.bliss import MockBlissAcquisition
bliss_mock = MockBlissAcquisition(
n_sample=1,
n_sequence=1,
n_scan_per_sequence=10,
n_darks=0,
n_flats=0,
with_nx_detector_attr=True,
output_dir=folder,
detector_name="pcolinux",
)
for sample in bliss_mock.samples:
assert os.path.exists(sample.sample_file)
config.output_file = sample.sample_file.replace(".h5", ".nx")
config.input_file = sample.sample_file
config.single_file = True
config.sub_entries_to_ignore = ("6.1", "7.1")
config.request_input = False
converter.from_h5_to_nx(configuration=config)
# insure only one file is generated
assert os.path.exists(config.output_file)
# insure data is here
with HDF5File(config.output_file, mode="r", swmr=get_swmr_mode()) as h5s:
for _, entry_node in h5s.items():
assert "instrument/detector/data" in entry_node
dataset = entry_node["instrument/detector/data"]
# check virtual dataset are relative and valid
assert dataset.is_virtual
assert dataset.shape == (
10 * (10 - len(config.sub_entries_to_ignore)),
64,
64,
)
for vs in dataset.virtual_sources():
assert not os.path.isabs(vs.file_name)
# insure connection is valid. There is no
# 'VirtualSource.is_valid' like function
assert not (dataset[()].min() == 0 and dataset[()].max() == 0)
def create_nx_detector(node: h5py.Group, name, with_nx_class):
det_node = node.require_group(name)
data = numpy.random.random(10 * 10 * 10).reshape(10, 10, 10)
det_node["data"] = data
if with_nx_class:
if "NX_class" not in det_node.attrs:
det_node.attrs["NX_class"] = "NXdetector"
return
def test_get_nx_detectors(tmp_path):
"""test get_nx_detectors function"""
folder = tmp_path / "output_test_get_nx_detectors"
folder.mkdir()
h5file = os.path.join(folder, "h5file.hdf5")
with HDF5File(h5file, mode="w") as h5s:
create_nx_detector(node=h5s, name="det1", with_nx_class=True)
create_nx_detector(node=h5s, name="det2", with_nx_class=False)
with HDF5File(h5file, mode="r", swmr=get_swmr_mode()) as h5s:
dets = get_nx_detectors(h5s)
assert len(dets) == 1
assert dets[0].name == "/det1"
assert len(guess_nx_detector(h5s)) == 2
with HDF5File(h5file, mode="a") as h5s:
create_nx_detector(node=h5s, name="det3", with_nx_class=True)
create_nx_detector(node=h5s, name="det4", with_nx_class=True)
with HDF5File(h5file, mode="r", swmr=get_swmr_mode()) as h5s:
dets = get_nx_detectors(h5s)
assert len(dets) == 3
def test_guess_nx_detector(tmp_path):
"""test guess_nx_detector function"""
folder = tmp_path / "output_test_guess_nx_detector"
folder.mkdir()
h5file = os.path.join(folder, "h5file.hdf5")
with HDF5File(h5file, mode="w") as h5s:
create_nx_detector(node=h5s, name="det2", with_nx_class=False)
with HDF5File(h5file, mode="r", swmr=get_swmr_mode()) as h5s:
dets = get_nx_detectors(h5s)
assert len(dets) == 0
dets = guess_nx_detector(h5s)
assert dets[0].name == "/det2"
with HDF5File(h5file, mode="w") as h5s:
create_nx_detector(node=h5s, name="det3", with_nx_class=False)
create_nx_detector(node=h5s, name="det4", with_nx_class=True)
with HDF5File(h5file, mode="a") as h5s:
dets = guess_nx_detector(h5s)
assert len(dets) == 2
def create_scan(n_projection_scans, n_flats, n_darks, output_dir, frame_data_type):
"""
:param int n_projection_scans: number of scans beeing projections
:param int n_flats: number of frame per flats
:param int n_darks: number of frame per dark
"""
bliss_mock = MockBlissAcquisition(
n_sample=1,
n_sequence=1,
n_scan_per_sequence=n_projection_scans,
n_darks=n_darks,
n_flats=n_flats,
with_nx_detector_attr=True,
output_dir=output_dir,
detector_name="pcolinux",
frame_data_type=frame_data_type,
)
return bliss_mock.samples[0].sample_file
def test_dataset_1(tmp_path):
