1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
|
// std lib related includes
#include <tuple>
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <TopoDS_Vertex.hxx>
#include <IntTools_Curve.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <IntTools_Context.hxx>
#include <TopoDS_Solid.hxx>
#include <IntTools_Range.hxx>
#include <TopoDS_Shell.hxx>
#include <Message_Report.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <gp_Vec.hxx>
#include <Geom2d_Curve.hxx>
#include <Geom_Curve.hxx>
#include <BRepAdaptor_Surface.hxx>
#include <IntTools_Context.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <gp_Dir.hxx>
#include <Geom_Surface.hxx>
#include <Geom2d_Curve.hxx>
#include <gp_Pnt.hxx>
#include <IntTools_Context.hxx>
#include <gp_Pnt2d.hxx>
#include <TopoDS_Shape.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
// module includes
#include <BOPTools_AlgoTools.hxx>
#include <BOPTools_AlgoTools2D.hxx>
#include <BOPTools_AlgoTools3D.hxx>
#include <BOPTools_BoxSelector.hxx>
#include <BOPTools_BoxTree.hxx>
#include <BOPTools_ConnexityBlock.hxx>
#include <BOPTools_CoupleOfShape.hxx>
#include <BOPTools_IndexedDataMapOfSetShape.hxx>
#include <BOPTools_ListOfConnexityBlock.hxx>
#include <BOPTools_ListOfCoupleOfShape.hxx>
#include <BOPTools_MapOfSet.hxx>
#include <BOPTools_Parallel.hxx>
#include <BOPTools_Set.hxx>
// template related includes
// ./opencascade/BOPTools_BoxTree.hxx
#include "BOPTools_tmpl.hxx"
// ./opencascade/BOPTools_BoxTree.hxx
#include "BOPTools_tmpl.hxx"
// ./opencascade/BOPTools_BoxTree.hxx
#include "BOPTools_tmpl.hxx"
// ./opencascade/BOPTools_IndexedDataMapOfSetShape.hxx
#include "NCollection_tmpl.hxx"
// ./opencascade/BOPTools_ListOfConnexityBlock.hxx
#include "NCollection_tmpl.hxx"
// ./opencascade/BOPTools_ListOfCoupleOfShape.hxx
#include "NCollection_tmpl.hxx"
// ./opencascade/BOPTools_MapOfSet.hxx
#include "NCollection_tmpl.hxx"
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_BOPTools(py::module &main_module) {
py::module m = static_cast<py::module>(main_module.attr("BOPTools"));
py::object klass;
//Python trampoline classes
// classes
// Class BOPTools_AlgoTools from ./opencascade/BOPTools_AlgoTools.hxx
klass = m.attr("BOPTools_AlgoTools");
// default constructor
register_default_constructor<BOPTools_AlgoTools , shared_ptr<BOPTools_AlgoTools>>(m,"BOPTools_AlgoTools");
// nested enums
static_cast<py::class_<BOPTools_AlgoTools , shared_ptr<BOPTools_AlgoTools> >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("DTolerance_s",
(Standard_Real (*)() ) static_cast<Standard_Real (*)() >(&BOPTools_AlgoTools::DTolerance),
R"#(Additional tolerance (delta tolerance) is used in Boolean Operations to ensure that the tolerance of new/old entities obtained by intersection of two shapes is slightly bigger than the actual distances to these shapes. It helps to avoid numerical instability which may occur when comparing distances and tolerances.)#"
)
.def_static("ComputeVV_s",
(Standard_Integer (*)( const TopoDS_Vertex & , const gp_Pnt & , const Standard_Real ) ) static_cast<Standard_Integer (*)( const TopoDS_Vertex & , const gp_Pnt & , const Standard_Real ) >(&BOPTools_AlgoTools::ComputeVV),
R"#(Intersects the vertex <theV1> with the point <theP> with tolerance <theTolP>. Returns the error status: - 0 - no error, meaning that the vertex intersects the point; - 1 - the distance between vertex and point is grater than the sum of tolerances.)#" , py::arg("theV"), py::arg("theP"), py::arg("theTolP")
)
.def_static("ComputeVV_s",
(Standard_Integer (*)( const TopoDS_Vertex & , const TopoDS_Vertex & , const Standard_Real ) ) static_cast<Standard_Integer (*)( const TopoDS_Vertex & , const TopoDS_Vertex & , const Standard_Real ) >(&BOPTools_AlgoTools::ComputeVV),
R"#(Intersects the given vertices with given fuzzy value. Returns the error status: - 0 - no error, meaning that the vertices interferes with given tolerance; - 1 - the distance between vertices is grater than the sum of their tolerances.)#" , py::arg("theV1"), py::arg("theV2"), py::arg("theFuzz")=static_cast<const Standard_Real>(Precision :: Confusion ( ))
)
.def_static("MakeVertex_s",
(void (*)( const NCollection_List<TopoDS_Shape> & , TopoDS_Vertex & ) ) static_cast<void (*)( const NCollection_List<TopoDS_Shape> & , TopoDS_Vertex & ) >(&BOPTools_AlgoTools::MakeVertex),
R"#(Makes the vertex in the middle of given vertices with the tolerance covering all tolerance spheres of vertices.)#" , py::arg("theLV"), py::arg("theV")
)
.def_static("MakeNewVertex_s",
(void (*)( const gp_Pnt & , const Standard_Real , TopoDS_Vertex & ) ) static_cast<void (*)( const gp_Pnt & , const Standard_Real , TopoDS_Vertex & ) >(&BOPTools_AlgoTools::MakeNewVertex),
R"#(Make a vertex using 3D-point <aP1> and 3D-tolerance value <aTol>)#" , py::arg("aP1"), py::arg("aTol"), py::arg("aNewVertex")
)
.def_static("MakeNewVertex_s",
(void (*)( const TopoDS_Vertex & , const TopoDS_Vertex & , TopoDS_Vertex & ) ) static_cast<void (*)( const TopoDS_Vertex & , const TopoDS_Vertex & , TopoDS_Vertex & ) >(&BOPTools_AlgoTools::MakeNewVertex),
R"#(Make a vertex using couple of vertices <aV1, aV2>)#" , py::arg("aV1"), py::arg("aV2"), py::arg("aNewVertex")
)
.def_static("MakeNewVertex_s",
(void (*)( const TopoDS_Edge & , const Standard_Real , const TopoDS_Edge & , const Standard_Real , TopoDS_Vertex & ) ) static_cast<void (*)( const TopoDS_Edge & , const Standard_Real , const TopoDS_Edge & , const Standard_Real , TopoDS_Vertex & ) >(&BOPTools_AlgoTools::MakeNewVertex),
R"#(Make a vertex in place of intersection between two edges <aE1, aE2> with parameters <aP1, aP2>)#" , py::arg("aE1"), py::arg("aP1"), py::arg("aE2"), py::arg("aP2"), py::arg("aNewVertex")
)
.def_static("MakeNewVertex_s",
(void (*)( const TopoDS_Edge & , const Standard_Real , const TopoDS_Face & , TopoDS_Vertex & ) ) static_cast<void (*)( const TopoDS_Edge & , const Standard_Real , const TopoDS_Face & , TopoDS_Vertex & ) >(&BOPTools_AlgoTools::MakeNewVertex),
R"#(Make a vertex in place of intersection between the edge <aE1> with parameter <aP1> and the face <aF2>)#" , py::arg("aE1"), py::arg("aP1"), py::arg("aF2"), py::arg("aNewVertex")
)
.def_static("UpdateVertex_s",
(void (*)( const IntTools_Curve & , const Standard_Real , const TopoDS_Vertex & ) ) static_cast<void (*)( const IntTools_Curve & , const Standard_Real , const TopoDS_Vertex & ) >(&BOPTools_AlgoTools::UpdateVertex),
R"#(Update the tolerance value for vertex <aV> taking into account the fact that <aV> lays on the curve <aIC>)#" , py::arg("aIC"), py::arg("aT"), py::arg("aV")
)
.def_static("UpdateVertex_s",
(void (*)( const TopoDS_Edge & , const Standard_Real , const TopoDS_Vertex & ) ) static_cast<void (*)( const TopoDS_Edge & , const Standard_Real , const TopoDS_Vertex & ) >(&BOPTools_AlgoTools::UpdateVertex),
R"#(Update the tolerance value for vertex <aV> taking into account the fact that <aV> lays on the edge <aE>)#" , py::arg("aE"), py::arg("aT"), py::arg("aV")
)
.def_static("UpdateVertex_s",
(void (*)( const TopoDS_Vertex & , const TopoDS_Vertex & ) ) static_cast<void (*)( const TopoDS_Vertex & , const TopoDS_Vertex & ) >(&BOPTools_AlgoTools::UpdateVertex),
R"#(Update the tolerance value for vertex <aVN> taking into account the fact that <aVN> should cover tolerance zone of <aVF>)#" , py::arg("aVF"), py::arg("aVN")
)
.def_static("MakeEdge_s",
(void (*)( const IntTools_Curve & , const TopoDS_Vertex & , const Standard_Real , const TopoDS_Vertex & , const Standard_Real , const Standard_Real , TopoDS_Edge & ) ) static_cast<void (*)( const IntTools_Curve & , const TopoDS_Vertex & , const Standard_Real , const TopoDS_Vertex & , const Standard_Real , const Standard_Real , TopoDS_Edge & ) >(&BOPTools_AlgoTools::MakeEdge),
R"#(Makes the edge based on the given curve with given bounding vertices.)#" , py::arg("theCurve"), py::arg("theV1"), py::arg("theT1"), py::arg("theV2"), py::arg("theT2"), py::arg("theTolR3D"), py::arg("theE")
)
.def_static("CopyEdge_s",
