File: BOPTools.cpp

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (836 lines) | stat: -rw-r--r-- 76,263 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836

// std lib related includes
#include <tuple>

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Standard Handle
#include <Standard_Handle.hxx>


// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <TopoDS_Vertex.hxx>
#include <IntTools_Curve.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <IntTools_Context.hxx>
#include <TopoDS_Solid.hxx>
#include <IntTools_Range.hxx>
#include <TopoDS_Shell.hxx>
#include <Message_Report.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <gp_Vec.hxx>
#include <Geom2d_Curve.hxx>
#include <Geom_Curve.hxx>
#include <BRepAdaptor_Surface.hxx>
#include <IntTools_Context.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <gp_Dir.hxx>
#include <Geom_Surface.hxx>
#include <Geom2d_Curve.hxx>
#include <gp_Pnt.hxx>
#include <IntTools_Context.hxx>
#include <gp_Pnt2d.hxx>
#include <TopoDS_Shape.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>

// module includes
#include <BOPTools_AlgoTools.hxx>
#include <BOPTools_AlgoTools2D.hxx>
#include <BOPTools_AlgoTools3D.hxx>
#include <BOPTools_BoxSelector.hxx>
#include <BOPTools_BoxTree.hxx>
#include <BOPTools_ConnexityBlock.hxx>
#include <BOPTools_CoupleOfShape.hxx>
#include <BOPTools_IndexedDataMapOfSetShape.hxx>
#include <BOPTools_ListOfConnexityBlock.hxx>
#include <BOPTools_ListOfCoupleOfShape.hxx>
#include <BOPTools_MapOfSet.hxx>
#include <BOPTools_Parallel.hxx>
#include <BOPTools_Set.hxx>

// template related includes

// ./opencascade/BOPTools_BoxTree.hxx
#include "BOPTools_tmpl.hxx"

// ./opencascade/BOPTools_BoxTree.hxx
#include "BOPTools_tmpl.hxx"

// ./opencascade/BOPTools_BoxTree.hxx
#include "BOPTools_tmpl.hxx"

// ./opencascade/BOPTools_IndexedDataMapOfSetShape.hxx
#include "NCollection_tmpl.hxx"

// ./opencascade/BOPTools_ListOfConnexityBlock.hxx
#include "NCollection_tmpl.hxx"

// ./opencascade/BOPTools_ListOfCoupleOfShape.hxx
#include "NCollection_tmpl.hxx"

// ./opencascade/BOPTools_MapOfSet.hxx
#include "NCollection_tmpl.hxx"


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_BOPTools(py::module &main_module) {


py::module m = static_cast<py::module>(main_module.attr("BOPTools"));
py::object klass;

//Python trampoline classes

// classes

    // Class BOPTools_AlgoTools from ./opencascade/BOPTools_AlgoTools.hxx
    klass = m.attr("BOPTools_AlgoTools");

    // default constructor
    register_default_constructor<BOPTools_AlgoTools , shared_ptr<BOPTools_AlgoTools>>(m,"BOPTools_AlgoTools");