"""test a conversion where projections are contained in the
input_file. Dark and flats are on a different file"""
frame_data_type = numpy.uint16
folder = tmp_path / "output_test_dataset_1"
folder.mkdir()
config = TomoHDF5Config()
config.output_file = os.path.join(folder, "output.nx")
config.rotation_angle_keys = ("hrsrot",)
config.sample_x_keys = ("sx",)
config.sample_y_keys = ("sy",)
folder_1 = os.path.join(folder, "acqui_1")
input_file = create_scan(
n_projection_scans=6,
n_flats=0,
n_darks=0,
output_dir=folder_1,
frame_data_type=frame_data_type,
)
folder_2 = os.path.join(folder, "acqui_2")
dark_flat_file = create_scan(
n_projection_scans=0,
n_flats=1,
n_darks=1,
output_dir=folder_2,
frame_data_type=frame_data_type,
)
config.input_file = input_file
# we want to take two scan of projections from the input file: 5.1
# and 6.1. As the input file is provided we don't need to
# specify it
config.data_frame_grps = (
FrameGroup(frame_type="proj", url=DataUrl(data_path="/5.1", scheme="silx")),
FrameGroup(frame_type="proj", url=DataUrl(data_path="/6.1", scheme="silx")),
FrameGroup(
frame_type="flat",
url=DataUrl(file_path=dark_flat_file, data_path="/2.1", scheme="silx"),
),
FrameGroup(
frame_type="dark",
url=DataUrl(file_path=dark_flat_file, data_path="/3.1", scheme="silx"),
),
)
converter.from_h5_to_nx(
configuration=config,
)
assert os.path.exists(config.output_file), "output file does not exists"
with HDF5File(config.output_file, mode="r", swmr=get_swmr_mode()) as h5s:
assert len(h5s.items()) == 1
assert "entry0000" in h5s
scan = NXtomoScan(scan=config.output_file, entry="entry0000")
assert is_valid_for_reconstruction(scan)
# check the `data`has been created
assert len(scan.projections) == 20
assert len(scan.darks) == 10
# check data is a virtual dataset
with HDF5File(config.output_file, mode="r", swmr=get_swmr_mode()) as h5f:
dataset = h5f["entry0000/instrument/detector/data"]
assert dataset.is_virtual
assert dataset.dtype == frame_data_type
# check the `data` virtual dataset is valid
# if the link fail then all values are zeros
url = tuple(scan.projections.values())[0]
proj_data = get_data(url)
assert proj_data.min() != proj_data.max()
url = tuple(scan.darks.values())[0]
dark_data = get_data(url)
assert dark_data.min() != dark_data.max()
assert len(scan.flats) == 10
url = tuple(scan.flats.values())[0]
flat_data = get_data(url)
assert flat_data.min() != flat_data.max()
def test_dataset_2(tmp_path):
"""test a conversion where no input file is provided and
where we have 2 projections in a file, 3 in an other.
Flat and darks are also in another file. No flat provided.
"""
folder = tmp_path / "output_test_dataset_2"
folder.mkdir()
frame_data_type = numpy.uint16
config = TomoHDF5Config()
config.output_file = os.path.join(folder, "output.nx")
config.rotation_angle_keys = ("hrsrot",)
config.sample_x_keys = ("sx",)
config.sample_y_keys = ("sy",)
folder_1 = os.path.join(folder, "acqui_1")
file_1 = create_scan(
n_projection_scans=6,
n_flats=0,
n_darks=0,
output_dir=folder_1,
frame_data_type=frame_data_type,
)
folder_2 = os.path.join(folder, "acqui_2")
file_2 = create_scan(
n_projection_scans=6,
n_flats=0,
n_darks=0,
output_dir=folder_2,
frame_data_type=frame_data_type,
)
folder_3 = os.path.join(folder, "acqui_3")
file_3 = create_scan(
n_projection_scans=0,
n_flats=0,
n_darks=1,
output_dir=folder_3,
frame_data_type=frame_data_type,
)
folder_4 = os.path.join(folder, "acqui_4")
file_4 = create_scan(
n_projection_scans=0,
n_flats=1,
n_darks=0,
output_dir=folder_4,
frame_data_type=frame_data_type,
)