(TopoDS_Edge (*)( const TopoDS_Edge & ) ) static_cast<TopoDS_Edge (*)( const TopoDS_Edge & ) >(&BOPTools_AlgoTools::CopyEdge),
R"#(Makes a copy of <theEdge> with vertices.)#" , py::arg("theEdge")
)
.def_static("MakeSplitEdge_s",
(void (*)( const TopoDS_Edge & , const TopoDS_Vertex & , const Standard_Real , const TopoDS_Vertex & , const Standard_Real , TopoDS_Edge & ) ) static_cast<void (*)( const TopoDS_Edge & , const TopoDS_Vertex & , const Standard_Real , const TopoDS_Vertex & , const Standard_Real , TopoDS_Edge & ) >(&BOPTools_AlgoTools::MakeSplitEdge),
R"#(Make the edge from base edge <aE1> and two vertices <aV1,aV2> at parameters <aP1,aP2>)#" , py::arg("aE1"), py::arg("aV1"), py::arg("aP1"), py::arg("aV2"), py::arg("aP2"), py::arg("aNewEdge")
)
.def_static("MakeSectEdge_s",
(void (*)( const IntTools_Curve & , const TopoDS_Vertex & , const Standard_Real , const TopoDS_Vertex & , const Standard_Real , TopoDS_Edge & ) ) static_cast<void (*)( const IntTools_Curve & , const TopoDS_Vertex & , const Standard_Real , const TopoDS_Vertex & , const Standard_Real , TopoDS_Edge & ) >(&BOPTools_AlgoTools::MakeSectEdge),
R"#(Make the edge from 3D-Curve <aIC> and two vertices <aV1,aV2> at parameters <aP1,aP2>)#" , py::arg("aIC"), py::arg("aV1"), py::arg("aP1"), py::arg("aV2"), py::arg("aP2"), py::arg("aNewEdge")
)
.def_static("ComputeState_s",
(TopAbs_State (*)( const gp_Pnt & , const TopoDS_Solid & , const Standard_Real , const opencascade::handle<IntTools_Context> & ) ) static_cast<TopAbs_State (*)( const gp_Pnt & , const TopoDS_Solid & , const Standard_Real , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools::ComputeState),
R"#(Computes the 3-D state of the point thePoint toward solid theSolid. theTol - value of precision of computation theContext- cahed geometrical tools Returns 3-D state.)#" , py::arg("thePoint"), py::arg("theSolid"), py::arg("theTol"), py::arg("theContext")
)
.def_static("ComputeState_s",
(TopAbs_State (*)( const TopoDS_Vertex & , const TopoDS_Solid & , const Standard_Real , const opencascade::handle<IntTools_Context> & ) ) static_cast<TopAbs_State (*)( const TopoDS_Vertex & , const TopoDS_Solid & , const Standard_Real , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools::ComputeState),
R"#(Computes the 3-D state of the vertex theVertex toward solid theSolid. theTol - value of precision of computation theContext- cahed geometrical tools Returns 3-D state.)#" , py::arg("theVertex"), py::arg("theSolid"), py::arg("theTol"), py::arg("theContext")
)
.def_static("ComputeState_s",
(TopAbs_State (*)( const TopoDS_Edge & , const TopoDS_Solid & , const Standard_Real , const opencascade::handle<IntTools_Context> & ) ) static_cast<TopAbs_State (*)( const TopoDS_Edge & , const TopoDS_Solid & , const Standard_Real , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools::ComputeState),
R"#(Computes the 3-D state of the edge theEdge toward solid theSolid. theTol - value of precision of computation theContext- cahed geometrical tools Returns 3-D state.)#" , py::arg("theEdge"), py::arg("theSolid"), py::arg("theTol"), py::arg("theContext")
)
.def_static("ComputeState_s",
(TopAbs_State (*)( const TopoDS_Face & , const TopoDS_Solid & , const Standard_Real , const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & , const opencascade::handle<IntTools_Context> & ) ) static_cast<TopAbs_State (*)( const TopoDS_Face & , const TopoDS_Solid & , const Standard_Real , const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools::ComputeState),
R"#(Computes the 3-D state of the face theFace toward solid theSolid. theTol - value of precision of computation theBounds - set of edges of <theSolid> to avoid theContext- cahed geometrical tools Returns 3-D state.)#" , py::arg("theFace"), py::arg("theSolid"), py::arg("theTol"), py::arg("theBounds"), py::arg("theContext")
)
.def_static("ComputeStateByOnePoint_s",
(TopAbs_State (*)( const TopoDS_Shape & , const TopoDS_Solid & , const Standard_Real , const opencascade::handle<IntTools_Context> & ) ) static_cast<TopAbs_State (*)( const TopoDS_Shape & , const TopoDS_Solid & , const Standard_Real , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools::ComputeStateByOnePoint),
R"#(Computes the 3-D state of the shape theShape toward solid theSolid. theTol - value of precision of computation theContext- cahed geometrical tools Returns 3-D state.)#" , py::arg("theShape"), py::arg("theSolid"), py::arg("theTol"), py::arg("theContext")
)
.def_static("GetFaceOff_s",
(Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Face & , NCollection_List<BOPTools_CoupleOfShape> & , TopoDS_Face & , const opencascade::handle<IntTools_Context> & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Face & , NCollection_List<BOPTools_CoupleOfShape> & , TopoDS_Face & , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools::GetFaceOff),
R"#(For the face theFace and its edge theEdge finds the face suitable to produce shell. theLCEF - set of faces to search. All faces from theLCEF must share edge theEdge)#" , py::arg("theEdge"), py::arg("theFace"), py::arg("theLCEF"), py::arg("theFaceOff"), py::arg("theContext")
)
.def_static("IsInternalFace_s",
(Standard_Integer (*)( const TopoDS_Face & , const TopoDS_Edge & , const TopoDS_Face & , const TopoDS_Face & , const opencascade::handle<IntTools_Context> & ) ) static_cast<Standard_Integer (*)( const TopoDS_Face & , const TopoDS_Edge & , const TopoDS_Face & , const TopoDS_Face & , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools::IsInternalFace),
R"#(Returns True if the face theFace is inside of the couple of faces theFace1, theFace2. The faces theFace, theFace1, theFace2 must share the edge theEdge Return values: * 0 state is not IN * 1 state is IN * 2 state can not be found by the method of angles)#" , py::arg("theFace"), py::arg("theEdge"), py::arg("theFace1"), py::arg("theFace2"), py::arg("theContext")
)
.def_static("IsInternalFace_s",
(Standard_Integer (*)( const TopoDS_Face & , const TopoDS_Edge & , NCollection_List<TopoDS_Shape> & , const opencascade::handle<IntTools_Context> & ) ) static_cast<Standard_Integer (*)( const TopoDS_Face & , const TopoDS_Edge & , NCollection_List<TopoDS_Shape> & , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools::IsInternalFace),
R"#(Returns True if the face theFace is inside of the appropriate couple of faces (from the set theLF) . The faces of the set theLF and theFace must share the edge theEdge * 0 state is not IN * 1 state is IN * 2 state can not be found by the method of angles)#" , py::arg("theFace"), py::arg("theEdge"), py::arg("theLF"), py::arg("theContext")
)
.def_static("IsInternalFace_s",
(Standard_Boolean (*)( const TopoDS_Face & , const TopoDS_Solid & , NCollection_IndexedDataMap<TopoDS_Shape, TopTools_ListOfShape, TopTools_ShapeMapHasher> & , const Standard_Real , const opencascade::handle<IntTools_Context> & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Face & , const TopoDS_Solid & , NCollection_IndexedDataMap<TopoDS_Shape, TopTools_ListOfShape, TopTools_ShapeMapHasher> & , const Standard_Real , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools::IsInternalFace),
R"#(Returns True if the face theFace is inside the solid theSolid. theMEF - Map Edge/Faces for theSolid theTol - value of precision of computation theContext- cahed geometrical tools)#" , py::arg("theFace"), py::arg("theSolid"), py::arg("theMEF"), py::arg("theTol"), py::arg("theContext")
)
.def_static("MakePCurve_s",
(void (*)( const TopoDS_Edge & , const TopoDS_Face & , const TopoDS_Face & , const IntTools_Curve & , const Standard_Boolean , const Standard_Boolean , const opencascade::handle<IntTools_Context> & ) ) static_cast<void (*)( const TopoDS_Edge & , const TopoDS_Face & , const TopoDS_Face & , const IntTools_Curve & , const Standard_Boolean , const Standard_Boolean , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools::MakePCurve),