    // nested enums

    static_cast<py::class_<BOPTools_AlgoTools , shared_ptr<BOPTools_AlgoTools>  >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("DTolerance_s",
                    (Standard_Real (*)() ) static_cast<Standard_Real (*)() >(&BOPTools_AlgoTools::DTolerance),
                    R"#(Additional tolerance (delta tolerance) is used in Boolean Operations to ensure that the tolerance of new/old entities obtained by intersection of two shapes is slightly bigger than the actual distances to these shapes. It helps to avoid numerical instability which may occur when comparing distances and tolerances.)#" 
          )
        .def_static("ComputeVV_s",
                    (Standard_Integer (*)( const TopoDS_Vertex & ,  const gp_Pnt & ,  const Standard_Real  ) ) static_cast<Standard_Integer (*)( const TopoDS_Vertex & ,  const gp_Pnt & ,  const Standard_Real  ) >(&BOPTools_AlgoTools::ComputeVV),
                    R"#(Intersects the vertex <theV1> with the point <theP> with tolerance <theTolP>. Returns the error status: - 0 - no error, meaning that the vertex intersects the point; - 1 - the distance between vertex and point is grater than the sum of tolerances.)#"  , py::arg("theV"),  py::arg("theP"),  py::arg("theTolP")
          )
        .def_static("ComputeVV_s",
                    (Standard_Integer (*)( const TopoDS_Vertex & ,  const TopoDS_Vertex & ,  const Standard_Real  ) ) static_cast<Standard_Integer (*)( const TopoDS_Vertex & ,  const TopoDS_Vertex & ,  const Standard_Real  ) >(&BOPTools_AlgoTools::ComputeVV),
                    R"#(Intersects the given vertices with given fuzzy value. Returns the error status: - 0 - no error, meaning that the vertices interferes with given tolerance; - 1 - the distance between vertices is grater than the sum of their tolerances.)#"  , py::arg("theV1"),  py::arg("theV2"),  py::arg("theFuzz")=static_cast<const Standard_Real>(Precision :: Confusion ( ))
          )
        .def_static("MakeVertex_s",
                    (void (*)(  const NCollection_List<TopoDS_Shape> & ,  TopoDS_Vertex &  ) ) static_cast<void (*)(  const NCollection_List<TopoDS_Shape> & ,  TopoDS_Vertex &  ) >(&BOPTools_AlgoTools::MakeVertex),
                    R"#(Makes the vertex in the middle of given vertices with the tolerance covering all tolerance spheres of vertices.)#"  , py::arg("theLV"),  py::arg("theV")
          )
        .def_static("MakeNewVertex_s",
                    (void (*)( const gp_Pnt & ,  const Standard_Real ,  TopoDS_Vertex &  ) ) static_cast<void (*)( const gp_Pnt & ,  const Standard_Real ,  TopoDS_Vertex &  ) >(&BOPTools_AlgoTools::MakeNewVertex),
                    R"#(Make a vertex using 3D-point <aP1> and 3D-tolerance value <aTol>)#"  , py::arg("aP1"),  py::arg("aTol"),  py::arg("aNewVertex")
          )
        .def_static("MakeNewVertex_s",
                    (void (*)( const TopoDS_Vertex & ,  const TopoDS_Vertex & ,  TopoDS_Vertex &  ) ) static_cast<void (*)( const TopoDS_Vertex & ,  const TopoDS_Vertex & ,  TopoDS_Vertex &  ) >(&BOPTools_AlgoTools::MakeNewVertex),
                    R"#(Make a vertex using couple of vertices <aV1, aV2>)#"  , py::arg("aV1"),  py::arg("aV2"),  py::arg("aNewVertex")
          )
        .def_static("MakeNewVertex_s",
                    (void (*)( const TopoDS_Edge & ,  const Standard_Real ,  const TopoDS_Edge & ,  const Standard_Real ,  TopoDS_Vertex &  ) ) static_cast<void (*)( const TopoDS_Edge & ,  const Standard_Real ,  const TopoDS_Edge & ,  const Standard_Real ,  TopoDS_Vertex &  ) >(&BOPTools_AlgoTools::MakeNewVertex),
                    R"#(Make a vertex in place of intersection between two edges <aE1, aE2> with parameters <aP1, aP2>)#"  , py::arg("aE1"),  py::arg("aP1"),  py::arg("aE2"),  py::arg("aP2"),  py::arg("aNewVertex")
          )
        .def_static("MakeNewVertex_s",
                    (void (*)( const TopoDS_Edge & ,  const Standard_Real ,  const TopoDS_Face & ,  TopoDS_Vertex &  ) ) static_cast<void (*)( const TopoDS_Edge & ,  const Standard_Real ,  const TopoDS_Face & ,  TopoDS_Vertex &  ) >(&BOPTools_AlgoTools::MakeNewVertex),
                    R"#(Make a vertex in place of intersection between the edge <aE1> with parameter <aP1> and the face <aF2>)#"  , py::arg("aE1"),  py::arg("aP1"),  py::arg("aF2"),  py::arg("aNewVertex")
          )
        .def_static("UpdateVertex_s",
                    (void (*)( const IntTools_Curve & ,  const Standard_Real ,  const TopoDS_Vertex &  ) ) static_cast<void (*)( const IntTools_Curve & ,  const Standard_Real ,  const TopoDS_Vertex &  ) >(&BOPTools_AlgoTools::UpdateVertex),
                    R"#(Update the tolerance value for vertex <aV> taking into account the fact that <aV> lays on the curve <aIC>)#"  , py::arg("aIC"),  py::arg("aT"),  py::arg("aV")
          )
        .def_static("UpdateVertex_s",
                    (void (*)( const TopoDS_Edge & ,  const Standard_Real ,  const TopoDS_Vertex &  ) ) static_cast<void (*)( const TopoDS_Edge & ,  const Standard_Real ,  const TopoDS_Vertex &  ) >(&BOPTools_AlgoTools::UpdateVertex),
                    R"#(Update the tolerance value for vertex <aV> taking into account the fact that <aV> lays on the edge <aE>)#"  , py::arg("aE"),  py::arg("aT"),  py::arg("aV")
          )
        .def_static("UpdateVertex_s",
                    (void (*)( const TopoDS_Vertex & ,  const TopoDS_Vertex &  ) ) static_cast<void (*)( const TopoDS_Vertex & ,  const TopoDS_Vertex &  ) >(&BOPTools_AlgoTools::UpdateVertex),
                    R"#(Update the tolerance value for vertex <aVN> taking into account the fact that <aVN> should cover tolerance zone of <aVF>)#"  , py::arg("aVF"),  py::arg("aVN")
          )
        .def_static("MakeEdge_s",
                    (void (*)( const IntTools_Curve & ,  const TopoDS_Vertex & ,  const Standard_Real ,  const TopoDS_Vertex & ,  const Standard_Real ,  const Standard_Real ,  TopoDS_Edge &  ) ) static_cast<void (*)( const IntTools_Curve & ,  const TopoDS_Vertex & ,  const Standard_Real ,  const TopoDS_Vertex & ,  const Standard_Real ,  const Standard_Real ,  TopoDS_Edge &  ) >(&BOPTools_AlgoTools::MakeEdge),
                    R"#(Makes the edge based on the given curve with given bounding vertices.)#"  , py::arg("theCurve"),  py::arg("theV1"),  py::arg("theT1"),  py::arg("theV2"),  py::arg("theT2"),  py::arg("theTolR3D"),  py::arg("theE")
          )
        .def_static("CopyEdge_s",
                    (TopoDS_Edge (*)( const TopoDS_Edge &  ) ) static_cast<TopoDS_Edge (*)( const TopoDS_Edge &  ) >(&BOPTools_AlgoTools::CopyEdge),
                    R"#(Makes a copy of <theEdge> with vertices.)#"  , py::arg("theEdge")
          )
        .def_static("MakeSplitEdge_s",
                    (void (*)( const TopoDS_Edge & ,  const TopoDS_Vertex & ,  const Standard_Real ,  const TopoDS_Vertex & ,  const Standard_Real ,  TopoDS_Edge &  ) ) static_cast<void (*)( const TopoDS_Edge & ,  const TopoDS_Vertex & ,  const Standard_Real ,  const TopoDS_Vertex & ,  const Standard_Real ,  TopoDS_Edge &  ) >(&BOPTools_AlgoTools::MakeSplitEdge),
                    R"#(Make the edge from base edge <aE1> and two vertices <aV1,aV2> at parameters <aP1,aP2>)#"  , py::arg("aE1"),  py::arg("aV1"),  py::arg("aP1"),  py::arg("aV2"),  py::arg("aP2"),  py::arg("aNewEdge")
          )
        .def_static("MakeSectEdge_s",
                    (void (*)( const IntTools_Curve & ,  const TopoDS_Vertex & ,  const Standard_Real ,  const TopoDS_Vertex & ,  const Standard_Real ,  TopoDS_Edge &  ) ) static_cast<void (*)( const IntTools_Curve & ,  const TopoDS_Vertex & ,  const Standard_Real ,  const TopoDS_Vertex & ,  const Standard_Real ,  TopoDS_Edge &  ) >(&BOPTools_AlgoTools::MakeSectEdge),
                    R"#(Make the edge from 3D-Curve <aIC> and two vertices <aV1,aV2> at parameters <aP1,aP2>)#"  , py::arg("aIC"),  py::arg("aV1"),  py::arg("aP1"),  py::arg("aV2"),  py::arg("aP2"),  py::arg("aNewEdge")
          )
        .def_static("ComputeState_s",
                    (TopAbs_State (*)( const gp_Pnt & ,  const TopoDS_Solid & ,  const Standard_Real ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<TopAbs_State (*)( const gp_Pnt & ,  const TopoDS_Solid & ,  const Standard_Real ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools::ComputeState),
                    R"#(Computes the 3-D state of the point thePoint toward solid theSolid. theTol - value of precision of computation theContext- cahed geometrical tools Returns 3-D state.)#"  , py::arg("thePoint"),  py::arg("theSolid"),  py::arg("theTol"),  py::arg("theContext")
          )
        .def_static("ComputeState_s",
                    (TopAbs_State (*)( const TopoDS_Vertex & ,  const TopoDS_Solid & ,  const Standard_Real ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<TopAbs_State (*)( const TopoDS_Vertex & ,  const TopoDS_Solid & ,  const Standard_Real ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools::ComputeState),
                    R"#(Computes the 3-D state of the vertex theVertex toward solid theSolid. theTol - value of precision of computation theContext- cahed geometrical tools Returns 3-D state.)#"  , py::arg("theVertex"),  py::arg("theSolid"),  py::arg("theTol"),  py::arg("theContext")
          )
        .def_static("ComputeState_s",
                    (TopAbs_State (*)( const TopoDS_Edge & ,  const TopoDS_Solid & ,  const Standard_Real ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<TopAbs_State (*)( const TopoDS_Edge & ,  const TopoDS_Solid & ,  const Standard_Real ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools::ComputeState),
                    R"#(Computes the 3-D state of the edge theEdge toward solid theSolid. theTol - value of precision of computation theContext- cahed geometrical tools Returns 3-D state.)#"  , py::arg("theEdge"),  py::arg("theSolid"),  py::arg("theTol"),  py::arg("theContext")
          )
        .def_static("ComputeState_s",
                    (TopAbs_State (*)( const TopoDS_Face & ,  const TopoDS_Solid & ,  const Standard_Real ,   const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<TopAbs_State (*)( const TopoDS_Face & ,  const TopoDS_Solid & ,  const Standard_Real ,   const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools::ComputeState),
                    R"#(Computes the 3-D state of the face theFace toward solid theSolid. theTol - value of precision of computation theBounds - set of edges of <theSolid> to avoid theContext- cahed geometrical tools Returns 3-D state.)#"  , py::arg("theFace"),  py::arg("theSolid"),  py::arg("theTol"),  py::arg("theBounds"),  py::arg("theContext")
          )
        .def_static("ComputeStateByOnePoint_s",
                    (TopAbs_State (*)( const TopoDS_Shape & ,  const TopoDS_Solid & ,  const Standard_Real ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<TopAbs_State (*)( const TopoDS_Shape & ,  const TopoDS_Solid & ,  const Standard_Real ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools::ComputeStateByOnePoint),
                    R"#(Computes the 3-D state of the shape theShape toward solid theSolid. theTol - value of precision of computation theContext- cahed geometrical tools Returns 3-D state.)#"  , py::arg("theShape"),  py::arg("theSolid"),  py::arg("theTol"),  py::arg("theContext")