# we want to take two scan of projections from the input file: 5.1
# and 6.1. As the input file is provided we don't need to
# specify it
dark_url_1 = DataUrl(file_path=file_3, data_path="/2.1", scheme="silx")
flat_url_1 = DataUrl(file_path=file_4, data_path="/2.1", scheme="silx")
proj_url_1 = DataUrl(file_path=file_1, data_path="/5.1", scheme="silx")
proj_url_2 = DataUrl(file_path=file_1, data_path="/6.1", scheme="silx")
proj_url_3 = DataUrl(file_path=file_2, data_path="/4.1", scheme="silx")
proj_url_4 = DataUrl(file_path=file_2, data_path="/2.1", scheme="silx")
config.default_copy_behavior = True
config.bam_single_file = True
config.data_frame_grps = (
FrameGroup(frame_type="dark", url=dark_url_1),
FrameGroup(frame_type="flat", url=flat_url_1),
FrameGroup(frame_type="proj", url=proj_url_1, copy=False),
FrameGroup(frame_type="proj", url=proj_url_2, copy=False),
FrameGroup(frame_type="proj", url=proj_url_3),
FrameGroup(frame_type="proj", url=proj_url_4),
)
urls_copied = (dark_url_1, flat_url_1, proj_url_3, proj_url_4)
urls_not_copied = (proj_url_1, proj_url_2)
config.raises_error = True
converter.from_h5_to_nx(
configuration=config,
)
assert os.path.exists(config.output_file)
with HDF5File(config.output_file, mode="r", swmr=get_swmr_mode()) as h5s:
assert "entry0000" in h5s
assert len(h5s.items()) == 1
with HDF5File(
config.output_file.replace(".nx", "_0000.nx"),
mode="r",
swmr=get_swmr_mode(),
) as h5s:
assert "entry0000" in h5s
assert "duplicate_data" in h5s
assert len(h5s.items()) == 2
detector_url = DataUrl(
file_path=config.output_file,
data_path="/entry0000/instrument/detector/data",
scheme="silx",
)
with DatasetReader(detector_url) as detector_dataset:
assert detector_dataset.is_virtual
for i_vs, vs in enumerate(detector_dataset.virtual_sources()):
assert not os.path.isabs(vs.file_name)
if i_vs in (0, 1, 4, 5):
assert vs.file_name == "."
else:
assert vs.file_name == "./acqui_1/sample_0/sample_0.h5"
# FIXME: avoid keeping some file open. not clear why this is needed
detector_dataset = None
scan = NXtomoScan(scan=config.output_file, entry="entry0000")
assert is_valid_for_reconstruction(scan)
# check the `data`has been created
assert len(scan.projections) == 40
assert len(scan.darks) == 10
# check the `data` virtual dataset is valid
# if the link fail then all values are zeros
url = tuple(scan.projections.values())[0]
proj_data = get_data(url)
assert proj_data.min() != proj_data.max()
url = tuple(scan.darks.values())[0]
dark_data = get_data(url)
assert dark_data.min() != dark_data.max()
assert len(scan.flats) == 10
url = tuple(scan.flats.values())[0]
flat_data = get_data(url)
assert flat_data.min() != flat_data.max()
with HDF5File(config.output_file, mode="r", swmr=get_swmr_mode()) as h5f:
dataset = h5f["entry0000/instrument/detector/data"][()]
assert dataset.shape[0] == 60
with EntryReader(dark_url_1) as dark_entry:
numpy.testing.assert_array_equal(
dark_entry["instrument/pcolinux/data"], dataset[0:10]
)
with EntryReader(flat_url_1) as flat_entry:
numpy.testing.assert_array_equal(
flat_entry["instrument/pcolinux/data"], dataset[10:20]
)
with EntryReader(proj_url_1) as proj_entry_1:
numpy.testing.assert_array_equal(
proj_entry_1["instrument/pcolinux/data"], dataset[20:30]
)
with EntryReader(proj_url_2) as proj_entry_2:
numpy.testing.assert_array_equal(
proj_entry_2["instrument/pcolinux/data"], dataset[30:40]
)
with EntryReader(proj_url_3) as proj_entry_3:
numpy.testing.assert_array_equal(
proj_entry_3["instrument/pcolinux/data"], dataset[40:50]
)
with EntryReader(proj_url_4) as proj_entry_4:
numpy.testing.assert_array_equal(
proj_entry_4["instrument/pcolinux/data"], dataset[50:60]
)
for url in urls_copied:
assert url_has_been_copied(