R"#(Makes 2d curve of the edge <theE> on the faces <theF1> and <theF2>. <theContext> - storage for caching the geometrical tools)#" , py::arg("theE"), py::arg("theF1"), py::arg("theF2"), py::arg("theCurve"), py::arg("thePC1"), py::arg("thePC2"), py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
)
.def_static("IsHole_s",
(Standard_Boolean (*)( const TopoDS_Shape & , const TopoDS_Shape & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Shape & , const TopoDS_Shape & ) >(&BOPTools_AlgoTools::IsHole),
R"#(Checks if the wire is a hole for the face.)#" , py::arg("theW"), py::arg("theF")
)
.def_static("IsSplitToReverse_s",
(Standard_Boolean (*)( const TopoDS_Shape & , const TopoDS_Shape & , const opencascade::handle<IntTools_Context> & , Standard_Integer * ) ) static_cast<Standard_Boolean (*)( const TopoDS_Shape & , const TopoDS_Shape & , const opencascade::handle<IntTools_Context> & , Standard_Integer * ) >(&BOPTools_AlgoTools::IsSplitToReverse),
R"#(Checks if the direction of the split shape is opposite to the direction of the original shape. The method is an overload for (Edge,Edge) and (Face,Face) corresponding methods and checks only these types of shapes. For faces the method checks if normal directions are opposite. For edges the method checks if tangent vectors are opposite.)#" , py::arg("theSplit"), py::arg("theShape"), py::arg("theContext"), py::arg("theError")=static_cast<Standard_Integer *>(NULL)
)
.def_static("IsSplitToReverseWithWarn_s",
(Standard_Boolean (*)( const TopoDS_Shape & , const TopoDS_Shape & , const opencascade::handle<IntTools_Context> & , const opencascade::handle<Message_Report> & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Shape & , const TopoDS_Shape & , const opencascade::handle<IntTools_Context> & , const opencascade::handle<Message_Report> & ) >(&BOPTools_AlgoTools::IsSplitToReverseWithWarn),
R"#(Add-on for the *IsSplitToReverse()* to check for its errors and in case of any add the *BOPAlgo_AlertUnableToOrientTheShape* warning to the report.)#" , py::arg("theSplit"), py::arg("theShape"), py::arg("theContext"), py::arg("theReport")=static_cast<const opencascade::handle<Message_Report> &>(NULL)
)
.def_static("IsSplitToReverse_s",
(Standard_Boolean (*)( const TopoDS_Face & , const TopoDS_Face & , const opencascade::handle<IntTools_Context> & , Standard_Integer * ) ) static_cast<Standard_Boolean (*)( const TopoDS_Face & , const TopoDS_Face & , const opencascade::handle<IntTools_Context> & , Standard_Integer * ) >(&BOPTools_AlgoTools::IsSplitToReverse),
R"#(Checks if the normal direction of the split face is opposite to the normal direction of the original face. The normal directions for both faces are taken in the same point - point inside the split face is projected onto the original face. Returns TRUE if the normals do not coincide, meaning the necessity to revert the orientation of the split face to match the direction of the original face.)#" , py::arg("theSplit"), py::arg("theShape"), py::arg("theContext"), py::arg("theError")=static_cast<Standard_Integer *>(NULL)
)
.def_static("IsSplitToReverse_s",
(Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Edge & , const opencascade::handle<IntTools_Context> & , Standard_Integer * ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Edge & , const opencascade::handle<IntTools_Context> & , Standard_Integer * ) >(&BOPTools_AlgoTools::IsSplitToReverse),
R"#(Checks if the tangent vector of the split edge is opposite to the tangent vector of the original edge. The tangent vectors for both edges are computed in the same point - point inside the split edge is projected onto the original edge. Returns TRUE if the tangent vectors do not coincide, meaning the necessity to revert the orientation of the split edge to match the direction of the original edge.)#" , py::arg("theSplit"), py::arg("theShape"), py::arg("theContext"), py::arg("theError")=static_cast<Standard_Integer *>(NULL)
)
.def_static("Sense_s",
(Standard_Integer (*)( const TopoDS_Face & , const TopoDS_Face & , const opencascade::handle<IntTools_Context> & ) ) static_cast<Standard_Integer (*)( const TopoDS_Face & , const TopoDS_Face & , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools::Sense),
R"#(Checks if the normals direction of the given faces computed near the shared edge coincide. Returns the status of operation: * 0 - in case of error (shared edge not found or directions are not collinear) * 1 - normal directions coincide; * -1 - normal directions are opposite.)#" , py::arg("theF1"), py::arg("theF2"), py::arg("theContext")
)
.def_static("MakeConnexityBlock_s",
(void (*)( NCollection_List<TopoDS_Shape> & , NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & , NCollection_List<TopoDS_Shape> & , const opencascade::handle<NCollection_BaseAllocator> & ) ) static_cast<void (*)( NCollection_List<TopoDS_Shape> & , NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & , NCollection_List<TopoDS_Shape> & , const opencascade::handle<NCollection_BaseAllocator> & ) >(&BOPTools_AlgoTools::MakeConnexityBlock),
R"#(For the list of faces theLS build block theLSCB in terms of connexity by edges theMapAvoid - set of edges to avoid for the treatment)#" , py::arg("theLS"), py::arg("theMapAvoid"), py::arg("theLSCB"), py::arg("theAllocator")
)
.def_static("MakeConnexityBlocks_s",
(void (*)( const TopoDS_Shape & , const TopAbs_ShapeEnum , const TopAbs_ShapeEnum , NCollection_List<TopoDS_Shape> & ) ) static_cast<void (*)( const TopoDS_Shape & , const TopAbs_ShapeEnum , const TopAbs_ShapeEnum , NCollection_List<TopoDS_Shape> & ) >(&BOPTools_AlgoTools::MakeConnexityBlocks),
R"#(For the compound <theS> builds the blocks (compounds) of elements of type <theElementType> connected through the shapes of the type <theConnectionType>. The blocks are stored into the list <theLCB>.)#" , py::arg("theS"), py::arg("theConnectionType"), py::arg("theElementType"), py::arg("theLCB")
)
.def_static("MakeConnexityBlocks_s",
(void (*)( const TopoDS_Shape & , const TopAbs_ShapeEnum , const TopAbs_ShapeEnum , NCollection_List<TopTools_ListOfShape> & , NCollection_IndexedDataMap<TopoDS_Shape, TopTools_ListOfShape, TopTools_ShapeMapHasher> & ) ) static_cast<void (*)( const TopoDS_Shape & , const TopAbs_ShapeEnum , const TopAbs_ShapeEnum , NCollection_List<TopTools_ListOfShape> & , NCollection_IndexedDataMap<TopoDS_Shape, TopTools_ListOfShape, TopTools_ShapeMapHasher> & ) >(&BOPTools_AlgoTools::MakeConnexityBlocks),
R"#(For the compound <theS> builds the blocks (compounds) of elements of type <theElementType> connected through the shapes of the type <theConnectionType>. The blocks are stored into the list of lists <theLCB>. Returns also the connection map <theConnectionMap>, filled during operation.)#" , py::arg("theS"), py::arg("theConnectionType"), py::arg("theElementType"), py::arg("theLCB"), py::arg("theConnectionMap")
)
.def_static("MakeConnexityBlocks_s",
(void (*)( const NCollection_List<TopoDS_Shape> & , const TopAbs_ShapeEnum , const TopAbs_ShapeEnum , NCollection_List<BOPTools_ConnexityBlock> & ) ) static_cast<void (*)( const NCollection_List<TopoDS_Shape> & , const TopAbs_ShapeEnum , const TopAbs_ShapeEnum , NCollection_List<BOPTools_ConnexityBlock> & ) >(&BOPTools_AlgoTools::MakeConnexityBlocks),
R"#(Makes connexity blocks of elements of the given type with the given type of the connecting elements. The blocks are checked on regularity (multi-connectivity) and stored to the list of blocks <theLCB>.)#" , py::arg("theLS"), py::arg("theConnectionType"), py::arg("theElementType"), py::arg("theLCB")
)
.def_static("OrientEdgesOnWire_s",
(void (*)( TopoDS_Shape & ) ) static_cast<void (*)( TopoDS_Shape & ) >(&BOPTools_AlgoTools::OrientEdgesOnWire),
R"#(Correctly orients edges on the wire)#" , py::arg("theWire")
)
.def_static("OrientFacesOnShell_s",
(void (*)( TopoDS_Shape & ) ) static_cast<void (*)( TopoDS_Shape & ) >(&BOPTools_AlgoTools::OrientFacesOnShell),
R"#(Correctly orients faces on the shell)#" , py::arg("theShell")
)
.def_static("CorrectTolerances_s",