          )
        .def_static("GetFaceOff_s",
                    (Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  NCollection_List<BOPTools_CoupleOfShape> & ,  TopoDS_Face & ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  NCollection_List<BOPTools_CoupleOfShape> & ,  TopoDS_Face & ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools::GetFaceOff),
                    R"#(For the face theFace and its edge theEdge finds the face suitable to produce shell. theLCEF - set of faces to search. All faces from theLCEF must share edge theEdge)#"  , py::arg("theEdge"),  py::arg("theFace"),  py::arg("theLCEF"),  py::arg("theFaceOff"),  py::arg("theContext")
          )
        .def_static("IsInternalFace_s",
                    (Standard_Integer (*)( const TopoDS_Face & ,  const TopoDS_Edge & ,  const TopoDS_Face & ,  const TopoDS_Face & ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<Standard_Integer (*)( const TopoDS_Face & ,  const TopoDS_Edge & ,  const TopoDS_Face & ,  const TopoDS_Face & ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools::IsInternalFace),
                    R"#(Returns True if the face theFace is inside of the couple of faces theFace1, theFace2. The faces theFace, theFace1, theFace2 must share the edge theEdge Return values: * 0 state is not IN * 1 state is IN * 2 state can not be found by the method of angles)#"  , py::arg("theFace"),  py::arg("theEdge"),  py::arg("theFace1"),  py::arg("theFace2"),  py::arg("theContext")
          )
        .def_static("IsInternalFace_s",
                    (Standard_Integer (*)( const TopoDS_Face & ,  const TopoDS_Edge & ,  NCollection_List<TopoDS_Shape> & ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<Standard_Integer (*)( const TopoDS_Face & ,  const TopoDS_Edge & ,  NCollection_List<TopoDS_Shape> & ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools::IsInternalFace),
                    R"#(Returns True if the face theFace is inside of the appropriate couple of faces (from the set theLF) . The faces of the set theLF and theFace must share the edge theEdge * 0 state is not IN * 1 state is IN * 2 state can not be found by the method of angles)#"  , py::arg("theFace"),  py::arg("theEdge"),  py::arg("theLF"),  py::arg("theContext")
          )
        .def_static("IsInternalFace_s",
                    (Standard_Boolean (*)( const TopoDS_Face & ,  const TopoDS_Solid & ,  NCollection_IndexedDataMap<TopoDS_Shape, TopTools_ListOfShape, TopTools_ShapeMapHasher> & ,  const Standard_Real ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Face & ,  const TopoDS_Solid & ,  NCollection_IndexedDataMap<TopoDS_Shape, TopTools_ListOfShape, TopTools_ShapeMapHasher> & ,  const Standard_Real ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools::IsInternalFace),
                    R"#(Returns True if the face theFace is inside the solid theSolid. theMEF - Map Edge/Faces for theSolid theTol - value of precision of computation theContext- cahed geometrical tools)#"  , py::arg("theFace"),  py::arg("theSolid"),  py::arg("theMEF"),  py::arg("theTol"),  py::arg("theContext")
          )
        .def_static("MakePCurve_s",
                    (void (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const TopoDS_Face & ,  const IntTools_Curve & ,  const Standard_Boolean ,  const Standard_Boolean ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<void (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const TopoDS_Face & ,  const IntTools_Curve & ,  const Standard_Boolean ,  const Standard_Boolean ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools::MakePCurve),
                    R"#(Makes 2d curve of the edge <theE> on the faces <theF1> and <theF2>. <theContext> - storage for caching the geometrical tools)#"  , py::arg("theE"),  py::arg("theF1"),  py::arg("theF2"),  py::arg("theCurve"),  py::arg("thePC1"),  py::arg("thePC2"),  py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
          )
        .def_static("IsHole_s",
                    (Standard_Boolean (*)( const TopoDS_Shape & ,  const TopoDS_Shape &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Shape & ,  const TopoDS_Shape &  ) >(&BOPTools_AlgoTools::IsHole),
                    R"#(Checks if the wire is a hole for the face.)#"  , py::arg("theW"),  py::arg("theF")
          )
        .def_static("IsSplitToReverse_s",
                    (Standard_Boolean (*)( const TopoDS_Shape & ,  const TopoDS_Shape & ,  const opencascade::handle<IntTools_Context> & ,  Standard_Integer *  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Shape & ,  const TopoDS_Shape & ,  const opencascade::handle<IntTools_Context> & ,  Standard_Integer *  ) >(&BOPTools_AlgoTools::IsSplitToReverse),
                    R"#(Checks if the direction of the split shape is opposite to the direction of the original shape. The method is an overload for (Edge,Edge) and (Face,Face) corresponding methods and checks only these types of shapes. For faces the method checks if normal directions are opposite. For edges the method checks if tangent vectors are opposite.)#"  , py::arg("theSplit"),  py::arg("theShape"),  py::arg("theContext"),  py::arg("theError")=static_cast<Standard_Integer *>(NULL)
          )
        .def_static("IsSplitToReverseWithWarn_s",
                    (Standard_Boolean (*)( const TopoDS_Shape & ,  const TopoDS_Shape & ,  const opencascade::handle<IntTools_Context> & ,  const opencascade::handle<Message_Report> &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Shape & ,  const TopoDS_Shape & ,  const opencascade::handle<IntTools_Context> & ,  const opencascade::handle<Message_Report> &  ) >(&BOPTools_AlgoTools::IsSplitToReverseWithWarn),
                    R"#(Add-on for the *IsSplitToReverse()* to check for its errors and in case of any add the *BOPAlgo_AlertUnableToOrientTheShape* warning to the report.)#"  , py::arg("theSplit"),  py::arg("theShape"),  py::arg("theContext"),  py::arg("theReport")=static_cast<const opencascade::handle<Message_Report> &>(NULL)
          )
        .def_static("IsSplitToReverse_s",
                    (Standard_Boolean (*)( const TopoDS_Face & ,  const TopoDS_Face & ,  const opencascade::handle<IntTools_Context> & ,  Standard_Integer *  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Face & ,  const TopoDS_Face & ,  const opencascade::handle<IntTools_Context> & ,  Standard_Integer *  ) >(&BOPTools_AlgoTools::IsSplitToReverse),
                    R"#(Checks if the normal direction of the split face is opposite to the normal direction of the original face. The normal directions for both faces are taken in the same point - point inside the split face is projected onto the original face. Returns TRUE if the normals do not coincide, meaning the necessity to revert the orientation of the split face to match the direction of the original face.)#"  , py::arg("theSplit"),  py::arg("theShape"),  py::arg("theContext"),  py::arg("theError")=static_cast<Standard_Integer *>(NULL)
          )
        .def_static("IsSplitToReverse_s",
                    (Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Edge & ,  const opencascade::handle<IntTools_Context> & ,  Standard_Integer *  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Edge & ,  const opencascade::handle<IntTools_Context> & ,  Standard_Integer *  ) >(&BOPTools_AlgoTools::IsSplitToReverse),
                    R"#(Checks if the tangent vector of the split edge is opposite to the tangent vector of the original edge. The tangent vectors for both edges are computed in the same point - point inside the split edge is projected onto the original edge. Returns TRUE if the tangent vectors do not coincide, meaning the necessity to revert the orientation of the split edge to match the direction of the original edge.)#"  , py::arg("theSplit"),  py::arg("theShape"),  py::arg("theContext"),  py::arg("theError")=static_cast<Standard_Integer *>(NULL)
          )
        .def_static("Sense_s",
                    (Standard_Integer (*)( const TopoDS_Face & ,  const TopoDS_Face & ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<Standard_Integer (*)( const TopoDS_Face & ,  const TopoDS_Face & ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools::Sense),
                    R"#(Checks if the normals direction of the given faces computed near the shared edge coincide. Returns the status of operation: * 0 - in case of error (shared edge not found or directions are not collinear) * 1 - normal directions coincide; * -1 - normal directions are opposite.)#"  , py::arg("theF1"),  py::arg("theF2"),  py::arg("theContext")
          )
        .def_static("MakeConnexityBlock_s",
                    (void (*)( NCollection_List<TopoDS_Shape> & ,  NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & ,  NCollection_List<TopoDS_Shape> & ,  const opencascade::handle<NCollection_BaseAllocator> &  ) ) static_cast<void (*)( NCollection_List<TopoDS_Shape> & ,  NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & ,  NCollection_List<TopoDS_Shape> & ,  const opencascade::handle<NCollection_BaseAllocator> &  ) >(&BOPTools_AlgoTools::MakeConnexityBlock),
                    R"#(For the list of faces theLS build block theLSCB in terms of connexity by edges theMapAvoid - set of edges to avoid for the treatment)#"  , py::arg("theLS"),  py::arg("theMapAvoid"),  py::arg("theLSCB"),  py::arg("theAllocator")
          )
        .def_static("MakeConnexityBlocks_s",
                    (void (*)( const TopoDS_Shape & ,  const TopAbs_ShapeEnum ,  const TopAbs_ShapeEnum ,  NCollection_List<TopoDS_Shape> &  ) ) static_cast<void (*)( const TopoDS_Shape & ,  const TopAbs_ShapeEnum ,  const TopAbs_ShapeEnum ,  NCollection_List<TopoDS_Shape> &  ) >(&BOPTools_AlgoTools::MakeConnexityBlocks),
                    R"#(For the compound <theS> builds the blocks (compounds) of elements of type <theElementType> connected through the shapes of the type <theConnectionType>. The blocks are stored into the list <theLCB>.)#"  , py::arg("theS"),  py::arg("theConnectionType"),  py::arg("theElementType"),  py::arg("theLCB")
          )
        .def_static("MakeConnexityBlocks_s",
                    (void (*)( const TopoDS_Shape & ,  const TopAbs_ShapeEnum ,  const TopAbs_ShapeEnum ,  NCollection_List<TopTools_ListOfShape> & ,  NCollection_IndexedDataMap<TopoDS_Shape, TopTools_ListOfShape, TopTools_ShapeMapHasher> &  ) ) static_cast<void (*)( const TopoDS_Shape & ,  const TopAbs_ShapeEnum ,  const TopAbs_ShapeEnum ,  NCollection_List<TopTools_ListOfShape> & ,  NCollection_IndexedDataMap<TopoDS_Shape, TopTools_ListOfShape, TopTools_ShapeMapHasher> &  ) >(&BOPTools_AlgoTools::MakeConnexityBlocks),
                    R"#(For the compound <theS> builds the blocks (compounds) of elements of type <theElementType> connected through the shapes of the type <theConnectionType>. The blocks are stored into the list of lists <theLCB>. Returns also the connection map <theConnectionMap>, filled during operation.)#"  , py::arg("theS"),  py::arg("theConnectionType"),  py::arg("theElementType"),  py::arg("theLCB"),  py::arg("theConnectionMap")
          )