file_path=config.output_file.replace(".nx", "_0000.nx"),
url=url,
)
for url in urls_not_copied:
assert not url_has_been_copied(
file_path=config.output_file.replace(".nx", "_0000.nx"),
url=url,
)
# test with some extra parameters
config.param_already_defined = {
"x_pixel_size": 2.6 * 10e-6,
"y_pixel_size": 2.7 * 10e-6,
"energy": 12.2,
}
config.overwrite = True
config.field_of_view = "Half"
init_url_1 = DataUrl(file_path=file_1, data_path="/1.1", scheme="silx")
config.default_copy_behavior = True
config.data_frame_grps = (
FrameGroup(frame_type="init", url=init_url_1),
FrameGroup(frame_type="dark", url=dark_url_1),
FrameGroup(frame_type="flat", url=flat_url_1),
FrameGroup(frame_type="proj", url=proj_url_1, copy=False),
FrameGroup(frame_type="proj", url=proj_url_2, copy=False),
FrameGroup(frame_type="proj", url=proj_url_3),
FrameGroup(frame_type="proj", url=proj_url_4),
)
converter.from_h5_to_nx(
configuration=config,
)
scan.clear_caches()
energy = scan.energy
assert numpy.isclose(energy, 12.2)
assert scan.x_pixel_size is not None
assert numpy.isclose(scan.x_pixel_size, 2.6 * 10e-6)
assert scan.y_pixel_size is not None
assert numpy.isclose(scan.y_pixel_size, 2.7 * 10e-6)
with EntryReader(
DataUrl(file_path=scan.master_file, data_path=scan.entry, scheme="h5py")
) as entry:
assert "instrument/detector" in entry
assert "instrument/diode" not in entry
@pytest.mark.parametrize("z_series_version", ("z-series-v1",))
def test_z_series_conversion_with_external_urls(tmp_path, z_series_version: str):
"""
test conversion of a z-series using configuration
"""
folder = tmp_path / "test_z_series_conversion_with_external_urls"
folder = tempfile.mkdtemp()
frame_data_type = numpy.uint64
config = TomoHDF5Config()
config.output_file = os.path.join(folder, "output.nx")
# dataset init
camera_name = "frelon"
bliss_mock = MockBlissAcquisition(
n_sample=1,
n_sequence=1,
n_scan_per_sequence=2,
n_darks=1,
n_flats=0,
with_nx_detector_attr=True,
output_dir=os.path.join(folder, "seq_1"),
detector_name=camera_name,
acqui_type=z_series_version,
z_values=(1, 2, 3),
frame_data_type=frame_data_type,
)
zseries_1_file = bliss_mock.samples[0].sample_file
bliss_mock = MockBlissAcquisition(
n_sample=1,
n_sequence=1,
n_scan_per_sequence=2,
n_darks=0,
n_flats=1,
with_nx_detector_attr=True,
output_dir=os.path.join(folder, "seq_2"),
detector_name=camera_name,
acqui_type=z_series_version,
z_values=(4, 5, 6),
frame_data_type=frame_data_type,
)
zseries_2_file = bliss_mock.samples[0].sample_file
dark_url_1 = DataUrl(file_path=zseries_1_file, data_path="/5.1", scheme="silx")
proj_url_1 = DataUrl(file_path=zseries_1_file, data_path="/6.1", scheme="silx")
proj_url_2 = DataUrl(file_path=zseries_1_file, data_path="/7.1", scheme="silx")
proj_url_3 = DataUrl(file_path=zseries_1_file, data_path="/9.1", scheme="silx")
proj_url_4 = DataUrl(file_path=zseries_1_file, data_path="/10.1", scheme="silx")
proj_url_5 = DataUrl(file_path=zseries_2_file, data_path="/3.1", scheme="silx")
proj_url_6 = DataUrl(file_path=zseries_2_file, data_path="/4.1", scheme="silx")
flat_url_1 = DataUrl(file_path=zseries_2_file, data_path="/2.1", scheme="silx")
config.default_copy_behavior = True
config.single_file = True
config.data_frame_grps = (
FrameGroup(frame_type="dark", url=dark_url_1, copy=False),
FrameGroup(frame_type="flat", url=flat_url_1, copy=False),
FrameGroup(frame_type="proj", url=proj_url_1),
FrameGroup(frame_type="proj", url=proj_url_2),
FrameGroup(frame_type="proj", url=proj_url_3),
FrameGroup(frame_type="proj", url=proj_url_4),
FrameGroup(frame_type="proj", url=proj_url_5),
FrameGroup(frame_type="proj", url=proj_url_6),
)