(void (*)( const TopoDS_Shape & , const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & , const Standard_Real , const Standard_Boolean ) ) static_cast<void (*)( const TopoDS_Shape & , const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & , const Standard_Real , const Standard_Boolean ) >(&BOPTools_AlgoTools::CorrectTolerances),
R"#(Provides valid values of tolerances for the shape <theS> <theTolMax> is max value of the tolerance that can be accepted for correction. If real value of the tolerance will be greater than <aTolMax>, the correction does not perform.)#" , py::arg("theS"), py::arg("theMapToAvoid"), py::arg("theTolMax")=static_cast<const Standard_Real>(0.0001), py::arg("theRunParallel")=static_cast<const Standard_Boolean>(Standard_False)
)
.def_static("CorrectCurveOnSurface_s",
(void (*)( const TopoDS_Shape & , const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & , const Standard_Real , const Standard_Boolean ) ) static_cast<void (*)( const TopoDS_Shape & , const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & , const Standard_Real , const Standard_Boolean ) >(&BOPTools_AlgoTools::CorrectCurveOnSurface),
R"#(Provides valid values of tolerances for the shape <theS> in terms of BRepCheck_InvalidCurveOnSurface.)#" , py::arg("theS"), py::arg("theMapToAvoid"), py::arg("theTolMax")=static_cast<const Standard_Real>(0.0001), py::arg("theRunParallel")=static_cast<const Standard_Boolean>(Standard_False)
)
.def_static("CorrectPointOnCurve_s",
(void (*)( const TopoDS_Shape & , const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & , const Standard_Real , const Standard_Boolean ) ) static_cast<void (*)( const TopoDS_Shape & , const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & , const Standard_Real , const Standard_Boolean ) >(&BOPTools_AlgoTools::CorrectPointOnCurve),
R"#(Provides valid values of tolerances for the shape <theS> in terms of BRepCheck_InvalidPointOnCurve.)#" , py::arg("theS"), py::arg("theMapToAvoid"), py::arg("theTolMax")=static_cast<const Standard_Real>(0.0001), py::arg("theRunParallel")=static_cast<const Standard_Boolean>(Standard_False)
)
.def_static("CorrectShapeTolerances_s",
(void (*)( const TopoDS_Shape & , const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & , const Standard_Boolean ) ) static_cast<void (*)( const TopoDS_Shape & , const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & , const Standard_Boolean ) >(&BOPTools_AlgoTools::CorrectShapeTolerances),
R"#(Corrects tolerance values of the sub-shapes of the shape <theS> if needed.)#" , py::arg("theS"), py::arg("theMapToAvoid"), py::arg("theRunParallel")=static_cast<const Standard_Boolean>(Standard_False)
)
.def_static("AreFacesSameDomain_s",
(Standard_Boolean (*)( const TopoDS_Face & , const TopoDS_Face & , const opencascade::handle<IntTools_Context> & , const Standard_Real ) ) static_cast<Standard_Boolean (*)( const TopoDS_Face & , const TopoDS_Face & , const opencascade::handle<IntTools_Context> & , const Standard_Real ) >(&BOPTools_AlgoTools::AreFacesSameDomain),
R"#(Checks if the given faces are same-domain, i.e. coincide.)#" , py::arg("theF1"), py::arg("theF2"), py::arg("theContext"), py::arg("theFuzz")=static_cast<const Standard_Real>(Precision :: Confusion ( ))
)
.def_static("GetEdgeOff_s",
(Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Face & , TopoDS_Edge & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Face & , TopoDS_Edge & ) >(&BOPTools_AlgoTools::GetEdgeOff),
R"#(Returns True if the face theFace contains the edge theEdge but with opposite orientation. If the method returns True theEdgeOff is the edge founded)#" , py::arg("theEdge"), py::arg("theFace"), py::arg("theEdgeOff")
)
.def_static("GetEdgeOnFace_s",
(Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Face & , TopoDS_Edge & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Face & , TopoDS_Edge & ) >(&BOPTools_AlgoTools::GetEdgeOnFace),
R"#(For the face theFace gets the edge theEdgeOnF that is the same as theEdge Returns True if such edge exists Returns False if there is no such edge)#" , py::arg("theEdge"), py::arg("theFace"), py::arg("theEdgeOnF")
)
.def_static("CorrectRange_s",
(void (*)( const TopoDS_Edge & , const TopoDS_Edge & , const IntTools_Range & , IntTools_Range & ) ) static_cast<void (*)( const TopoDS_Edge & , const TopoDS_Edge & , const IntTools_Range & , IntTools_Range & ) >(&BOPTools_AlgoTools::CorrectRange),
R"#(Correct shrunk range <aSR> taking into account 3D-curve resolution and corresponding tolerance values of <aE1>, <aE2>)#" , py::arg("aE1"), py::arg("aE2"), py::arg("aSR"), py::arg("aNewSR")
)
.def_static("CorrectRange_s",
(void (*)( const TopoDS_Edge & , const TopoDS_Face & , const IntTools_Range & , IntTools_Range & ) ) static_cast<void (*)( const TopoDS_Edge & , const TopoDS_Face & , const IntTools_Range & , IntTools_Range & ) >(&BOPTools_AlgoTools::CorrectRange),
R"#(Correct shrunk range <aSR> taking into account 3D-curve resolution and corresponding tolerance values of <aE>, <aF>)#" , py::arg("aE"), py::arg("aF"), py::arg("aSR"), py::arg("aNewSR")
)
.def_static("IsMicroEdge_s",
(Standard_Boolean (*)( const TopoDS_Edge & , const opencascade::handle<IntTools_Context> & , const Standard_Boolean ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & , const opencascade::handle<IntTools_Context> & , const Standard_Boolean ) >(&BOPTools_AlgoTools::IsMicroEdge),
R"#(Checks if it is possible to compute shrunk range for the edge <aE> Flag <theCheckSplittable> defines whether to take into account the possibility to split the edge or not.)#" , py::arg("theEdge"), py::arg("theContext"), py::arg("theCheckSplittable")=static_cast<const Standard_Boolean>(Standard_True)
)
.def_static("IsInvertedSolid_s",
(Standard_Boolean (*)( const TopoDS_Solid & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Solid & ) >(&BOPTools_AlgoTools::IsInvertedSolid),
R"#(Returns true if the solid <theSolid> is inverted)#" , py::arg("theSolid")
)
.def_static("ComputeTolerance_s",
(Standard_Boolean (*)( const TopoDS_Face & , const TopoDS_Edge & , Standard_Real & , Standard_Real & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Face & , const TopoDS_Edge & , Standard_Real & , Standard_Real & ) >(&BOPTools_AlgoTools::ComputeTolerance),
R"#(Computes the necessary value of the tolerance for the edge)#" , py::arg("theFace"), py::arg("theEdge"), py::arg("theMaxDist"), py::arg("theMaxPar")
)
.def_static("MakeContainer_s",
(void (*)( const TopAbs_ShapeEnum , TopoDS_Shape & ) ) static_cast<void (*)( const TopAbs_ShapeEnum , TopoDS_Shape & ) >(&BOPTools_AlgoTools::MakeContainer),
R"#(Makes empty container of requested type)#" , py::arg("theType"), py::arg("theShape")
)
.def_static("PointOnEdge_s",
(void (*)( const TopoDS_Edge & , const Standard_Real , gp_Pnt & ) ) static_cast<void (*)( const TopoDS_Edge & , const Standard_Real , gp_Pnt & ) >(&BOPTools_AlgoTools::PointOnEdge),
R"#(Compute a 3D-point on the edge <aEdge> at parameter <aPrm>)#" , py::arg("aEdge"), py::arg("aPrm"), py::arg("aP")
)
.def_static("IsBlockInOnFace_s",
(Standard_Boolean (*)( const IntTools_Range & , const TopoDS_Face & , const TopoDS_Edge & , const opencascade::handle<IntTools_Context> & ) ) static_cast<Standard_Boolean (*)( const IntTools_Range & , const TopoDS_Face & , const TopoDS_Edge & , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools::IsBlockInOnFace),
R"#(Returns TRUE if PaveBlock <aPB> lays on the face <aF>, i.e the <PB> is IN or ON in 2D of <aF>)#" , py::arg("aShR"), py::arg("aF"), py::arg("aE"), py::arg("aContext")
)
.def_static("Dimension_s",
(Standard_Integer (*)( const TopoDS_Shape & ) ) static_cast<Standard_Integer (*)( const TopoDS_Shape & ) >(&BOPTools_AlgoTools::Dimension),
R"#(Returns dimension of the shape <theS>. If the shape contains elements of different dimension, -1 is returned.)#" , py::arg("theS")
)
.def_static("TreatCompound_s",