        .def_static("MakeConnexityBlocks_s",
                    (void (*)(  const NCollection_List<TopoDS_Shape> & ,  const TopAbs_ShapeEnum ,  const TopAbs_ShapeEnum ,  NCollection_List<BOPTools_ConnexityBlock> &  ) ) static_cast<void (*)(  const NCollection_List<TopoDS_Shape> & ,  const TopAbs_ShapeEnum ,  const TopAbs_ShapeEnum ,  NCollection_List<BOPTools_ConnexityBlock> &  ) >(&BOPTools_AlgoTools::MakeConnexityBlocks),
                    R"#(Makes connexity blocks of elements of the given type with the given type of the connecting elements. The blocks are checked on regularity (multi-connectivity) and stored to the list of blocks <theLCB>.)#"  , py::arg("theLS"),  py::arg("theConnectionType"),  py::arg("theElementType"),  py::arg("theLCB")
          )
        .def_static("OrientEdgesOnWire_s",
                    (void (*)( TopoDS_Shape &  ) ) static_cast<void (*)( TopoDS_Shape &  ) >(&BOPTools_AlgoTools::OrientEdgesOnWire),
                    R"#(Correctly orients edges on the wire)#"  , py::arg("theWire")
          )
        .def_static("OrientFacesOnShell_s",
                    (void (*)( TopoDS_Shape &  ) ) static_cast<void (*)( TopoDS_Shape &  ) >(&BOPTools_AlgoTools::OrientFacesOnShell),
                    R"#(Correctly orients faces on the shell)#"  , py::arg("theShell")
          )
        .def_static("CorrectTolerances_s",
                    (void (*)( const TopoDS_Shape & ,   const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (*)( const TopoDS_Shape & ,   const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & ,  const Standard_Real ,  const Standard_Boolean  ) >(&BOPTools_AlgoTools::CorrectTolerances),
                    R"#(Provides valid values of tolerances for the shape <theS> <theTolMax> is max value of the tolerance that can be accepted for correction. If real value of the tolerance will be greater than <aTolMax>, the correction does not perform.)#"  , py::arg("theS"),  py::arg("theMapToAvoid"),  py::arg("theTolMax")=static_cast<const Standard_Real>(0.0001),  py::arg("theRunParallel")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def_static("CorrectCurveOnSurface_s",
                    (void (*)( const TopoDS_Shape & ,   const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (*)( const TopoDS_Shape & ,   const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & ,  const Standard_Real ,  const Standard_Boolean  ) >(&BOPTools_AlgoTools::CorrectCurveOnSurface),
                    R"#(Provides valid values of tolerances for the shape <theS> in terms of BRepCheck_InvalidCurveOnSurface.)#"  , py::arg("theS"),  py::arg("theMapToAvoid"),  py::arg("theTolMax")=static_cast<const Standard_Real>(0.0001),  py::arg("theRunParallel")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def_static("CorrectPointOnCurve_s",
                    (void (*)( const TopoDS_Shape & ,   const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (*)( const TopoDS_Shape & ,   const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & ,  const Standard_Real ,  const Standard_Boolean  ) >(&BOPTools_AlgoTools::CorrectPointOnCurve),
                    R"#(Provides valid values of tolerances for the shape <theS> in terms of BRepCheck_InvalidPointOnCurve.)#"  , py::arg("theS"),  py::arg("theMapToAvoid"),  py::arg("theTolMax")=static_cast<const Standard_Real>(0.0001),  py::arg("theRunParallel")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def_static("CorrectShapeTolerances_s",
                    (void (*)( const TopoDS_Shape & ,   const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & ,  const Standard_Boolean  ) ) static_cast<void (*)( const TopoDS_Shape & ,   const NCollection_IndexedMap<TopoDS_Shape, TopTools_ShapeMapHasher> & ,  const Standard_Boolean  ) >(&BOPTools_AlgoTools::CorrectShapeTolerances),
                    R"#(Corrects tolerance values of the sub-shapes of the shape <theS> if needed.)#"  , py::arg("theS"),  py::arg("theMapToAvoid"),  py::arg("theRunParallel")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def_static("AreFacesSameDomain_s",
                    (Standard_Boolean (*)( const TopoDS_Face & ,  const TopoDS_Face & ,  const opencascade::handle<IntTools_Context> & ,  const Standard_Real  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Face & ,  const TopoDS_Face & ,  const opencascade::handle<IntTools_Context> & ,  const Standard_Real  ) >(&BOPTools_AlgoTools::AreFacesSameDomain),
                    R"#(Checks if the given faces are same-domain, i.e. coincide.)#"  , py::arg("theF1"),  py::arg("theF2"),  py::arg("theContext"),  py::arg("theFuzz")=static_cast<const Standard_Real>(Precision :: Confusion ( ))
          )
        .def_static("GetEdgeOff_s",
                    (Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  TopoDS_Edge &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  TopoDS_Edge &  ) >(&BOPTools_AlgoTools::GetEdgeOff),
                    R"#(Returns True if the face theFace contains the edge theEdge but with opposite orientation. If the method returns True theEdgeOff is the edge founded)#"  , py::arg("theEdge"),  py::arg("theFace"),  py::arg("theEdgeOff")
          )
        .def_static("GetEdgeOnFace_s",
                    (Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  TopoDS_Edge &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  TopoDS_Edge &  ) >(&BOPTools_AlgoTools::GetEdgeOnFace),
                    R"#(For the face theFace gets the edge theEdgeOnF that is the same as theEdge Returns True if such edge exists Returns False if there is no such edge)#"  , py::arg("theEdge"),  py::arg("theFace"),  py::arg("theEdgeOnF")
          )
        .def_static("CorrectRange_s",
                    (void (*)( const TopoDS_Edge & ,  const TopoDS_Edge & ,  const IntTools_Range & ,  IntTools_Range &  ) ) static_cast<void (*)( const TopoDS_Edge & ,  const TopoDS_Edge & ,  const IntTools_Range & ,  IntTools_Range &  ) >(&BOPTools_AlgoTools::CorrectRange),
                    R"#(Correct shrunk range <aSR> taking into account 3D-curve resolution and corresponding tolerance values of <aE1>, <aE2>)#"  , py::arg("aE1"),  py::arg("aE2"),  py::arg("aSR"),  py::arg("aNewSR")
          )
        .def_static("CorrectRange_s",
                    (void (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const IntTools_Range & ,  IntTools_Range &  ) ) static_cast<void (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const IntTools_Range & ,  IntTools_Range &  ) >(&BOPTools_AlgoTools::CorrectRange),
                    R"#(Correct shrunk range <aSR> taking into account 3D-curve resolution and corresponding tolerance values of <aE>, <aF>)#"  , py::arg("aE"),  py::arg("aF"),  py::arg("aSR"),  py::arg("aNewSR")
          )
        .def_static("IsMicroEdge_s",
                    (Standard_Boolean (*)( const TopoDS_Edge & ,  const opencascade::handle<IntTools_Context> & ,  const Standard_Boolean  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & ,  const opencascade::handle<IntTools_Context> & ,  const Standard_Boolean  ) >(&BOPTools_AlgoTools::IsMicroEdge),
                    R"#(Checks if it is possible to compute shrunk range for the edge <aE> Flag <theCheckSplittable> defines whether to take into account the possibility to split the edge or not.)#"  , py::arg("theEdge"),  py::arg("theContext"),  py::arg("theCheckSplittable")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("IsInvertedSolid_s",
                    (Standard_Boolean (*)( const TopoDS_Solid &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Solid &  ) >(&BOPTools_AlgoTools::IsInvertedSolid),
                    R"#(Returns true if the solid <theSolid> is inverted)#"  , py::arg("theSolid")
          )
        .def_static("ComputeTolerance_s",
                    (Standard_Boolean (*)( const TopoDS_Face & ,  const TopoDS_Edge & ,  Standard_Real & ,  Standard_Real &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Face & ,  const TopoDS_Edge & ,  Standard_Real & ,  Standard_Real &  ) >(&BOPTools_AlgoTools::ComputeTolerance),
                    R"#(Computes the necessary value of the tolerance for the edge)#"  , py::arg("theFace"),  py::arg("theEdge"),  py::arg("theMaxDist"),  py::arg("theMaxPar")
          )
        .def_static("MakeContainer_s",
                    (void (*)( const TopAbs_ShapeEnum ,  TopoDS_Shape &  ) ) static_cast<void (*)( const TopAbs_ShapeEnum ,  TopoDS_Shape &  ) >(&BOPTools_AlgoTools::MakeContainer),
                    R"#(Makes empty container of requested type)#"  , py::arg("theType"),  py::arg("theShape")
          )
        .def_static("PointOnEdge_s",
                    (void (*)( const TopoDS_Edge & ,  const Standard_Real ,  gp_Pnt &  ) ) static_cast<void (*)( const TopoDS_Edge & ,  const Standard_Real ,  gp_Pnt &  ) >(&BOPTools_AlgoTools::PointOnEdge),
                    R"#(Compute a 3D-point on the edge <aEdge> at parameter <aPrm>)#"  , py::arg("aEdge"),  py::arg("aPrm"),  py::arg("aP")
          )
        .def_static("IsBlockInOnFace_s",
                    (Standard_Boolean (*)( const IntTools_Range & ,  const TopoDS_Face & ,  const TopoDS_Edge & ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<Standard_Boolean (*)( const IntTools_Range & ,  const TopoDS_Face & ,  const TopoDS_Edge & ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools::IsBlockInOnFace),
                    R"#(Returns TRUE if PaveBlock <aPB> lays on the face <aF>, i.e the <PB> is IN or ON in 2D of <aF>)#"  , py::arg("aShR"),  py::arg("aF"),  py::arg("aE"),  py::arg("aContext")
          )
        .def_static("Dimension_s",
                    (Standard_Integer (*)( const TopoDS_Shape &  ) ) static_cast<Standard_Integer (*)( const TopoDS_Shape &  ) >(&BOPTools_AlgoTools::Dimension),
                    R"#(Returns dimension of the shape <theS>. If the shape contains elements of different dimension, -1 is returned.)#"  , py::arg("theS")
          )
        .def_static("TreatCompound_s",
                    (void (*)( const TopoDS_Shape & ,  NCollection_List<TopoDS_Shape> & ,  NCollection_Map<TopoDS_Shape, TopTools_ShapeMapHasher> *  ) ) static_cast<void (*)( const TopoDS_Shape & ,  NCollection_List<TopoDS_Shape> & ,  NCollection_Map<TopoDS_Shape, TopTools_ShapeMapHasher> *  ) >(&BOPTools_AlgoTools::TreatCompound),
                    R"#(Collects in the output list recursively all non-compound sub-shapes of the first level of the given shape theS. The optional map theMap is used to avoid the duplicates in the output list, so it will also contain all non-compound sub-shapes.)#"  , py::arg("theS"),  py::arg("theList"),  py::arg("theMap")=static_cast<NCollection_Map<TopoDS_Shape, TopTools_ShapeMapHasher> *>(NULL)
          )
        .def_static("IsOpenShell_s",
                    (Standard_Boolean (*)( const TopoDS_Shell &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Shell &  ) >(&BOPTools_AlgoTools::IsOpenShell),
                    R"#(Returns true if the shell <theShell> is open)#"  , py::arg("theShell")
          )
    // static methods using call by reference i.s.o. return
        .def_static("Dimensions_s",
            [](const TopoDS_Shape & theS ){
                Standard_Integer  theDMin;
                Standard_Integer  theDMax;