urls_copied = (
proj_url_1,
proj_url_2,
proj_url_3,
proj_url_4,
proj_url_5,
proj_url_6,
)
urls_not_copied = (flat_url_1, dark_url_1)
# do conversion
new_scans = converter.from_h5_to_nx(
configuration=config,
)
assert len(new_scans) == 3
assert os.path.exists(config.output_file)
with HDF5File(config.output_file, mode="r", swmr=get_swmr_mode()) as h5f:
assert "entry0000" in h5f
assert "entry0001" in h5f
assert "entry0002" in h5f
scan_z0 = NXtomoScan(scan=config.output_file, entry="entry0000")
scan_z1 = NXtomoScan(scan=config.output_file, entry="entry0001")
scan_z2 = NXtomoScan(scan=config.output_file, entry="entry0002")
# check the `data`has been created
assert len(scan_z0.projections) == 20
assert len(scan_z1.projections) == 20
assert len(scan_z2.projections) == 20
for url in urls_copied:
assert url_has_been_copied(file_path=config.output_file, url=url)
for url in urls_not_copied:
assert not url_has_been_copied(file_path=config.output_file, url=url)
# test a few slices
with HDF5File(config.output_file, mode="r", swmr=get_swmr_mode()) as h5f:
dataset = h5f["entry0000/instrument/detector/data"]
assert dataset.shape[0] == 30
with EntryReader(proj_url_1) as proj_entry_1:
numpy.testing.assert_array_equal(
proj_entry_1["instrument/frelon/data"], dataset[10:20]
)
with EntryReader(proj_url_2) as proj_entry_2:
numpy.testing.assert_array_equal(
proj_entry_2["instrument/frelon/data"], dataset[20:30]
)
assert dataset.dtype == frame_data_type
@pytest.mark.parametrize("z_series_version", ("z-series-v1", "z-series-v3"))
@pytest.mark.parametrize(
"dark_flat_config",
(
{
"dark_at_start": True,
"flat_at_start": True,
"dark_at_end": False,
"flat_at_end": False,
},
{
"dark_at_start": False,
"flat_at_start": False,
"dark_at_end": True,
"flat_at_end": True,
},
),
)
def test_z_series_dark_flat_copy(tmp_path, z_series_version: str, dark_flat_config):
"""In z-series version 3"""
folder = tmp_path / "h52nx_from_command_line"
folder.mkdir()
bliss_mock = MockBlissAcquisition(
n_sample=1,
n_sequence=1,
n_scan_per_sequence=2,
n_darks=1,
n_flats=1,
acqui_type=z_series_version,
with_nx_detector_attr=True,
output_dir=folder,
detector_name="pcolinux",
frame_data_type=numpy.uint32,
z_values=(0.0, 1.0, 2.0),
z_series_v_3_options=dark_flat_config,
)
# launch conversion
sample = bliss_mock.samples[0]
input_file = sample.sample_file
assert os.path.exists(input_file)
config = TomoHDF5Config()
config.output_file = get_default_output_file(sample.sample_file)
config.valid_camera_names = ("pcolinux",)
config.input_file = sample.sample_file
config.single_file = True
config.request_input = False
config.raises_error = True
config.rotation_angle_keys = ("hrsrot",)
new_entries = converter.from_h5_to_nx(configuration=config)
# insure only one file is generated
assert os.path.exists(config.output_file)
# insure data is here
for i_nx_tomo, (file_path, data_path) in enumerate(new_entries):
nx_tomo = NXtomo().load(file_path=file_path, data_path=data_path)
assert (
len(
numpy.where(
nx_tomo.instrument.detector.image_key_control == ImageKey.DARK_FIELD
)[0]
)
== 10
), f"NXtomo {i_nx_tomo} doesn't have the expected number of dark"
assert (
len(
numpy.where(
nx_tomo.instrument.detector.image_key_control == ImageKey.FLAT_FIELD
)[0]
)
== 10
), f"NXtomo {i_nx_tomo} doesn't have the expected number of flat"
assert (
len(
numpy.where(
nx_tomo.instrument.detector.image_key_control == ImageKey.PROJECTION
)[0]
)
== 20
), f"NXtomo {i_nx_tomo} doesn't have the expected number of projection"
def test_h52nx_from_command_line(tmp_path):
folder = tmp_path / "h52nx_from_command_line"
folder.mkdir()
bliss_mock = MockBlissAcquisition(