(void (*)( const TopoDS_Shape & , NCollection_List<TopoDS_Shape> & , NCollection_Map<TopoDS_Shape, TopTools_ShapeMapHasher> * ) ) static_cast<void (*)( const TopoDS_Shape & , NCollection_List<TopoDS_Shape> & , NCollection_Map<TopoDS_Shape, TopTools_ShapeMapHasher> * ) >(&BOPTools_AlgoTools::TreatCompound),
R"#(Collects in the output list recursively all non-compound sub-shapes of the first level of the given shape theS. The optional map theMap is used to avoid the duplicates in the output list, so it will also contain all non-compound sub-shapes.)#" , py::arg("theS"), py::arg("theList"), py::arg("theMap")=static_cast<NCollection_Map<TopoDS_Shape, TopTools_ShapeMapHasher> *>(NULL)
)
.def_static("IsOpenShell_s",
(Standard_Boolean (*)( const TopoDS_Shell & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Shell & ) >(&BOPTools_AlgoTools::IsOpenShell),
R"#(Returns true if the shell <theShell> is open)#" , py::arg("theShell")
)
// static methods using call by reference i.s.o. return
.def_static("Dimensions_s",
[](const TopoDS_Shape & theS ){
Standard_Integer theDMin;
Standard_Integer theDMax;
BOPTools_AlgoTools::Dimensions(theS,theDMin,theDMax);
return std::make_tuple(theDMin,theDMax); },
R"#(Returns the min and max dimensions of the shape <theS>.)#" , py::arg("theS")
)
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class BOPTools_AlgoTools2D from ./opencascade/BOPTools_AlgoTools2D.hxx
klass = m.attr("BOPTools_AlgoTools2D");
// default constructor
register_default_constructor<BOPTools_AlgoTools2D , shared_ptr<BOPTools_AlgoTools2D>>(m,"BOPTools_AlgoTools2D");
// nested enums
static_cast<py::class_<BOPTools_AlgoTools2D , shared_ptr<BOPTools_AlgoTools2D> >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("BuildPCurveForEdgeOnFace_s",
(void (*)( const TopoDS_Edge & , const TopoDS_Face & , const opencascade::handle<IntTools_Context> & ) ) static_cast<void (*)( const TopoDS_Edge & , const TopoDS_Face & , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools2D::BuildPCurveForEdgeOnFace),
R"#(Compute P-Curve for the edge <aE> on the face <aF>. Raises exception Standard_ConstructionError if projection algorithm fails. <theContext> - storage for caching the geometrical tools)#" , py::arg("aE"), py::arg("aF"), py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
)
.def_static("EdgeTangent_s",
(Standard_Boolean (*)( const TopoDS_Edge & , const Standard_Real , gp_Vec & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & , const Standard_Real , gp_Vec & ) >(&BOPTools_AlgoTools2D::EdgeTangent),
R"#(Compute tangent for the edge <aE> [in 3D] at parameter <aT>)#" , py::arg("anE"), py::arg("aT"), py::arg("Tau")
)
.def_static("HasCurveOnSurface_s",
(Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Face & , opencascade::handle<Geom2d_Curve> & , Standard_Real & , Standard_Real & , Standard_Real & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Face & , opencascade::handle<Geom2d_Curve> & , Standard_Real & , Standard_Real & , Standard_Real & ) >(&BOPTools_AlgoTools2D::HasCurveOnSurface),
R"#(Returns TRUE if the edge <aE> has P-Curve <aC> on surface <aF> . [aFirst, aLast] - range of the P-Curve [aToler] - reached tolerance If the P-Curve does not exist, aC.IsNull()=TRUE.)#" , py::arg("aE"), py::arg("aF"), py::arg("aC"), py::arg("aFirst"), py::arg("aLast"), py::arg("aToler")
)
.def_static("HasCurveOnSurface_s",
(Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Face & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Face & ) >(&BOPTools_AlgoTools2D::HasCurveOnSurface),
R"#(Returns TRUE if the edge <aE> has P-Curve <aC> on surface <aF> . If the P-Curve does not exist, aC.IsNull()=TRUE.)#" , py::arg("aE"), py::arg("aF")
)
.def_static("IntermediatePoint_s",
(Standard_Real (*)( const Standard_Real , const Standard_Real ) ) static_cast<Standard_Real (*)( const Standard_Real , const Standard_Real ) >(&BOPTools_AlgoTools2D::IntermediatePoint),
R"#(Compute intermediate value in between [aFirst, aLast] .)#" , py::arg("aFirst"), py::arg("aLast")
)
.def_static("IntermediatePoint_s",
(Standard_Real (*)( const TopoDS_Edge & ) ) static_cast<Standard_Real (*)( const TopoDS_Edge & ) >(&BOPTools_AlgoTools2D::IntermediatePoint),
R"#(Compute intermediate value of parameter for the edge <anE>.)#" , py::arg("anE")
)
.def_static("AttachExistingPCurve_s",
(Standard_Integer (*)( const TopoDS_Edge & , const TopoDS_Edge & , const TopoDS_Face & , const opencascade::handle<IntTools_Context> & ) ) static_cast<Standard_Integer (*)( const TopoDS_Edge & , const TopoDS_Edge & , const TopoDS_Face & , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools2D::AttachExistingPCurve),
R"#(Attach P-Curve from the edge <aEold> on surface <aF> to the edge <aEnew> Returns 0 in case of success)#" , py::arg("aEold"), py::arg("aEnew"), py::arg("aF"), py::arg("aCtx")
)
// static methods using call by reference i.s.o. return
.def_static("PointOnSurface_s",
[](const TopoDS_Edge & aE,const TopoDS_Face & aF,const Standard_Real aT,const opencascade::handle<IntTools_Context> & theContext ){
Standard_Real U;
Standard_Real V;
BOPTools_AlgoTools2D::PointOnSurface(aE,aF,aT,U,V,theContext);
return std::make_tuple(U,V); },
R"#(Compute surface parameters <U,V> of the face <aF> for the point from the edge <aE> at parameter <aT>. If <aE> has't pcurve on surface, algorithm tries to get it by projection and can raise exception Standard_ConstructionError if projection algorithm fails. <theContext> - storage for caching the geometrical tools)#" , py::arg("aE"), py::arg("aF"), py::arg("aT"), py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
)
.def_static("CurveOnSurface_s",
[](const TopoDS_Edge & aE,const TopoDS_Face & aF,Geom2d_Curve& aC,const opencascade::handle<IntTools_Context> & theContext ){
Standard_Real aToler;
opencascade::handle<Geom2d_Curve> aC_ptr; aC_ptr = &aC;
BOPTools_AlgoTools2D::CurveOnSurface(aE,aF,aC_ptr,aToler,theContext);
if ( aC_ptr.get() != &aC ) copy_if_copy_constructible(aC, *aC_ptr);
return std::make_tuple(aToler); },
R"#(Get P-Curve <aC> for the edge <aE> on surface <aF> . If the P-Curve does not exist, build it using Make2D(). [aToler] - reached tolerance Raises exception Standard_ConstructionError if algorithm Make2D() fails. <theContext> - storage for caching the geometrical tools)#" , py::arg("aE"), py::arg("aF"), py::arg("aC"), py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
)
.def_static("CurveOnSurface_s",
[](const TopoDS_Edge & aE,const TopoDS_Face & aF,Geom2d_Curve& aC,const opencascade::handle<IntTools_Context> & theContext ){
Standard_Real aFirst;
Standard_Real aLast;
Standard_Real aToler;
opencascade::handle<Geom2d_Curve> aC_ptr; aC_ptr = &aC;
BOPTools_AlgoTools2D::CurveOnSurface(aE,aF,aC_ptr,aFirst,aLast,aToler,theContext);
if ( aC_ptr.get() != &aC ) copy_if_copy_constructible(aC, *aC_ptr);
return std::make_tuple(aFirst,aLast,aToler); },
R"#(Get P-Curve <aC> for the edge <aE> on surface <aF> . If the P-Curve does not exist, build it using Make2D(). [aFirst, aLast] - range of the P-Curve [aToler] - reached tolerance Raises exception Standard_ConstructionError if algorithm Make2D() fails. <theContext> - storage for caching the geometrical tools)#" , py::arg("aE"), py::arg("aF"), py::arg("aC"), py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
)
.def_static("AdjustPCurveOnFace_s",
[](const TopoDS_Face & theF,const opencascade::handle<Geom_Curve> & theC3D,const opencascade::handle<Geom2d_Curve> & theC2D,Geom2d_Curve& theC2DA,const opencascade::handle<IntTools_Context> & theContext ){
opencascade::handle<Geom2d_Curve> theC2DA_ptr; theC2DA_ptr = &theC2DA;
BOPTools_AlgoTools2D::AdjustPCurveOnFace(theF,theC3D,theC2D,theC2DA_ptr,theContext);
if ( theC2DA_ptr.get() != &theC2DA ) copy_if_copy_constructible(theC2DA, *theC2DA_ptr);
},
R"#(Adjust P-Curve <theC2D> (3D-curve <theC3D>) on surface of the face <theF>. <theContext> - storage for caching the geometrical tools)#" , py::arg("theF"), py::arg("theC3D"), py::arg("theC2D"), py::arg("theC2DA"), py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
)
.def_static("AdjustPCurveOnFace_s",