                BOPTools_AlgoTools::Dimensions(theS,theDMin,theDMax);
                
return std::make_tuple(theDMin,theDMax); },
            R"#(Returns the min and max dimensions of the shape <theS>.)#"  , py::arg("theS")
          )
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class BOPTools_AlgoTools2D from ./opencascade/BOPTools_AlgoTools2D.hxx
    klass = m.attr("BOPTools_AlgoTools2D");

    // default constructor
    register_default_constructor<BOPTools_AlgoTools2D , shared_ptr<BOPTools_AlgoTools2D>>(m,"BOPTools_AlgoTools2D");

    // nested enums

    static_cast<py::class_<BOPTools_AlgoTools2D , shared_ptr<BOPTools_AlgoTools2D>  >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("BuildPCurveForEdgeOnFace_s",
                    (void (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<void (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools2D::BuildPCurveForEdgeOnFace),
                    R"#(Compute P-Curve for the edge <aE> on the face <aF>. Raises exception Standard_ConstructionError if projection algorithm fails. <theContext> - storage for caching the geometrical tools)#"  , py::arg("aE"),  py::arg("aF"),  py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
          )
        .def_static("EdgeTangent_s",
                    (Standard_Boolean (*)( const TopoDS_Edge & ,  const Standard_Real ,  gp_Vec &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & ,  const Standard_Real ,  gp_Vec &  ) >(&BOPTools_AlgoTools2D::EdgeTangent),
                    R"#(Compute tangent for the edge <aE> [in 3D] at parameter <aT>)#"  , py::arg("anE"),  py::arg("aT"),  py::arg("Tau")
          )
        .def_static("HasCurveOnSurface_s",
                    (Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  opencascade::handle<Geom2d_Curve> & ,  Standard_Real & ,  Standard_Real & ,  Standard_Real &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  opencascade::handle<Geom2d_Curve> & ,  Standard_Real & ,  Standard_Real & ,  Standard_Real &  ) >(&BOPTools_AlgoTools2D::HasCurveOnSurface),
                    R"#(Returns TRUE if the edge <aE> has P-Curve <aC> on surface <aF> . [aFirst, aLast] - range of the P-Curve [aToler] - reached tolerance If the P-Curve does not exist, aC.IsNull()=TRUE.)#"  , py::arg("aE"),  py::arg("aF"),  py::arg("aC"),  py::arg("aFirst"),  py::arg("aLast"),  py::arg("aToler")
          )
        .def_static("HasCurveOnSurface_s",
                    (Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Face &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Face &  ) >(&BOPTools_AlgoTools2D::HasCurveOnSurface),
                    R"#(Returns TRUE if the edge <aE> has P-Curve <aC> on surface <aF> . If the P-Curve does not exist, aC.IsNull()=TRUE.)#"  , py::arg("aE"),  py::arg("aF")
          )
        .def_static("IntermediatePoint_s",
                    (Standard_Real (*)( const Standard_Real ,  const Standard_Real  ) ) static_cast<Standard_Real (*)( const Standard_Real ,  const Standard_Real  ) >(&BOPTools_AlgoTools2D::IntermediatePoint),
                    R"#(Compute intermediate value in between [aFirst, aLast] .)#"  , py::arg("aFirst"),  py::arg("aLast")
          )
        .def_static("IntermediatePoint_s",
                    (Standard_Real (*)( const TopoDS_Edge &  ) ) static_cast<Standard_Real (*)( const TopoDS_Edge &  ) >(&BOPTools_AlgoTools2D::IntermediatePoint),
                    R"#(Compute intermediate value of parameter for the edge <anE>.)#"  , py::arg("anE")
          )
        .def_static("AttachExistingPCurve_s",
                    (Standard_Integer (*)( const TopoDS_Edge & ,  const TopoDS_Edge & ,  const TopoDS_Face & ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<Standard_Integer (*)( const TopoDS_Edge & ,  const TopoDS_Edge & ,  const TopoDS_Face & ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools2D::AttachExistingPCurve),
                    R"#(Attach P-Curve from the edge <aEold> on surface <aF> to the edge <aEnew> Returns 0 in case of success)#"  , py::arg("aEold"),  py::arg("aEnew"),  py::arg("aF"),  py::arg("aCtx")
          )
    // static methods using call by reference i.s.o. return
        .def_static("PointOnSurface_s",
            [](const TopoDS_Edge & aE,const TopoDS_Face & aF,const Standard_Real aT,const opencascade::handle<IntTools_Context> & theContext ){
                Standard_Real  U;
                Standard_Real  V;

                BOPTools_AlgoTools2D::PointOnSurface(aE,aF,aT,U,V,theContext);
                
return std::make_tuple(U,V); },
            R"#(Compute surface parameters <U,V> of the face <aF> for the point from the edge <aE> at parameter <aT>. If <aE> has't pcurve on surface, algorithm tries to get it by projection and can raise exception Standard_ConstructionError if projection algorithm fails. <theContext> - storage for caching the geometrical tools)#"  , py::arg("aE"),  py::arg("aF"),  py::arg("aT"),  py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
          )
        .def_static("CurveOnSurface_s",
            [](const TopoDS_Edge & aE,const TopoDS_Face & aF,Geom2d_Curve& aC,const opencascade::handle<IntTools_Context> & theContext ){
                Standard_Real  aToler;
                opencascade::handle<Geom2d_Curve>  aC_ptr; aC_ptr = &aC;

                BOPTools_AlgoTools2D::CurveOnSurface(aE,aF,aC_ptr,aToler,theContext);
                if ( aC_ptr.get() != &aC ) copy_if_copy_constructible(aC, *aC_ptr);

return std::make_tuple(aToler); },
            R"#(Get P-Curve <aC> for the edge <aE> on surface <aF> . If the P-Curve does not exist, build it using Make2D(). [aToler] - reached tolerance Raises exception Standard_ConstructionError if algorithm Make2D() fails. <theContext> - storage for caching the geometrical tools)#"  , py::arg("aE"),  py::arg("aF"),  py::arg("aC"),  py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
          )
        .def_static("CurveOnSurface_s",
            [](const TopoDS_Edge & aE,const TopoDS_Face & aF,Geom2d_Curve& aC,const opencascade::handle<IntTools_Context> & theContext ){
                Standard_Real  aFirst;
                Standard_Real  aLast;
                Standard_Real  aToler;
                opencascade::handle<Geom2d_Curve>  aC_ptr; aC_ptr = &aC;

                BOPTools_AlgoTools2D::CurveOnSurface(aE,aF,aC_ptr,aFirst,aLast,aToler,theContext);
                if ( aC_ptr.get() != &aC ) copy_if_copy_constructible(aC, *aC_ptr);

return std::make_tuple(aFirst,aLast,aToler); },
            R"#(Get P-Curve <aC> for the edge <aE> on surface <aF> . If the P-Curve does not exist, build it using Make2D(). [aFirst, aLast] - range of the P-Curve [aToler] - reached tolerance Raises exception Standard_ConstructionError if algorithm Make2D() fails. <theContext> - storage for caching the geometrical tools)#"  , py::arg("aE"),  py::arg("aF"),  py::arg("aC"),  py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
          )
        .def_static("AdjustPCurveOnFace_s",
            [](const TopoDS_Face & theF,const opencascade::handle<Geom_Curve> & theC3D,const opencascade::handle<Geom2d_Curve> & theC2D,Geom2d_Curve& theC2DA,const opencascade::handle<IntTools_Context> & theContext ){
                opencascade::handle<Geom2d_Curve>  theC2DA_ptr; theC2DA_ptr = &theC2DA;

                BOPTools_AlgoTools2D::AdjustPCurveOnFace(theF,theC3D,theC2D,theC2DA_ptr,theContext);
                if ( theC2DA_ptr.get() != &theC2DA ) copy_if_copy_constructible(theC2DA, *theC2DA_ptr);