n_sample=1,
n_sequence=1,
n_scan_per_sequence=2,
n_darks=1,
n_flats=1,
with_nx_detector_attr=True,
output_dir=folder,
detector_name="pcolinux",
frame_data_type=numpy.uint32,
)
sample = bliss_mock.samples[0]
output_file = sample.sample_file.replace(".h5", ".nx")
assert os.path.exists(sample.sample_file)
with cwd_context(os.path.dirname(sample.sample_file)):
input_file = os.path.basename(sample.sample_file)
assert os.path.exists(input_file)
output_file = os.path.basename(output_file)
assert not os.path.exists(output_file)
cmd = " ".join(
(
sys.executable,
"-m",
"nxtomomill",
"h52nx",
input_file,
output_file,
"--copy-data",
"--raises-error",
"--single-file",
)
)
subprocess.call(cmd, shell=True, cwd=os.path.dirname(sample.sample_file))
assert os.path.exists(output_file)
# insure all link are connected to one file: the internal one
frame_dataset_url = DataUrl(
file_path=output_file,
data_path="/entry0000/instrument/detector/data",
scheme="silx",
)
with DatasetReader(frame_dataset_url) as dataset:
assert dataset.is_virtual
for vs_info in dataset.virtual_sources():
assert dataset.is_virtual
assert vs_info.file_name == "."
assert dataset.dtype == numpy.uint32
# FIXME: avoid keeping some file open. not clear why this is needed
dataset = None
with HDF5File(output_file, "r", swmr=get_swmr_mode()) as h5f:
assert "/entry0000/instrument/diode" not in h5f
# insure an nxtomo can be created from it
nx_tomo = NXtomo().load(output_file, "entry0000")
assert nx_tomo.energy is not None
assert nx_tomo.instrument.detector.distance.value == 0.1
assert nx_tomo.instrument.detector.distance.unit == MetricSystem.METER
assert nx_tomo.instrument.source.distance.value == 52.0
assert nx_tomo.instrument.source.distance.unit == MetricSystem.METER
input_types = (
numpy.uint8,
numpy.uint16,
numpy.uint32,
numpy.uint64,
numpy.float16,
numpy.float32,
numpy.int16,
numpy.int32,
numpy.int64,
)
@pytest.mark.parametrize("input_type", input_types)
def test_simple_conversion(input_type, tmp_path):
"""test simple conversion from different frame data type and handling of RAW_DATA with PROCESSED_DATA"""
input_path = tmp_path / "test" / RAW_DATA_DIR_NAME / "dataset"
os.makedirs(input_path)
bliss_mock = MockBlissAcquisition(
n_sample=1,
n_sequence=1,
n_scan_per_sequence=10,
n_darks=5,
n_flats=5,
with_nx_detector_attr=True,
output_dir=input_path,
detector_name="my_detector",
frame_data_type=input_type,
)
sample = bliss_mock.samples[0]
assert os.path.exists(sample.sample_file)
config = TomoHDF5Config()
config.output_file = get_default_output_file(sample.sample_file)
assert PROCESSED_DATA_DIR_NAME in config.output_file
config.valid_camera_names = ("my_detec*",)
config.input_file = sample.sample_file
config.single_file = True
config.request_input = False
config.raises_error = True
config.rotation_angle_keys = ("hrsrot",)
converter.from_h5_to_nx(configuration=config)
# insure only one file is generated
assert os.path.exists(config.output_file)
# insure data is here
with HDF5File(config.output_file, mode="r", swmr=get_swmr_mode()) as h5s:
for _, entry_node in h5s.items():
assert "instrument/detector/data" in entry_node
dataset = entry_node["instrument/detector/data"]
assert dataset.dtype == input_type
assert "control" not in entry_node
def test_machine_electric_current():
"""Test machine electric current is handle by the convertor"""
with tempfile.TemporaryDirectory() as root_dir:
bliss_mock = MockBlissAcquisition(
n_sample=1,
n_sequence=1,
n_scan_per_sequence=2,
n_darks=5,
n_flats=5,
with_nx_detector_attr=True,
output_dir=root_dir,
detector_name="my_detector",
)
sample = bliss_mock.samples[0]
assert os.path.exists(sample.sample_file)