[](const TopoDS_Face & theF,const Standard_Real theFirst,const Standard_Real theLast,const opencascade::handle<Geom2d_Curve> & theC2D,Geom2d_Curve& theC2DA,const opencascade::handle<IntTools_Context> & theContext ){
opencascade::handle<Geom2d_Curve> theC2DA_ptr; theC2DA_ptr = &theC2DA;
BOPTools_AlgoTools2D::AdjustPCurveOnFace(theF,theFirst,theLast,theC2D,theC2DA_ptr,theContext);
if ( theC2DA_ptr.get() != &theC2DA ) copy_if_copy_constructible(theC2DA, *theC2DA_ptr);
},
R"#(Adjust P-Curve <aC2D> (3D-curve <C3D>) on surface <aF> . [aT1, aT2] - range to adjust <theContext> - storage for caching the geometrical tools)#" , py::arg("theF"), py::arg("theFirst"), py::arg("theLast"), py::arg("theC2D"), py::arg("theC2DA"), py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
)
.def_static("AdjustPCurveOnSurf_s",
[](const BRepAdaptor_Surface & aF,const Standard_Real aT1,const Standard_Real aT2,const opencascade::handle<Geom2d_Curve> & aC2D,Geom2d_Curve& aC2DA ){
opencascade::handle<Geom2d_Curve> aC2DA_ptr; aC2DA_ptr = &aC2DA;
BOPTools_AlgoTools2D::AdjustPCurveOnSurf(aF,aT1,aT2,aC2D,aC2DA_ptr);
if ( aC2DA_ptr.get() != &aC2DA ) copy_if_copy_constructible(aC2DA, *aC2DA_ptr);
},
R"#(Adjust P-Curve <aC2D> (3D-curve <C3D>) on surface <aF> . [aT1, aT2] - range to adjust)#" , py::arg("aF"), py::arg("aT1"), py::arg("aT2"), py::arg("aC2D"), py::arg("aC2DA")
)
.def_static("Make2D_s",
[](const TopoDS_Edge & aE,const TopoDS_Face & aF,Geom2d_Curve& aC,const opencascade::handle<IntTools_Context> & theContext ){
Standard_Real aFirst;
Standard_Real aLast;
Standard_Real aToler;
opencascade::handle<Geom2d_Curve> aC_ptr; aC_ptr = &aC;
BOPTools_AlgoTools2D::Make2D(aE,aF,aC_ptr,aFirst,aLast,aToler,theContext);
if ( aC_ptr.get() != &aC ) copy_if_copy_constructible(aC, *aC_ptr);
return std::make_tuple(aFirst,aLast,aToler); },
R"#(Make P-Curve <aC> for the edge <aE> on surface <aF> . [aFirst, aLast] - range of the P-Curve [aToler] - reached tolerance Raises exception Standard_ConstructionError if algorithm fails. <theContext> - storage for caching the geometrical tools)#" , py::arg("aE"), py::arg("aF"), py::arg("aC"), py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
)
.def_static("MakePCurveOnFace_s",
[](const TopoDS_Face & aF,const opencascade::handle<Geom_Curve> & C3D,Geom2d_Curve& aC,const opencascade::handle<IntTools_Context> & theContext ){
Standard_Real aToler;
opencascade::handle<Geom2d_Curve> aC_ptr; aC_ptr = &aC;
BOPTools_AlgoTools2D::MakePCurveOnFace(aF,C3D,aC_ptr,aToler,theContext);
if ( aC_ptr.get() != &aC ) copy_if_copy_constructible(aC, *aC_ptr);
return std::make_tuple(aToler); },
R"#(Make P-Curve <aC> for the 3D-curve <C3D> on surface <aF> . [aToler] - reached tolerance Raises exception Standard_ConstructionError if projection algorithm fails. <theContext> - storage for caching the geometrical tools)#" , py::arg("aF"), py::arg("C3D"), py::arg("aC"), py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
)
.def_static("MakePCurveOnFace_s",
[](const TopoDS_Face & aF,const opencascade::handle<Geom_Curve> & C3D,const Standard_Real aT1,const Standard_Real aT2,Geom2d_Curve& aC,const opencascade::handle<IntTools_Context> & theContext ){
Standard_Real aToler;
opencascade::handle<Geom2d_Curve> aC_ptr; aC_ptr = &aC;
BOPTools_AlgoTools2D::MakePCurveOnFace(aF,C3D,aT1,aT2,aC_ptr,aToler,theContext);
if ( aC_ptr.get() != &aC ) copy_if_copy_constructible(aC, *aC_ptr);
return std::make_tuple(aToler); },
R"#(Make P-Curve <aC> for the 3D-curve <C3D> on surface <aF> . [aT1, aT2] - range to build [aToler] - reached tolerance Raises exception Standard_ConstructionError if projection algorithm fails. <theContext> - storage for caching the geometrical tools)#" , py::arg("aF"), py::arg("C3D"), py::arg("aT1"), py::arg("aT2"), py::arg("aC"), py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
)
.def_static("IsEdgeIsoline_s",
[](const TopoDS_Edge & theE,const TopoDS_Face & theF ){
Standard_Boolean isTheUIso;
Standard_Boolean isTheVIso;
BOPTools_AlgoTools2D::IsEdgeIsoline(theE,theF,isTheUIso,isTheVIso);
return std::make_tuple(isTheUIso,isTheVIso); },
R"#(Checks if CurveOnSurface of theE on theF matches with isoline of theF surface. Sets corresponding values for isTheUIso and isTheVIso variables.)#" , py::arg("theE"), py::arg("theF")
)
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class BOPTools_AlgoTools3D from ./opencascade/BOPTools_AlgoTools3D.hxx
klass = m.attr("BOPTools_AlgoTools3D");
// default constructor
register_default_constructor<BOPTools_AlgoTools3D , shared_ptr<BOPTools_AlgoTools3D>>(m,"BOPTools_AlgoTools3D");
// nested enums
static_cast<py::class_<BOPTools_AlgoTools3D , shared_ptr<BOPTools_AlgoTools3D> >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("DoSplitSEAMOnFace_s",
(Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Face & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Face & ) >(&BOPTools_AlgoTools3D::DoSplitSEAMOnFace),
R"#(Makes the edge <theESplit> seam edge for the face <theFace> basing on the surface properties (U and V periods))#" , py::arg("theESplit"), py::arg("theFace")
)
.def_static("DoSplitSEAMOnFace_s",
(Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Edge & , const TopoDS_Face & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Edge & , const TopoDS_Face & ) >(&BOPTools_AlgoTools3D::DoSplitSEAMOnFace),
R"#(Makes the split edge <theESplit> seam edge for the face <theFace> basing on the positions of 2d curves of the original edge <theEOrigin>.)#" , py::arg("theEOrigin"), py::arg("theESplit"), py::arg("theFace")
)
.def_static("GetNormalToFaceOnEdge_s",
(void (*)( const TopoDS_Edge & , const TopoDS_Face & , const Standard_Real , gp_Dir & , const opencascade::handle<IntTools_Context> & ) ) static_cast<void (*)( const TopoDS_Edge & , const TopoDS_Face & , const Standard_Real , gp_Dir & , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools3D::GetNormalToFaceOnEdge),
R"#(Computes normal to the face <aF> for the point on the edge <aE> at parameter <aT>. <theContext> - storage for caching the geometrical tools)#" , py::arg("aE"), py::arg("aF"), py::arg("aT"), py::arg("aD"), py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
)
.def_static("GetNormalToFaceOnEdge_s",
(void (*)( const TopoDS_Edge & , const TopoDS_Face & , gp_Dir & , const opencascade::handle<IntTools_Context> & ) ) static_cast<void (*)( const TopoDS_Edge & , const TopoDS_Face & , gp_Dir & , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools3D::GetNormalToFaceOnEdge),
R"#(Computes normal to the face <aF> for the point on the edge <aE> at arbitrary intermediate parameter. <theContext> - storage for caching the geometrical tools)#" , py::arg("aE"), py::arg("aF"), py::arg("aD"), py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
)
.def_static("SenseFlag_s",
(Standard_Integer (*)( const gp_Dir & , const gp_Dir & ) ) static_cast<Standard_Integer (*)( const gp_Dir & , const gp_Dir & ) >(&BOPTools_AlgoTools3D::SenseFlag),
R"#(Returns 1 if scalar product aNF1* aNF2>0. Returns 0 if directions aNF1 aNF2 coincide Returns -1 if scalar product aNF1* aNF2<0.)#" , py::arg("aNF1"), py::arg("aNF2")
)
.def_static("GetNormalToSurface_s",
(Standard_Boolean (*)( const opencascade::handle<Geom_Surface> & , const Standard_Real , const Standard_Real , gp_Dir & ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Geom_Surface> & , const Standard_Real , const Standard_Real , gp_Dir & ) >(&BOPTools_AlgoTools3D::GetNormalToSurface),
R"#(Compute normal <aD> to surface <aS> in point (U,V) Returns TRUE if directions aD1U, aD1V coincide)#" , py::arg("aS"), py::arg("U"), py::arg("V"), py::arg("aD")
)
.def_static("GetApproxNormalToFaceOnEdge_s",
(Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Face & , const Standard_Real , gp_Pnt & , gp_Dir & , const opencascade::handle<IntTools_Context> & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Face & , const Standard_Real , gp_Pnt & , gp_Dir & , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools3D::GetApproxNormalToFaceOnEdge),