 },
            R"#(Adjust P-Curve <theC2D> (3D-curve <theC3D>) on surface of the face <theF>. <theContext> - storage for caching the geometrical tools)#"  , py::arg("theF"),  py::arg("theC3D"),  py::arg("theC2D"),  py::arg("theC2DA"),  py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
          )
        .def_static("AdjustPCurveOnFace_s",
            [](const TopoDS_Face & theF,const Standard_Real theFirst,const Standard_Real theLast,const opencascade::handle<Geom2d_Curve> & theC2D,Geom2d_Curve& theC2DA,const opencascade::handle<IntTools_Context> & theContext ){
                opencascade::handle<Geom2d_Curve>  theC2DA_ptr; theC2DA_ptr = &theC2DA;

                BOPTools_AlgoTools2D::AdjustPCurveOnFace(theF,theFirst,theLast,theC2D,theC2DA_ptr,theContext);
                if ( theC2DA_ptr.get() != &theC2DA ) copy_if_copy_constructible(theC2DA, *theC2DA_ptr);

 },
            R"#(Adjust P-Curve <aC2D> (3D-curve <C3D>) on surface <aF> . [aT1, aT2] - range to adjust <theContext> - storage for caching the geometrical tools)#"  , py::arg("theF"),  py::arg("theFirst"),  py::arg("theLast"),  py::arg("theC2D"),  py::arg("theC2DA"),  py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
          )
        .def_static("AdjustPCurveOnSurf_s",
            [](const BRepAdaptor_Surface & aF,const Standard_Real aT1,const Standard_Real aT2,const opencascade::handle<Geom2d_Curve> & aC2D,Geom2d_Curve& aC2DA ){
                opencascade::handle<Geom2d_Curve>  aC2DA_ptr; aC2DA_ptr = &aC2DA;

                BOPTools_AlgoTools2D::AdjustPCurveOnSurf(aF,aT1,aT2,aC2D,aC2DA_ptr);
                if ( aC2DA_ptr.get() != &aC2DA ) copy_if_copy_constructible(aC2DA, *aC2DA_ptr);

 },
            R"#(Adjust P-Curve <aC2D> (3D-curve <C3D>) on surface <aF> . [aT1, aT2] - range to adjust)#"  , py::arg("aF"),  py::arg("aT1"),  py::arg("aT2"),  py::arg("aC2D"),  py::arg("aC2DA")
          )
        .def_static("Make2D_s",
            [](const TopoDS_Edge & aE,const TopoDS_Face & aF,Geom2d_Curve& aC,const opencascade::handle<IntTools_Context> & theContext ){
                Standard_Real  aFirst;
                Standard_Real  aLast;
                Standard_Real  aToler;
                opencascade::handle<Geom2d_Curve>  aC_ptr; aC_ptr = &aC;

                BOPTools_AlgoTools2D::Make2D(aE,aF,aC_ptr,aFirst,aLast,aToler,theContext);
                if ( aC_ptr.get() != &aC ) copy_if_copy_constructible(aC, *aC_ptr);

return std::make_tuple(aFirst,aLast,aToler); },
            R"#(Make P-Curve <aC> for the edge <aE> on surface <aF> . [aFirst, aLast] - range of the P-Curve [aToler] - reached tolerance Raises exception Standard_ConstructionError if algorithm fails. <theContext> - storage for caching the geometrical tools)#"  , py::arg("aE"),  py::arg("aF"),  py::arg("aC"),  py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
          )
        .def_static("MakePCurveOnFace_s",
            [](const TopoDS_Face & aF,const opencascade::handle<Geom_Curve> & C3D,Geom2d_Curve& aC,const opencascade::handle<IntTools_Context> & theContext ){
                Standard_Real  aToler;
                opencascade::handle<Geom2d_Curve>  aC_ptr; aC_ptr = &aC;

                BOPTools_AlgoTools2D::MakePCurveOnFace(aF,C3D,aC_ptr,aToler,theContext);
                if ( aC_ptr.get() != &aC ) copy_if_copy_constructible(aC, *aC_ptr);

return std::make_tuple(aToler); },
            R"#(Make P-Curve <aC> for the 3D-curve <C3D> on surface <aF> . [aToler] - reached tolerance Raises exception Standard_ConstructionError if projection algorithm fails. <theContext> - storage for caching the geometrical tools)#"  , py::arg("aF"),  py::arg("C3D"),  py::arg("aC"),  py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
          )
        .def_static("MakePCurveOnFace_s",
            [](const TopoDS_Face & aF,const opencascade::handle<Geom_Curve> & C3D,const Standard_Real aT1,const Standard_Real aT2,Geom2d_Curve& aC,const opencascade::handle<IntTools_Context> & theContext ){
                Standard_Real  aToler;
                opencascade::handle<Geom2d_Curve>  aC_ptr; aC_ptr = &aC;

                BOPTools_AlgoTools2D::MakePCurveOnFace(aF,C3D,aT1,aT2,aC_ptr,aToler,theContext);
                if ( aC_ptr.get() != &aC ) copy_if_copy_constructible(aC, *aC_ptr);

return std::make_tuple(aToler); },
            R"#(Make P-Curve <aC> for the 3D-curve <C3D> on surface <aF> . [aT1, aT2] - range to build [aToler] - reached tolerance Raises exception Standard_ConstructionError if projection algorithm fails. <theContext> - storage for caching the geometrical tools)#"  , py::arg("aF"),  py::arg("C3D"),  py::arg("aT1"),  py::arg("aT2"),  py::arg("aC"),  py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
          )
        .def_static("IsEdgeIsoline_s",
            [](const TopoDS_Edge & theE,const TopoDS_Face & theF ){
                Standard_Boolean  isTheUIso;
                Standard_Boolean  isTheVIso;

                BOPTools_AlgoTools2D::IsEdgeIsoline(theE,theF,isTheUIso,isTheVIso);
                
return std::make_tuple(isTheUIso,isTheVIso); },
            R"#(Checks if CurveOnSurface of theE on theF matches with isoline of theF surface. Sets corresponding values for isTheUIso and isTheVIso variables.)#"  , py::arg("theE"),  py::arg("theF")
          )
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class BOPTools_AlgoTools3D from ./opencascade/BOPTools_AlgoTools3D.hxx
    klass = m.attr("BOPTools_AlgoTools3D");

    // default constructor
    register_default_constructor<BOPTools_AlgoTools3D , shared_ptr<BOPTools_AlgoTools3D>>(m,"BOPTools_AlgoTools3D");