# append current to the bliss file
# from the example file I had it looks like this information can be saved at different location
# and can be either a number (for dark and flat for example) or a list (for projections)
with HDF5File(sample.sample_file, mode="a") as h5f:
# overwrite start_time to made ordering work
del h5f["1.1"]["start_time"]
h5f["1.1"]["start_time"] = "2022-01-15T21:05:58.360095+02:00"
with HDF5File(sample.sample_file, mode="a") as h5f:
node_names = ("2.1", "3.1")
machine_elec_current = (602, 589) # those are in ma
start_times = (
"2022-01-15T21:07:58.360095+02:00",
"2022-01-15T21:07:59.360095+02:00",
)
for node_name, machine_elec_current_ma, st in zip(
node_names, machine_elec_current, start_times
):
h5f[f"{node_name}/instrument/machine/current"] = machine_elec_current_ma
h5f[f"{node_name}/instrument/machine/current"].attrs["units"] = "mA"
del h5f[node_name]["start_time"]
h5f[node_name]["start_time"] = st
assert "4.1" in h5f
assert "5.1" in h5f
assert (
"6.1" not in h5f
) # this is because n_scan_per_sequence == 2 in MockBlissAcquisition
# create some X.2 for machine electric current as this is done in Bliss
for node_name in ("4.2", "5.2"):
h5f.require_group(node_name)["title"] = _BlissSample.get_title(
"projection"
)
current_monitor_dataset = h5f.require_dataset(
f"{node_name}/measurement/current", shape=(3), dtype=numpy.float32
)
current_monitor_dataset[:] = numpy.linspace(
0.9, 0.96, 3, dtype=numpy.float32, endpoint=True
)
current_monitor_dataset.attrs["units"] = "A"
# define start_time and end_time to insure conversion is correct
# start_time and end_time is required for both:
# * from X.1 to create frame time stamp
# * from X.2 to get machine electric current time stamp
start_times = (
"2022-01-15T21:08:58.360095+02:00",
"2022-01-15T21:10:58.360095+02:00",
)
end_times = (
"2022-01-15T21:09:58.360095+02:00",
"2022-01-15T21:11:58.360095+02:00",
)
tuple_node_names = (["4.1", "4.2"], ["5.1", "5.2"])
for node_names, st, et in zip(tuple_node_names, start_times, end_times):
for node_name in node_names:
if "start_time" in h5f[node_name]:
del h5f[node_name]["start_time"]
h5f[node_name]["start_time"] = st
h5f[node_name]["end_time"] = et
h5f[node_name].require_group("instrument")
# convert the file
config = TomoHDF5Config()
config.output_file = sample.sample_file.replace(".h5", ".nx")
config.single_file = True
config.request_input = False
config.raises_error = True
with pytest.raises(ValueError):
converter.from_h5_to_nx(configuration=config)
config.input_file = sample.sample_file
converter.from_h5_to_nx(configuration=config)
# insure only one file is generated
assert os.path.exists(config.output_file)
# insure data is here
nx_tomo = NXtomo().load(config.output_file, "entry0000")
expected_results = numpy.concatenate(
[
[602 / 1000] * 10,
[589 / 1000] * 10,
numpy.linspace(0.9, 0.96, 10, dtype=numpy.float32),
numpy.linspace(0.9, 0.96, 10, dtype=numpy.float32),
]
)
n_frames = (
10 * 4
) # there is 10 frames per scan. One dark, one flat and two projections scans
assert len(nx_tomo.control.data.value) == n_frames
numpy.testing.assert_allclose(
nx_tomo.control.data.value, expected_results, rtol=0.001
)
# test also from tomoscan
scan = NXtomoScan(scan=config.output_file, entry="entry0000")
# check getting the projections electric current
assert (
len(
scan.electric_current[
scan.image_key_control == ImageKey.PROJECTION.value
]
)
== 20
)
assert (
len(
scan.electric_current[
scan.image_key_control == ImageKey.DARK_FIELD.value
]
)
== 10
)
assert (
len(
scan.electric_current[
scan.image_key_control == ImageKey.FLAT_FIELD.value
]
)
== 10
)
|