R"#(Computes normal to the face <aF> for the 3D-point that belongs to the edge <aE> at parameter <aT>. Output: aPx - the 3D-point where the normal computed aD - the normal; Warning: The normal is computed not exactly in the point on the edge, but in point that is near to the edge towards to the face material (so, we'll have approx. normal); The point is computed using PointNearEdge function, with the shifting value BOPTools_AlgoTools3D::MinStepIn2d(), from the edge, but if this value is too big, the point will be computed using Hatcher (PointInFace function). Returns TRUE in case of success.)#" , py::arg("aE"), py::arg("aF"), py::arg("aT"), py::arg("aPx"), py::arg("aD"), py::arg("theContext")
)
.def_static("GetApproxNormalToFaceOnEdge_s",
(Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Face & , const Standard_Real , gp_Pnt & , gp_Dir & , const Standard_Real ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Face & , const Standard_Real , gp_Pnt & , gp_Dir & , const Standard_Real ) >(&BOPTools_AlgoTools3D::GetApproxNormalToFaceOnEdge),
R"#(Computes normal to the face <aF> for the 3D-point that belongs to the edge <aE> at parameter <aT>. Output: aPx - the 3D-point where the normal computed aD - the normal; Warning: The normal is computed not exactly in the point on the edge, but in point that is near to the edge towards to the face material (so, we'll have approx. normal); The point is computed using PointNearEdge function with the shifting value <aDt2D> from the edge; No checks on this value will be done. Returns TRUE in case of success.)#" , py::arg("theE"), py::arg("theF"), py::arg("aT"), py::arg("aP"), py::arg("aDNF"), py::arg("aDt2D")
)
.def_static("GetApproxNormalToFaceOnEdge_s",
(Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Face & , const Standard_Real , const Standard_Real , gp_Pnt & , gp_Dir & , const opencascade::handle<IntTools_Context> & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & , const TopoDS_Face & , const Standard_Real , const Standard_Real , gp_Pnt & , gp_Dir & , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools3D::GetApproxNormalToFaceOnEdge),
R"#(Computes normal to the face <aF> for the 3D-point that belongs to the edge <aE> at parameter <aT>. Output: aPx - the 3D-point where the normal computed aD - the normal; Warning: The normal is computed not exactly in the point on the edge, but in point that is near to the edge towards to the face material (so, we'll have approx. normal); The point is computed using PointNearEdge function with the shifting value <aDt2D> from the edge, but if this value is too big the point will be computed using Hatcher (PointInFace function). Returns TRUE in case of success.)#" , py::arg("theE"), py::arg("theF"), py::arg("aT"), py::arg("aDt2D"), py::arg("aP"), py::arg("aDNF"), py::arg("theContext")
)
.def_static("PointNearEdge_s",
(Standard_Integer (*)( const TopoDS_Edge & , const TopoDS_Face & , const Standard_Real , const Standard_Real , gp_Pnt2d & , gp_Pnt & , const opencascade::handle<IntTools_Context> & ) ) static_cast<Standard_Integer (*)( const TopoDS_Edge & , const TopoDS_Face & , const Standard_Real , const Standard_Real , gp_Pnt2d & , gp_Pnt & , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools3D::PointNearEdge),
R"#(Compute the point <aPx>, (<aP2D>) that is near to the edge <aE> at parameter <aT> towards to the material of the face <aF>. The value of shifting in 2D is <aDt2D> If the value of shifting is too big the point will be computed using Hatcher (PointInFace function). Returns error status: 0 - in case of success; 1 - <aE> does not have 2d curve on the face <aF>; 2 - the computed point is out of the face.)#" , py::arg("aE"), py::arg("aF"), py::arg("aT"), py::arg("aDt2D"), py::arg("aP2D"), py::arg("aPx"), py::arg("theContext")
)
.def_static("PointNearEdge_s",
(Standard_Integer (*)( const TopoDS_Edge & , const TopoDS_Face & , const Standard_Real , const Standard_Real , gp_Pnt2d & , gp_Pnt & ) ) static_cast<Standard_Integer (*)( const TopoDS_Edge & , const TopoDS_Face & , const Standard_Real , const Standard_Real , gp_Pnt2d & , gp_Pnt & ) >(&BOPTools_AlgoTools3D::PointNearEdge),
R"#(Compute the point <aPx>, (<aP2D>) that is near to the edge <aE> at parameter <aT> towards to the material of the face <aF>. The value of shifting in 2D is <aDt2D>. No checks on this value will be done. Returns error status: 0 - in case of success; 1 - <aE> does not have 2d curve on the face <aF>.)#" , py::arg("aE"), py::arg("aF"), py::arg("aT"), py::arg("aDt2D"), py::arg("aP2D"), py::arg("aPx")
)
.def_static("PointNearEdge_s",
(Standard_Integer (*)( const TopoDS_Edge & , const TopoDS_Face & , const Standard_Real , gp_Pnt2d & , gp_Pnt & , const opencascade::handle<IntTools_Context> & ) ) static_cast<Standard_Integer (*)( const TopoDS_Edge & , const TopoDS_Face & , const Standard_Real , gp_Pnt2d & , gp_Pnt & , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools3D::PointNearEdge),
R"#(Computes the point <aPx>, (<aP2D>) that is near to the edge <aE> at parameter <aT> towards to the material of the face <aF>. The value of shifting in 2D is dt2D=BOPTools_AlgoTools3D::MinStepIn2d() If the value of shifting is too big the point will be computed using Hatcher (PointInFace function). Returns error status: 0 - in case of success; 1 - <aE> does not have 2d curve on the face <aF>; 2 - the computed point is out of the face.)#" , py::arg("aE"), py::arg("aF"), py::arg("aT"), py::arg("aP2D"), py::arg("aPx"), py::arg("theContext")
)
.def_static("PointNearEdge_s",
(Standard_Integer (*)( const TopoDS_Edge & , const TopoDS_Face & , gp_Pnt2d & , gp_Pnt & , const opencascade::handle<IntTools_Context> & ) ) static_cast<Standard_Integer (*)( const TopoDS_Edge & , const TopoDS_Face & , gp_Pnt2d & , gp_Pnt & , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools3D::PointNearEdge),
R"#(Compute the point <aPx>, (<aP2D>) that is near to the edge <aE> at arbitrary parameter towards to the material of the face <aF>. The value of shifting in 2D is dt2D=BOPTools_AlgoTools3D::MinStepIn2d(). If the value of shifting is too big the point will be computed using Hatcher (PointInFace function). Returns error status: 0 - in case of success; 1 - <aE> does not have 2d curve on the face <aF>; 2 - the computed point is out of the face.)#" , py::arg("aE"), py::arg("aF"), py::arg("aP2D"), py::arg("aPx"), py::arg("theContext")
)
.def_static("MinStepIn2d_s",
(Standard_Real (*)() ) static_cast<Standard_Real (*)() >(&BOPTools_AlgoTools3D::MinStepIn2d),
R"#(Returns simple step value that is used in 2D-computations = 1.e-5)#"
)
.def_static("IsEmptyShape_s",
(Standard_Boolean (*)( const TopoDS_Shape & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Shape & ) >(&BOPTools_AlgoTools3D::IsEmptyShape),
R"#(Returns TRUE if the shape <aS> does not contain geometry information (e.g. empty compound))#" , py::arg("aS")
)
.def_static("OrientEdgeOnFace_s",
(void (*)( const TopoDS_Edge & , const TopoDS_Face & , TopoDS_Edge & ) ) static_cast<void (*)( const TopoDS_Edge & , const TopoDS_Face & , TopoDS_Edge & ) >(&BOPTools_AlgoTools3D::OrientEdgeOnFace),
R"#(Get the edge <aER> from the face <aF> that is the same as the edge <aE>)#" , py::arg("aE"), py::arg("aF"), py::arg("aER")
)
.def_static("PointInFace_s",
(Standard_Integer (*)( const TopoDS_Face & , gp_Pnt & , gp_Pnt2d & , const opencascade::handle<IntTools_Context> & ) ) static_cast<Standard_Integer (*)( const TopoDS_Face & , gp_Pnt & , gp_Pnt2d & , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools3D::PointInFace),
R"#(Computes arbitrary point <theP> inside the face <theF>. <theP2D> - 2D representation of <theP> on the surface of <theF> Returns 0 in case of success.)#" , py::arg("theF"), py::arg("theP"), py::arg("theP2D"), py::arg("theContext")
)
.def_static("PointInFace_s",