    // nested enums

    static_cast<py::class_<BOPTools_AlgoTools3D , shared_ptr<BOPTools_AlgoTools3D>  >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("DoSplitSEAMOnFace_s",
                    (Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Face &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Face &  ) >(&BOPTools_AlgoTools3D::DoSplitSEAMOnFace),
                    R"#(Makes the edge <theESplit> seam edge for the face <theFace> basing on the surface properties (U and V periods))#"  , py::arg("theESplit"),  py::arg("theFace")
          )
        .def_static("DoSplitSEAMOnFace_s",
                    (Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Edge & ,  const TopoDS_Face &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Edge & ,  const TopoDS_Face &  ) >(&BOPTools_AlgoTools3D::DoSplitSEAMOnFace),
                    R"#(Makes the split edge <theESplit> seam edge for the face <theFace> basing on the positions of 2d curves of the original edge <theEOrigin>.)#"  , py::arg("theEOrigin"),  py::arg("theESplit"),  py::arg("theFace")
          )
        .def_static("GetNormalToFaceOnEdge_s",
                    (void (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const Standard_Real ,  gp_Dir & ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<void (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const Standard_Real ,  gp_Dir & ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools3D::GetNormalToFaceOnEdge),
                    R"#(Computes normal to the face <aF> for the point on the edge <aE> at parameter <aT>. <theContext> - storage for caching the geometrical tools)#"  , py::arg("aE"),  py::arg("aF"),  py::arg("aT"),  py::arg("aD"),  py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
          )
        .def_static("GetNormalToFaceOnEdge_s",
                    (void (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  gp_Dir & ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<void (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  gp_Dir & ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools3D::GetNormalToFaceOnEdge),
                    R"#(Computes normal to the face <aF> for the point on the edge <aE> at arbitrary intermediate parameter. <theContext> - storage for caching the geometrical tools)#"  , py::arg("aE"),  py::arg("aF"),  py::arg("aD"),  py::arg("theContext")=static_cast<const opencascade::handle<IntTools_Context> &>(Handle ( IntTools_Context ) ( ))
          )
        .def_static("SenseFlag_s",
                    (Standard_Integer (*)( const gp_Dir & ,  const gp_Dir &  ) ) static_cast<Standard_Integer (*)( const gp_Dir & ,  const gp_Dir &  ) >(&BOPTools_AlgoTools3D::SenseFlag),
                    R"#(Returns 1 if scalar product aNF1* aNF2>0. Returns 0 if directions aNF1 aNF2 coincide Returns -1 if scalar product aNF1* aNF2<0.)#"  , py::arg("aNF1"),  py::arg("aNF2")
          )
        .def_static("GetNormalToSurface_s",
                    (Standard_Boolean (*)( const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Standard_Real ,  gp_Dir &  ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Standard_Real ,  gp_Dir &  ) >(&BOPTools_AlgoTools3D::GetNormalToSurface),
                    R"#(Compute normal <aD> to surface <aS> in point (U,V) Returns TRUE if directions aD1U, aD1V coincide)#"  , py::arg("aS"),  py::arg("U"),  py::arg("V"),  py::arg("aD")
          )
        .def_static("GetApproxNormalToFaceOnEdge_s",
                    (Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const Standard_Real ,  gp_Pnt & ,  gp_Dir & ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const Standard_Real ,  gp_Pnt & ,  gp_Dir & ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools3D::GetApproxNormalToFaceOnEdge),
                    R"#(Computes normal to the face <aF> for the 3D-point that belongs to the edge <aE> at parameter <aT>. Output: aPx - the 3D-point where the normal computed aD - the normal; Warning: The normal is computed not exactly in the point on the edge, but in point that is near to the edge towards to the face material (so, we'll have approx. normal); The point is computed using PointNearEdge function, with the shifting value BOPTools_AlgoTools3D::MinStepIn2d(), from the edge, but if this value is too big, the point will be computed using Hatcher (PointInFace function). Returns TRUE in case of success.)#"  , py::arg("aE"),  py::arg("aF"),  py::arg("aT"),  py::arg("aPx"),  py::arg("aD"),  py::arg("theContext")
          )
        .def_static("GetApproxNormalToFaceOnEdge_s",
                    (Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const Standard_Real ,  gp_Pnt & ,  gp_Dir & ,  const Standard_Real  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const Standard_Real ,  gp_Pnt & ,  gp_Dir & ,  const Standard_Real  ) >(&BOPTools_AlgoTools3D::GetApproxNormalToFaceOnEdge),
                    R"#(Computes normal to the face <aF> for the 3D-point that belongs to the edge <aE> at parameter <aT>. Output: aPx - the 3D-point where the normal computed aD - the normal; Warning: The normal is computed not exactly in the point on the edge, but in point that is near to the edge towards to the face material (so, we'll have approx. normal); The point is computed using PointNearEdge function with the shifting value <aDt2D> from the edge; No checks on this value will be done. Returns TRUE in case of success.)#"  , py::arg("theE"),  py::arg("theF"),  py::arg("aT"),  py::arg("aP"),  py::arg("aDNF"),  py::arg("aDt2D")
          )
        .def_static("GetApproxNormalToFaceOnEdge_s",
                    (Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Dir & ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Dir & ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools3D::GetApproxNormalToFaceOnEdge),
                    R"#(Computes normal to the face <aF> for the 3D-point that belongs to the edge <aE> at parameter <aT>. Output: aPx - the 3D-point where the normal computed aD - the normal; Warning: The normal is computed not exactly in the point on the edge, but in point that is near to the edge towards to the face material (so, we'll have approx. normal); The point is computed using PointNearEdge function with the shifting value <aDt2D> from the edge, but if this value is too big the point will be computed using Hatcher (PointInFace function). Returns TRUE in case of success.)#"  , py::arg("theE"),  py::arg("theF"),  py::arg("aT"),  py::arg("aDt2D"),  py::arg("aP"),  py::arg("aDNF"),  py::arg("theContext")
          )
        .def_static("PointNearEdge_s",
                    (Standard_Integer (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const Standard_Real ,  const Standard_Real ,  gp_Pnt2d & ,  gp_Pnt & ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<Standard_Integer (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const Standard_Real ,  const Standard_Real ,  gp_Pnt2d & ,  gp_Pnt & ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools3D::PointNearEdge),
                    R"#(Compute the point <aPx>, (<aP2D>) that is near to the edge <aE> at parameter <aT> towards to the material of the face <aF>. The value of shifting in 2D is <aDt2D> If the value of shifting is too big the point will be computed using Hatcher (PointInFace function). Returns error status: 0 - in case of success; 1 - <aE> does not have 2d curve on the face <aF>; 2 - the computed point is out of the face.)#"  , py::arg("aE"),  py::arg("aF"),  py::arg("aT"),  py::arg("aDt2D"),  py::arg("aP2D"),  py::arg("aPx"),  py::arg("theContext")
          )
        .def_static("PointNearEdge_s",
                    (Standard_Integer (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const Standard_Real ,  const Standard_Real ,  gp_Pnt2d & ,  gp_Pnt &  ) ) static_cast<Standard_Integer (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const Standard_Real ,  const Standard_Real ,  gp_Pnt2d & ,  gp_Pnt &  ) >(&BOPTools_AlgoTools3D::PointNearEdge),
                    R"#(Compute the point <aPx>, (<aP2D>) that is near to the edge <aE> at parameter <aT> towards to the material of the face <aF>. The value of shifting in 2D is <aDt2D>. No checks on this value will be done. Returns error status: 0 - in case of success; 1 - <aE> does not have 2d curve on the face <aF>.)#"  , py::arg("aE"),  py::arg("aF"),  py::arg("aT"),  py::arg("aDt2D"),  py::arg("aP2D"),  py::arg("aPx")
          )
        .def_static("PointNearEdge_s",
                    (Standard_Integer (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const Standard_Real ,  gp_Pnt2d & ,  gp_Pnt & ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<Standard_Integer (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  const Standard_Real ,  gp_Pnt2d & ,  gp_Pnt & ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools3D::PointNearEdge),
                    R"#(Computes the point <aPx>, (<aP2D>) that is near to the edge <aE> at parameter <aT> towards to the material of the face <aF>. The value of shifting in 2D is dt2D=BOPTools_AlgoTools3D::MinStepIn2d() If the value of shifting is too big the point will be computed using Hatcher (PointInFace function). Returns error status: 0 - in case of success; 1 - <aE> does not have 2d curve on the face <aF>; 2 - the computed point is out of the face.)#"  , py::arg("aE"),  py::arg("aF"),  py::arg("aT"),  py::arg("aP2D"),  py::arg("aPx"),  py::arg("theContext")
          )
        .def_static("PointNearEdge_s",
                    (Standard_Integer (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  gp_Pnt2d & ,  gp_Pnt & ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<Standard_Integer (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  gp_Pnt2d & ,  gp_Pnt & ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools3D::PointNearEdge),
                    R"#(Compute the point <aPx>, (<aP2D>) that is near to the edge <aE> at arbitrary parameter towards to the material of the face <aF>. The value of shifting in 2D is dt2D=BOPTools_AlgoTools3D::MinStepIn2d(). If the value of shifting is too big the point will be computed using Hatcher (PointInFace function). Returns error status: 0 - in case of success; 1 - <aE> does not have 2d curve on the face <aF>; 2 - the computed point is out of the face.)#"  , py::arg("aE"),  py::arg("aF"),  py::arg("aP2D"),  py::arg("aPx"),  py::arg("theContext")
          )
        .def_static("MinStepIn2d_s",
                    (Standard_Real (*)() ) static_cast<Standard_Real (*)() >(&BOPTools_AlgoTools3D::MinStepIn2d),
                    R"#(Returns simple step value that is used in 2D-computations = 1.e-5)#" 
          )
        .def_static("IsEmptyShape_s",
                    (Standard_Boolean (*)( const TopoDS_Shape &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Shape &  ) >(&BOPTools_AlgoTools3D::IsEmptyShape),
                    R"#(Returns TRUE if the shape <aS> does not contain geometry information (e.g. empty compound))#"  , py::arg("aS")
          )
        .def_static("OrientEdgeOnFace_s",
                    (void (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  TopoDS_Edge &  ) ) static_cast<void (*)( const TopoDS_Edge & ,  const TopoDS_Face & ,  TopoDS_Edge &  ) >(&BOPTools_AlgoTools3D::OrientEdgeOnFace),
                    R"#(Get the edge <aER> from the face <aF> that is the same as the edge <aE>)#"  , py::arg("aE"),  py::arg("aF"),  py::arg("aER")
          )
        .def_static("PointInFace_s",
                    (Standard_Integer (*)( const TopoDS_Face & ,  gp_Pnt & ,  gp_Pnt2d & ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<Standard_Integer (*)( const TopoDS_Face & ,  gp_Pnt & ,  gp_Pnt2d & ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools3D::PointInFace),
                    R"#(Computes arbitrary point <theP> inside the face <theF>. <theP2D> - 2D representation of <theP> on the surface of <theF> Returns 0 in case of success.)#"  , py::arg("theF"),  py::arg("theP"),  py::arg("theP2D"),  py::arg("theContext")
          )
        .def_static("PointInFace_s",
                    (Standard_Integer (*)( const TopoDS_Face & ,  const TopoDS_Edge & ,  const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Pnt2d & ,  const opencascade::handle<IntTools_Context> &  ) ) static_cast<Standard_Integer (*)( const TopoDS_Face & ,  const TopoDS_Edge & ,  const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Pnt2d & ,  const opencascade::handle<IntTools_Context> &  ) >(&BOPTools_AlgoTools3D::PointInFace),
                    R"#(Computes a point <theP> inside the face <theF> using starting point taken by the parameter <theT> from the 2d curve of the edge <theE> on the face <theF> in the direction perpendicular to the tangent vector of the 2d curve of the edge. The point will be distanced on <theDt2D> from the 2d curve. <theP2D> - 2D representation of <theP> on the surface of <theF> Returns 0 in case of success.)#"  , py::arg("theF"),  py::arg("theE"),  py::arg("theT"),  py::arg("theDt2D"),  py::arg("theP"),  py::arg("theP2D"),  py::arg("theContext")
          )
        .def_static("PointInFace_s",
                    (Standard_Integer (*)( const TopoDS_Face & ,  const opencascade::handle<Geom2d_Curve> & ,  gp_Pnt & ,  gp_Pnt2d & ,  const opencascade::handle<IntTools_Context> & ,  const Standard_Real  ) ) static_cast<Standard_Integer (*)( const TopoDS_Face & ,  const opencascade::handle<Geom2d_Curve> & ,  gp_Pnt & ,  gp_Pnt2d & ,  const opencascade::handle<IntTools_Context> & ,  const Standard_Real  ) >(&BOPTools_AlgoTools3D::PointInFace),
                    R"#(Computes a point <theP> inside the face <theF> using the line <theL> so that 2D point <theP2D>, 2D representation of <theP> on the surface of <theF>, lies on that line. Returns 0 in case of success.)#"  , py::arg("theF"),  py::arg("theL"),  py::arg("theP"),  py::arg("theP2D"),  py::arg("theContext"),  py::arg("theDt2D")=static_cast<const Standard_Real>(0.0)
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class BOPTools_ConnexityBlock from ./opencascade/BOPTools_ConnexityBlock.hxx
    klass = m.attr("BOPTools_ConnexityBlock");