(Standard_Integer (*)( const TopoDS_Face & , const TopoDS_Edge & , const Standard_Real , const Standard_Real , gp_Pnt & , gp_Pnt2d & , const opencascade::handle<IntTools_Context> & ) ) static_cast<Standard_Integer (*)( const TopoDS_Face & , const TopoDS_Edge & , const Standard_Real , const Standard_Real , gp_Pnt & , gp_Pnt2d & , const opencascade::handle<IntTools_Context> & ) >(&BOPTools_AlgoTools3D::PointInFace),
R"#(Computes a point <theP> inside the face <theF> using starting point taken by the parameter <theT> from the 2d curve of the edge <theE> on the face <theF> in the direction perpendicular to the tangent vector of the 2d curve of the edge. The point will be distanced on <theDt2D> from the 2d curve. <theP2D> - 2D representation of <theP> on the surface of <theF> Returns 0 in case of success.)#" , py::arg("theF"), py::arg("theE"), py::arg("theT"), py::arg("theDt2D"), py::arg("theP"), py::arg("theP2D"), py::arg("theContext")
)
.def_static("PointInFace_s",
(Standard_Integer (*)( const TopoDS_Face & , const opencascade::handle<Geom2d_Curve> & , gp_Pnt & , gp_Pnt2d & , const opencascade::handle<IntTools_Context> & , const Standard_Real ) ) static_cast<Standard_Integer (*)( const TopoDS_Face & , const opencascade::handle<Geom2d_Curve> & , gp_Pnt & , gp_Pnt2d & , const opencascade::handle<IntTools_Context> & , const Standard_Real ) >(&BOPTools_AlgoTools3D::PointInFace),
R"#(Computes a point <theP> inside the face <theF> using the line <theL> so that 2D point <theP2D>, 2D representation of <theP> on the surface of <theF>, lies on that line. Returns 0 in case of success.)#" , py::arg("theF"), py::arg("theL"), py::arg("theP"), py::arg("theP2D"), py::arg("theContext"), py::arg("theDt2D")=static_cast<const Standard_Real>(0.0)
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class BOPTools_ConnexityBlock from ./opencascade/BOPTools_ConnexityBlock.hxx
klass = m.attr("BOPTools_ConnexityBlock");
// nested enums
static_cast<py::class_<BOPTools_ConnexityBlock , shared_ptr<BOPTools_ConnexityBlock> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const opencascade::handle<NCollection_BaseAllocator> & >() , py::arg("theAllocator") )
// custom constructors
// methods
.def("SetRegular",
(void (BOPTools_ConnexityBlock::*)( const Standard_Boolean ) ) static_cast<void (BOPTools_ConnexityBlock::*)( const Standard_Boolean ) >(&BOPTools_ConnexityBlock::SetRegular),
R"#(None)#" , py::arg("theFlag")
)
.def("IsRegular",
(Standard_Boolean (BOPTools_ConnexityBlock::*)() const) static_cast<Standard_Boolean (BOPTools_ConnexityBlock::*)() const>(&BOPTools_ConnexityBlock::IsRegular),
R"#(None)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Shapes",
(const TopTools_ListOfShape & (BOPTools_ConnexityBlock::*)() const) static_cast<const TopTools_ListOfShape & (BOPTools_ConnexityBlock::*)() const>(&BOPTools_ConnexityBlock::Shapes),
R"#(None)#"
)
.def("ChangeShapes",
(TopTools_ListOfShape & (BOPTools_ConnexityBlock::*)() ) static_cast<TopTools_ListOfShape & (BOPTools_ConnexityBlock::*)() >(&BOPTools_ConnexityBlock::ChangeShapes),
R"#(None)#"
, py::return_value_policy::reference_internal
)
.def("Loops",
(const TopTools_ListOfShape & (BOPTools_ConnexityBlock::*)() const) static_cast<const TopTools_ListOfShape & (BOPTools_ConnexityBlock::*)() const>(&BOPTools_ConnexityBlock::Loops),
R"#(None)#"
)
.def("ChangeLoops",
(TopTools_ListOfShape & (BOPTools_ConnexityBlock::*)() ) static_cast<TopTools_ListOfShape & (BOPTools_ConnexityBlock::*)() >(&BOPTools_ConnexityBlock::ChangeLoops),
R"#(None)#"
, py::return_value_policy::reference_internal
)
;
// Class BOPTools_CoupleOfShape from ./opencascade/BOPTools_CoupleOfShape.hxx
klass = m.attr("BOPTools_CoupleOfShape");
// nested enums
static_cast<py::class_<BOPTools_CoupleOfShape , shared_ptr<BOPTools_CoupleOfShape> >>(klass)
// constructors
.def(py::init< >() )
// custom constructors
// methods
.def("SetShape1",
(void (BOPTools_CoupleOfShape::*)( const TopoDS_Shape & ) ) static_cast<void (BOPTools_CoupleOfShape::*)( const TopoDS_Shape & ) >(&BOPTools_CoupleOfShape::SetShape1),
R"#(None)#" , py::arg("theShape")
)
.def("SetShape2",
(void (BOPTools_CoupleOfShape::*)( const TopoDS_Shape & ) ) static_cast<void (BOPTools_CoupleOfShape::*)( const TopoDS_Shape & ) >(&BOPTools_CoupleOfShape::SetShape2),
R"#(None)#" , py::arg("theShape")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Shape1",
(const TopoDS_Shape & (BOPTools_CoupleOfShape::*)() const) static_cast<const TopoDS_Shape & (BOPTools_CoupleOfShape::*)() const>(&BOPTools_CoupleOfShape::Shape1),
R"#(None)#"
)
.def("Shape2",
(const TopoDS_Shape & (BOPTools_CoupleOfShape::*)() const) static_cast<const TopoDS_Shape & (BOPTools_CoupleOfShape::*)() const>(&BOPTools_CoupleOfShape::Shape2),
R"#(None)#"
)
;
// Class BOPTools_Parallel from ./opencascade/BOPTools_Parallel.hxx
klass = m.attr("BOPTools_Parallel");
// default constructor
register_default_constructor<BOPTools_Parallel , shared_ptr<BOPTools_Parallel>>(m,"BOPTools_Parallel");
// nested enums
static_cast<py::class_<BOPTools_Parallel , shared_ptr<BOPTools_Parallel> >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class BOPTools_Set from ./opencascade/BOPTools_Set.hxx
klass = m.attr("BOPTools_Set");
// nested enums
static_cast<py::class_<BOPTools_Set , shared_ptr<BOPTools_Set> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const opencascade::handle<NCollection_BaseAllocator> & >() , py::arg("theAllocator") )
.def(py::init< const BOPTools_Set & >() , py::arg("theOther") )
// custom constructors
// methods
.def("Assign",
(BOPTools_Set & (BOPTools_Set::*)( const BOPTools_Set & ) ) static_cast<BOPTools_Set & (BOPTools_Set::*)( const BOPTools_Set & ) >(&BOPTools_Set::Assign),
R"#(None)#" , py::arg("Other")
)
.def("Add",
(void (BOPTools_Set::*)( const TopoDS_Shape & , const TopAbs_ShapeEnum ) ) static_cast<void (BOPTools_Set::*)( const TopoDS_Shape & , const TopAbs_ShapeEnum ) >(&BOPTools_Set::Add),
R"#(None)#" , py::arg("theS"), py::arg("theType")
)
.def("NbShapes",
(Standard_Integer (BOPTools_Set::*)() const) static_cast<Standard_Integer (BOPTools_Set::*)() const>(&BOPTools_Set::NbShapes),
R"#(None)#"
)
.def("IsEqual",
(Standard_Boolean (BOPTools_Set::*)( const BOPTools_Set & ) const) static_cast<Standard_Boolean (BOPTools_Set::*)( const BOPTools_Set & ) const>(&BOPTools_Set::IsEqual),
R"#(None)#" , py::arg("aOther")
)
.def("GetSum",
(size_t (BOPTools_Set::*)() const) static_cast<size_t (BOPTools_Set::*)() const>(&BOPTools_Set::GetSum),
R"#(None)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Shape",
(const TopoDS_Shape & (BOPTools_Set::*)() const) static_cast<const TopoDS_Shape & (BOPTools_Set::*)() const>(&BOPTools_Set::Shape),
R"#(None)#"
)
;
// functions
// ./opencascade/BOPTools_AlgoTools.hxx
// ./opencascade/BOPTools_AlgoTools2D.hxx
// ./opencascade/BOPTools_AlgoTools3D.hxx
// ./opencascade/BOPTools_BoxSelector.hxx
// ./opencascade/BOPTools_BoxTree.hxx
// ./opencascade/BOPTools_ConnexityBlock.hxx
// ./opencascade/BOPTools_CoupleOfShape.hxx
// ./opencascade/BOPTools_IndexedDataMapOfSetShape.hxx
// ./opencascade/BOPTools_ListOfConnexityBlock.hxx
// ./opencascade/BOPTools_ListOfCoupleOfShape.hxx
// ./opencascade/BOPTools_MapOfSet.hxx
// ./opencascade/BOPTools_Parallel.hxx
// ./opencascade/BOPTools_Set.hxx
// Additional functions
// operators
// register typdefs
register_template_BOPTools_BoxSelector<2>(m,"BOPTools_Box2dTreeSelector");
register_template_BOPTools_BoxSet<Standard_Real, 3, Standard_Integer>(m,"BOPTools_BoxTree");
register_template_BOPTools_BoxSelector<3>(m,"BOPTools_BoxTreeSelector");
register_template_NCollection_IndexedDataMap<BOPTools_Set, TopoDS_Shape>(m,"BOPTools_IndexedDataMapOfSetShape");
register_template_NCollection_List<BOPTools_ConnexityBlock>(m,"BOPTools_ListOfConnexityBlock");
register_template_NCollection_List<BOPTools_CoupleOfShape>(m,"BOPTools_ListOfCoupleOfShape");
register_template_NCollection_Map<BOPTools_Set>(m,"BOPTools_MapOfSet");
// exceptions
// user-defined post-inclusion per module in the body
};
// user-defined post-inclusion per module
// user-defined post
|