    // nested enums

    static_cast<py::class_<BOPTools_ConnexityBlock , shared_ptr<BOPTools_ConnexityBlock>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<NCollection_BaseAllocator> & >()  , py::arg("theAllocator") )
    // custom constructors
    // methods
        .def("SetRegular",
             (void (BOPTools_ConnexityBlock::*)( const Standard_Boolean  ) ) static_cast<void (BOPTools_ConnexityBlock::*)( const Standard_Boolean  ) >(&BOPTools_ConnexityBlock::SetRegular),
             R"#(None)#"  , py::arg("theFlag")
          )
        .def("IsRegular",
             (Standard_Boolean (BOPTools_ConnexityBlock::*)() const) static_cast<Standard_Boolean (BOPTools_ConnexityBlock::*)() const>(&BOPTools_ConnexityBlock::IsRegular),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Shapes",
             (const TopTools_ListOfShape & (BOPTools_ConnexityBlock::*)() const) static_cast<const TopTools_ListOfShape & (BOPTools_ConnexityBlock::*)() const>(&BOPTools_ConnexityBlock::Shapes),
             R"#(None)#"
             
         )
       .def("ChangeShapes",
             (TopTools_ListOfShape & (BOPTools_ConnexityBlock::*)() ) static_cast<TopTools_ListOfShape & (BOPTools_ConnexityBlock::*)() >(&BOPTools_ConnexityBlock::ChangeShapes),
             R"#(None)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("Loops",
             (const TopTools_ListOfShape & (BOPTools_ConnexityBlock::*)() const) static_cast<const TopTools_ListOfShape & (BOPTools_ConnexityBlock::*)() const>(&BOPTools_ConnexityBlock::Loops),
             R"#(None)#"
             
         )
       .def("ChangeLoops",
             (TopTools_ListOfShape & (BOPTools_ConnexityBlock::*)() ) static_cast<TopTools_ListOfShape & (BOPTools_ConnexityBlock::*)() >(&BOPTools_ConnexityBlock::ChangeLoops),
             R"#(None)#"
             
             , py::return_value_policy::reference_internal
         )
;

    // Class BOPTools_CoupleOfShape from ./opencascade/BOPTools_CoupleOfShape.hxx
    klass = m.attr("BOPTools_CoupleOfShape");


    // nested enums

    static_cast<py::class_<BOPTools_CoupleOfShape , shared_ptr<BOPTools_CoupleOfShape>  >>(klass)
    // constructors
        .def(py::init<  >()  )
    // custom constructors
    // methods
        .def("SetShape1",
             (void (BOPTools_CoupleOfShape::*)( const TopoDS_Shape &  ) ) static_cast<void (BOPTools_CoupleOfShape::*)( const TopoDS_Shape &  ) >(&BOPTools_CoupleOfShape::SetShape1),
             R"#(None)#"  , py::arg("theShape")
          )
        .def("SetShape2",
             (void (BOPTools_CoupleOfShape::*)( const TopoDS_Shape &  ) ) static_cast<void (BOPTools_CoupleOfShape::*)( const TopoDS_Shape &  ) >(&BOPTools_CoupleOfShape::SetShape2),
             R"#(None)#"  , py::arg("theShape")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Shape1",
             (const TopoDS_Shape & (BOPTools_CoupleOfShape::*)() const) static_cast<const TopoDS_Shape & (BOPTools_CoupleOfShape::*)() const>(&BOPTools_CoupleOfShape::Shape1),
             R"#(None)#"
             
         )
       .def("Shape2",
             (const TopoDS_Shape & (BOPTools_CoupleOfShape::*)() const) static_cast<const TopoDS_Shape & (BOPTools_CoupleOfShape::*)() const>(&BOPTools_CoupleOfShape::Shape2),
             R"#(None)#"
             
         )
;

    // Class BOPTools_Parallel from ./opencascade/BOPTools_Parallel.hxx
    klass = m.attr("BOPTools_Parallel");

    // default constructor
    register_default_constructor<BOPTools_Parallel , shared_ptr<BOPTools_Parallel>>(m,"BOPTools_Parallel");

    // nested enums

    static_cast<py::class_<BOPTools_Parallel , shared_ptr<BOPTools_Parallel>  >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class BOPTools_Set from ./opencascade/BOPTools_Set.hxx
    klass = m.attr("BOPTools_Set");


    // nested enums

    static_cast<py::class_<BOPTools_Set , shared_ptr<BOPTools_Set>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<NCollection_BaseAllocator> & >()  , py::arg("theAllocator") )
        .def(py::init< const BOPTools_Set & >()  , py::arg("theOther") )
    // custom constructors
    // methods
        .def("Assign",
             (BOPTools_Set & (BOPTools_Set::*)( const BOPTools_Set &  ) ) static_cast<BOPTools_Set & (BOPTools_Set::*)( const BOPTools_Set &  ) >(&BOPTools_Set::Assign),
             R"#(None)#"  , py::arg("Other")
          )
        .def("Add",
             (void (BOPTools_Set::*)( const TopoDS_Shape & ,  const TopAbs_ShapeEnum  ) ) static_cast<void (BOPTools_Set::*)( const TopoDS_Shape & ,  const TopAbs_ShapeEnum  ) >(&BOPTools_Set::Add),
             R"#(None)#"  , py::arg("theS"),  py::arg("theType")
          )
        .def("NbShapes",
             (Standard_Integer (BOPTools_Set::*)() const) static_cast<Standard_Integer (BOPTools_Set::*)() const>(&BOPTools_Set::NbShapes),
             R"#(None)#" 
          )
        .def("IsEqual",
             (Standard_Boolean (BOPTools_Set::*)( const BOPTools_Set &  ) const) static_cast<Standard_Boolean (BOPTools_Set::*)( const BOPTools_Set &  ) const>(&BOPTools_Set::IsEqual),
             R"#(None)#"  , py::arg("aOther")
          )
        .def("GetSum",
             (size_t (BOPTools_Set::*)() const) static_cast<size_t (BOPTools_Set::*)() const>(&BOPTools_Set::GetSum),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Shape",
             (const TopoDS_Shape & (BOPTools_Set::*)() const) static_cast<const TopoDS_Shape & (BOPTools_Set::*)() const>(&BOPTools_Set::Shape),
             R"#(None)#"
             
         )
;

// functions
// ./opencascade/BOPTools_AlgoTools.hxx
// ./opencascade/BOPTools_AlgoTools2D.hxx
// ./opencascade/BOPTools_AlgoTools3D.hxx
// ./opencascade/BOPTools_BoxSelector.hxx
// ./opencascade/BOPTools_BoxTree.hxx
// ./opencascade/BOPTools_ConnexityBlock.hxx
// ./opencascade/BOPTools_CoupleOfShape.hxx
// ./opencascade/BOPTools_IndexedDataMapOfSetShape.hxx
// ./opencascade/BOPTools_ListOfConnexityBlock.hxx
// ./opencascade/BOPTools_ListOfCoupleOfShape.hxx
// ./opencascade/BOPTools_MapOfSet.hxx
// ./opencascade/BOPTools_Parallel.hxx
// ./opencascade/BOPTools_Set.hxx

// Additional functions

// operators

// register typdefs
    register_template_BOPTools_BoxSelector<2>(m,"BOPTools_Box2dTreeSelector");
    register_template_BOPTools_BoxSet<Standard_Real, 3, Standard_Integer>(m,"BOPTools_BoxTree");
    register_template_BOPTools_BoxSelector<3>(m,"BOPTools_BoxTreeSelector");
    register_template_NCollection_IndexedDataMap<BOPTools_Set, TopoDS_Shape>(m,"BOPTools_IndexedDataMapOfSetShape");
    register_template_NCollection_List<BOPTools_ConnexityBlock>(m,"BOPTools_ListOfConnexityBlock");
    register_template_NCollection_List<BOPTools_CoupleOfShape>(m,"BOPTools_ListOfCoupleOfShape");
    register_template_NCollection_Map<BOPTools_Set>(m,"BOPTools_MapOfSet");


// exceptions

// user-defined post-inclusion per module in the body

};

// user-defined post-inclusion per module

// user-defined post